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Abstract

The microbial communities resident in animal intestines are composed of multiple
species that together play important roles in host development, health and disease. Due
to the complexity of these communities and the difficulty of characterizing them in situ,
the determinants of microbial composition remain largely unknown. Further, it is
unclear for many multi-species consortia whether their species-level makeup can be
predicted based on an understanding of pairwise species interactions, or whether
higher-order interactions are needed to explain emergent compositions. To address this,
we examine commensal intestinal microbes in larval zebrafish, initially raised germ-free
to allow introduction of controlled combinations of bacterial species. Using a dissection
and plating assay, we demonstrate the construction of communities of one to five
bacterial species and show that the outcomes from the two-species competitions fail to
predict species abundances in more complex communities. With multiple species
present, inter-bacterial interactions become weaker and more cooperative, suggesting
that higher-order interactions in the vertebrate gut may stabilize complex communities.

Introduction 1

Intestinal microbes exist in complex and heterogeneous communities of interacting, 2

taxonomically diverse species. The composition of these communities varies across 3

individuals and is crucial to the health of the host, having been shown in humans and 4

other animals to be correlated with dietary fat uptake [1, 2], organ development [3, 4], 5

immune regulation [5–10] and a wide range of diseases [11–20]. 6

Despite the importance of intestinal communities, the determinants of their 7

composition remain largely unknown. A growing number of studies map the effects of 8

external perturbations, such as antibiotic drugs [21,22] and dietary fiber [23] and 9

fat [24,25] on the relative abundance of gut microbial species. Intrinsic inter-microbial 10

interactions, however, are especially challenging to measure and are important not only 11

for shaping community composition in the absence of perturbations but also for 12

propagating species-specific perturbations to the rest of the intestinal ecosystem. 13

The considerable majority of studies of the gut microbiota have been performed on 14

naturally assembled microbiomes by sequencing DNA extracted from fecal samples, an 15
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approach that provides information about the microbial species and genes present in the 16

gut, but that imposes several limitations on the inference of inter-species interactions. 17

The high diversity of natural intestinal communities, and therefore the low abundance 18

of any given species among the multitude of its fellow residents, implies that stochastic 19

fluctuations in each species’ abundance will be large, easily masking true biological 20

interactions. The accuracy of inference is considerably worse if only relative, rather than 21

absolute, abundance data is available [26–29], as is typically the case in 22

sequencing-based studies. Finally, we note that fecal sampling assesses only the 23

microbes that have exited the host, which may not be representative of the intestinal 24

community [30]. 25

An alternative approach to using DNA sequencing and naturally assembled 26

host-microbiota systems is to build such systems from the bottom-up using model 27

organisms. This is accomplished by using techniques for generating initially germ-free 28

animals, and well-defined sets of small numbers of microbial species, and then 29

measuring the populations of these species resident in the intestine. Recent work along 30

these lines has been performed using the nematode Caenorhabditis elegans [31] and the 31

fruit fly Drosophila melanogaster [32, 33]. However, as described further below, these 32

studies imply different principles at play in the different systems. Moreover, it is unclear 33

whether conclusions from either model platform translate to a vertebrate gut, which has 34

both greater anatomical complexity and more specific microbial selection [34]. To 35

address this, we measure bacterial interactions in larval zebrafish (Fig 1A), a model 36

vertebrate organism amenable to gnotobiotic techniques [35–38], which has enabled in 37

earlier work that investigated pairs of bacterial species the discovery of specific 38

interbacterial competition mechanisms related to intestinal transport [39,40]. The 39

experiments described below involve several hundred fish, each with 1-5 resident 40

bacterial species, enabling robust inference of inter-species interactions. 41

The ability to quantify species abundance and to manipulate it by controlled 42

addition or subtraction of species is commonplace in macroscopic ecological 43

investigations. Its implementation here enables connections between intestinal 44

microbiome research and a large literature on ecosystem dynamics. An issue whose 45

importance has been realized for decades is the extent to which interspecies interactions 46

are pairwise additive, or whether higher-order (often called indirect) interactions are 47

necessary to explain community structure [41,42]. Pairwise additivity, if dominant, 48

simplifies the prediction of ecosystem composition, which would be desirable for 49

therapeutic applications of microbiome engineering. Higher order interactions may 50

stabilize multi-species communities according to several recent theoretical models 51

described further in the Discussion [43–46], implying that quantifying and controlling 52

indirect effects may be necessary for reshaping gut microbiomes. 53

Whether host-associated or not, microbial communities have shown a variety of 54

interaction types. A classic study involving cultured protozoan species found good 55

agreement between the dynamics of four-species consortia and predictions derived from 56

measurements of pairs of species [47]. Similarly, Friedman and colleagues showed that 57

the outcomes of competitions among three species communities of soil-derived bacteria 58

could be simply predicted from the outcomes of pairwise combinations [48]. In contrast, 59

experiments based on the cheese rind microbiome found significant differences in the 60

genes required for a non-native E. coli species to persist in a multi-species bacterial 61

community compared to predictions from pairwise coexistence with community 62

members [49]. A closed ecosystem consisting of one species each of algae, bacteria, and 63

ciliates exhibited a strong non-pairwise interaction, in which the bacterium is abundant 64

in the presence of each of the algae or ciliate alone, but is subject to strong predation in 65

the three-species system [50]. 66

Within animals, the interaction types observed in the few studies to date that make 67
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Fig 1. The five chosen commensal species are robust colonizers of the
larval zebrafish intestine (A) A 7 day post fertilization larval zebrafish, with a
dotted line outlining the intestine. Scale bar: 500 µm. (B) Chromogenic agar plate
showing colonies of all the candidate five species (AC: milky opaque, AE: reddish
purple, EN: blue, PL: dark purple and PS: colorless translucent) (C) A phylogenetic
tree of the five bacterial species examined in this study, calculated from 16S rRNA
sequences using PhyML. Scale bar: 0.05 nucleotide substitutions per site. (D) The
abundance per zebrafish gut of each of the five bacterial species when colonized in
mono-association with the host, assessed as colony forming units (CFU) from plated gut
contents. Each circular datapoint is a CFU value from an individual fish (N = 13, 17,
15, 8, and 10, from left to right), with the mean and standard deviation indicated by
the square markers and error bars.

use of controlled microbial communities in gnotobiotic hosts are also disparate. 68

Competitive outcomes of three-species communities from subsets of eleven different 69

bacterial species in the gut of the nematode C. elegans could be predicted from the 70

outcomes of two-species experiments, with indirect effects found to be weak [31]. In 71

contrast, work using well-defined bacterial assemblies of up to five species in the fruit fly 72

D. melanogaster found strong higher order interactions governing microbe-dependent 73

effects on host traits such as lifespan [32]. 74

To our knowledge, there have been no quantitative assessments of inter-bacterial 75

interactions using controlled combinations of microbial species in a vertebrate host, 76

leaving open the question of whether higher order interactions are strong, or whether 77

pairwise characterizations suffice to predict intestinal community structure. We 78
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therefore examined larval zebrafish, inoculating initially germ-free animals with specific 79

subsets of five different species of zebrafish-derived bacteria and assessing their 80

subsequent absolute abundances. Though the number of species is considerably fewer 81

than the hundreds that may be present in a normal zebrafish intestine, it is large 82

enough to sample a range of higher-order interactions, yet small enough that the 83

number of permutations of species is tractable. 84

As detailed below, we find strong pairwise interactions between certain bacterial 85

species. However, we find weaker interactions and a greater than expected level of 86

coexistence in fish colonized by four or five bacterial species. This suggests that 87

measurements of pairwise inter-microbial interactions are insufficient to predict the 88

composition of multispecies gut communities, and that higher-order interactions may 89

dampen strong competition and facilitate diversity in a vertebrate intestine. 90

Materials and methods 91

Animal Care 92

All experiments with zebrafish were done in accordance with protocols approved by the 93

University of Oregon Institutional Animal Care and Use Committee and following 94

standard protocols [51]. 95

Gnotobiology 96

Wild-type (ABCxTU strain) larval zebrafish (Danio rerio) were derived germ-free as 97

described in [36]. In brief, embryos were washed at approximately 7 hours 98

post-fertilization with antibiotic, bleach, and iodine solutions and then moved to tissue 99

culture flasks of 15mL sterile embryo medium solution with approximately 1mL of 100

sterile solution per larva. The flasks were then stored in a temperature-controlled room 101

maintained at 28◦C. 102

Bacterial Strains and Culture 103

The five bacterial strains used in this study, namely Aeromonas sp. (ZOR0001), 104

Pseudomonas mendocina (ZWU0006), Acinetobacter calcoaceticus (ZOR0008), 105

Enterobacter sp. (ZOR0014), and Plesiomonas sp. (ZOR0011) were originally isolated 106

from the zebrafish intestine and have been fluorescently labelled to express GFP and 107

dTomato facilitating their identification in our experimental assays [52,53]. Stocks of 108

bacteria were maintained in 25% glycerol at −80◦ C. 109

Inoculation of tissue culture flasks 110

One day prior to inoculation of the tissue culture flasks, bacteria from frozen glycerol 111

stocks were shaken overnight in Lysogeny Broth (LB media, 10 g/L NaCl, 5 g/L yeast 112

extract, 12 g/L tryptone, 1 g/L glucose) and grown for 16 h overnight at 30◦C. Samples 113

of 1mL of each of the overnight cultures were washed twice by centrifuging at 114

7000g/rpm for 2 min, removing the supernatant, and adding 1mL of fresh sterile embryo 115

media. At 5 dpf, the tissue culture flasks were inoculated with this solution at a 116

concentration of 106 CFU/mL. For each of the competition experiments involving 2, 4 117

and 5 bacterial species, equal concentrations were inoculated into the flasks. After 118

inoculation, the flasks were maintained at 30◦C until dissection at 7 dpf. 119
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Dissection and Plating 120

To determine the intestinal abundance of bacterial species, dissections of larval zebrafish 121

were performed at 7 dpf. Zebrafish were euthanized by hypothermal shock. Intestines 122

were removed by dissection and placed in 500µL of sterile embryo media and 123

homogenized with zirconium oxide beads using a bullet blender. The homogenized gut 124

solution was diluted to 10−1 and 10−2, and 100µL of these dilutions were spread onto 125

agar plates. Flask water was diluted to 10−4, and 100µL of these dilutions were spread 126

onto agar plates. For mono- and di-associated inoculations, tryptic soy agar (TSA) 127

plates were used in which fluorescence could be used to differentiate up to two species. 128

For inoculations of more than two species, Universal HiChrome Agar (Sigma-Aldrich) 129

plates were used, allowing for visual differentiation of each species using a colorimetric 130

indicator. The abundances of each of the species in the zebrafish gut was determined by 131

counting the colony forming units on the plates. These abundances for different 132

experiments are provided in S1 File. 133

In vitro competition experiments 134

To determine the in vitro competition coefficients, all the different pairwise 135

combinations of the five species were grown in overnight cultures of LB media as above. 136

On the following day, cultures were plated at 10−7 or 10−6 dilutions, depending on the 137

ability to detect both species in a given dilution. Abundances were obtained by counting 138

the number of CFUs of each species on the plates. These are provided in S2 File. 139

Results 140

Zebrafish (Fig 1A) were derived to be germ-free, and then were inoculated at 5 days 141

post-fertilization (dpf) with the desired combination of microbial species by addition of 142

bacteria to the flasks housing the fish. Approximately 48 hours later, fish were 143

euthanized and their intestines were removed by dissection. Intestines and their 144

contents were homogenized, diluted, and plated onto chromogenic agar (Methods). 145

Secreted enzymes from each of the five candidate bacterial species generate particular 146

colors due to substrates in the chromogenic medium, allowing quantification of colony 147

forming units (CFUs) and therefore absolute intestinal abundance (Fig 1B). All 148

abundance data are provided in S1 File. 149

The five species examined were selected as diverse representatives of genera 150

commonly found in the zebrafish intestine. Full names and species identifiers are given 151

in Methods; we will refer to these through most of the text by genus name or two letter 152

abbreviation: Acinetobacter (AC), Aeromonas (AE), Enterobacter (EN), Plesiomonas 153

(PL), and Pseudomonas (PS) (Fig 1C). As expected given their association with the 154

zebrafish gut microbiome, each species in mono-association, i.e. as the sole species 155

inoculated in germ-free fish, colonizes robustly to an abundance of 103-104 CFU/gut, 156

corresponding to an in vivo density of approximately 109-1010 bacteria/ml (Fig 1D). 157

Pairwise Interactions in Di-associations 158

We first examined all ten possible co-inoculations of two species, which enables 159

assessment of pairwise interactions in the absence of higher-order effects. Intestinal 160

CFU data shows a wide range of outcomes for different species pairs. As exemplars, the 161

CFUs per gut for each of two species, AC and EN, in the presence of each of the other 162

four are displayed in Figs 1A and B respectively. The abundance of AC is similar in the 163

presence of any second species to its value in mono-association. In contrast, the mean 164

EN abundance is similar to its mono-association value if co-inoculated with PL or PS, 165
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about 10 times lower if co-inoculated with AC, and over two orders of magnitude lower 166

if co-inoculated with AE, implying in the latter cases strong negative interactions. 167

Parameterizing the strength of interactions between species is necessarily model 168

dependent, contingent on the functional form of the relationship between one species’ 169

abundance and the other’s. We show that the conclusions we reach regarding 170

interaction strengths, especially their shifts when multiple species are present, are 171

qualitatively similar and therefore robust for a wide range of models. We first consider a 172

phenomenological interaction coefficient CIIij that is linear in log-abundance, 173

characterizing the effect of species j on species i as: 174

log10 P
II
i = 〈log10 P

I
i 〉+ CIIij log10 P

II
j (1)

where Pi denotes the abundance of species i and the superscript I or II denotes a mono- 175

or di-association experiment. This form is motivated by the distribution of gut bacterial 176

abundances being roughly log-normal, with species addition capable of inducing 177

orders-of-magnitude changes (Figs 2A,B). This CIIij can be derived as the interaction 178

parameter in a competitive Lotka-Volterra model modified to act on log-abundances 179

(see S1 Text). Qualitatively, a positive Cij implies that the abundance of species i 180

increases in the presence of j. Similarly a negative Cij indicates that the abundance of 181

species i declines in the presence of species j. Subsampling from the measured sets of 182

bacterial abundances gives the mean and standard deviation of the estimated 183

interaction parameters (see S1 Text). 184

We plot in (Fig 2C) the CIIij defined by Eq. 1 calculated from all di-association data 185

of all species pairs (N = 190 fish in total). For determining CIIij , we only use data from 186

fish in which both species were detected so that abundance changes of one species can 187

definitively be ascribed to the presence of the other within the gut. Uncertainties in CIIij 188

are estimated from bootstrap subsampling (see S1 Text). The interactions are 189

predominantly negative, with thirteen out of twenty coefficients differing from zero by 190

over three standard deviations. The total bacterial load, i.e. the sum of the bacterial 191

abundances, is similar for all the di-associations suggesting that the interaction effects 192

do not stem from changes in intestinal capacity (Fig 2D). 193

Though the physical and chemical environment of the zebrafish gut is likely very 194

dissimilar to test tubes of standard growth media, we examined abundances of each of 195

the pairs of species in in vitro competition experiments, growing overnight cultures in 196

Lysogeny broth (LB) media and plating for CFUs (see Methods). Assessing CIIij as 197

above, we find, as expected, that interaction coefficients calculated from the in vitro 198

experiments are markedly different than those measured in vivo (see S3 Fig) and 199

(Fig 3B). Our characterizations of interactions within the zebrafish gut are not 200

qualitatively altered by using a more general power law model to compute CIIij from 201

absolute abundance data, discussed below (Interactions under more general models) 202

following the presentation of measurements of interactions between more than two 203

species. 204

Pairwise Interactions in Multi-species Communities 205

To assess whether the strong competitive interactions we found in two-species 206

experiments are conserved in multi-species communities, we quantified pairwise 207

interactions in experiments inoculating fish with four or five bacterial species. To assess 208

CVij , we adopted a method similar to the leave-one-out approach often used in 209

macroscopic ecological studies, dating at least to classic experiments in which single 210

species were removed from tide pools and the abundances of the remaining species were 211

measured to evaluate inter-species interactions [54]. Here, we performed co-inoculation 212

experiments leaving out one of the five species of bacteria and compared intestinal 213
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Fig 2. Strong negative pairwise interactions dominate di-association
experiments Abundances per zebrafish gut of (A) AC and (B) EN in mono-association
(grey) and in di-association with each of the other bacterial species (blue/green). Each
circular datapoint is a CFU value from an individual fish ((A) N = 13, 21, 19, 20, and
27 and (B) N = 15, 19, 22, 18, and 23 from left to right), with the mean and standard
deviation indicated by the square markers and error bars. (C) Matrix of pairwise
interaction coefficients CIIij characterizing the effect of species j on the abundance of
species i. Coefficients that differ from zero by more than three standard deviations
(provided in S2 Fig) are outlined in black. (D) The average bacterial load per zebrafish
in each of the di-association combinations, expressed as log10 of total CFUs. The
standard deviations are between 0.3 and 1.1 and are displayed in S1 Text. Values on the
diagonal are the mono-association load for each of the five species.

abundances for these four-species communities to those measured in five-species 214

co-inoculation experiments. 215

In approximately N = 10 fish each, we performed all five different co-inoculations of 216

four bacterial species. The difference in the abundance of species i in fish inoculated 217

with all five species compared to fish inoculated with four, missing species j, gives a 218

measure of the impact of species j on species i in the multi-species environment. As an 219

example, EN abundance in inoculations lacking AC, AE, PL, and PS, and in five-species 220

inoculations, are shown in Fig 3A. In contrast to the di-association experiments 221

(Fig 2B), we see that EN does not show large abundance differences, in either its mean 222

or its distribution, as a result of any fifth species being present. 223

Again, a variety of options are possible for quantifying interaction coefficients in the 224

multi-species system. We first consider interaction coefficients as modifying 225

mean-log-abundances, analogous to the pairwise model of Eq. 1: 226

log10 P
V
i = log10 P

IV
i + CVij log10 P

V
j (2)

The interaction coefficients CVij that we obtain, displayed in Fig 3B, are different 227

and in general considerably weaker than those found in the two-species case Fig 2C. 228
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Fig 3. Weak pairwise interactions in five-species experiments (A) Abundance
per zebrafish gut of one of the bacterial species, EN, when all five species are
co-inoculated (gray) and in each four species co-inoculation experiment (green) with the
omitted species indicated on the axis. Each circular datapoint is a CFU value from an
individual fish (N = 40, 12, 12, 11, and 9, from left to right), with the mean and
standard deviation indicated by the square marker and error bars. (B) Matrix of
pairwise interaction coefficients CVij when 5 bacterial species are present. The
coefficients outlined in black differ from zero by over three standard deviations (see S4
Fig). (C) The pairwise interaction coefficients inferred from 4-5 species experiments
versus those from 1-2 species experiments. The colors label species i for each interaction
pair. (D) The minimum interaction coefficient calculated from a power-law interaction
model for different values of the exponent α for the 1-2 species (square filled markers)
and the 4-5 species (square markers) experiments.

There are only three interactions that differ from zero by over three standard deviations. 229

Strikingly, all three of these interactions are positive. This shift towards weaker and 230

more positive interactions between the two-species and multi-species interactions is 231

further illustrated in Fig 3C in which the multi-species interaction coefficients, CVij are 232

plotted against the 2-species interaction coefficients, CIIij . 233

Interactions under more general models 234

As noted, a model that is linearly additive in logarithmic abundances is only one of an 235

infinite number of choices, and moreover may not adequately capture the complexity of 236

interactions in the gut. Earlier experiments investigating the spatial structure of specific 237

microbial communities in the larval zebrafish intestine have shown that species such as 238

AE, EN and PS form dense three-dimensional aggregates [55]. The size and location of 239

aggregates and the locations of cells, conspecific or otherwise, within these aggregates 240

may impact their interactions in ways that could be sub-linear, linear, or super-linear in 241

population size. Previous work has also established that gut bacteria may also influence 242

intestinal mechanics [40], highlighting one of many possible indirect interaction 243

mechanisms whose functional forms are unknown. Furthermore, other studies have 244
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shown that different modes of physical and chemical communication could result in long 245

range interactions between different species [56–58]. To address these possibilities, we 246

evaluated species interactions with a more general power law model, wherein the 247

interaction effects between species could be non-linear in the abundance of the effector 248

species. Here the interaction coefficient Cij depends on a power, α, of the abundance of 249

the effector species j, which we evaluate in the range α = 0.1 to 2, spanning sub-linear 250

and super-linear interactions. Modified versions of Eq. 1 and 2 give: 251

P IIi = 〈P Ii 〉+ CIIij (P IIj )α (3)

and 252

PVi = 〈P IVi 〉+ CVij (PVj )α (4)

from which we can evaluate CIIij and CVij respectively. Note that α = 1 in Eq. 3, 4, i.e. 253

interactions that are linear in abundance, is simply the steady-state behavior of the 254

competitive Lotka Volterra model commonly used in population modeling and are shown 255

in S6 Fig. We provide the CIIij and CVij for several different α in S5 Fig. Throughout, as 256

in the logarithmic model shown above, pairwise interactions in di-association are in 257

many cases strongly negative, while the multi-species interactions are weaker. This is 258

summarized by studying the trends in the most negative CIIij and CVij for different values 259

of α, depicted in Fig 3D, which shows that for all α the strongest CVij is significantly 260

weaker than the strongest CIIij , suggesting that our results are robust to choice of model. 261

Five-species Coexistence 262

We next consider co-inoculation of all five bacterial species. Examination of over 200 263

fish shows a large variety in abundances, depicted in Fig 4A as the relative abundance 264

of each species in each larval gut. Multiple species are able to coexist, with the median 265

number of species present being 4 (Fig 4B). The mean total bacterial load as well as its 266

distribution (Fig 4C) is similar to the mean and distribution of the mono- and 267

di-association experiments, as well as four-species co-inoculation experiments discussed 268

earlier. We calculated the expected abundance of each bacterial species, if the 269

interactions governing the five-species community were simply a linear combination of 270

the pairwise interactions governing di-associations, CIIij . Any of the additive models we 271

evaluated can be extended to combinations of species. Considering the model focused 272

on above, with interaction coefficients modifying log abundances, the predicted 273

abundance of species i in the presence of another species j is given by 274

log10 P
V
i = 〈log10 P

I
i 〉+

∑
j 6=i

CIIij log10 P
V
j (5)

where the superscript V denotes the five-species co-inoculation experiment. A model 275

linear in species abundance (α = 1) is also considered in the S1 Text), and gives 276

qualitatively similar outputs and conclusions. Sampling from the measured distributions 277

of each of the interaction coefficients and the mean abundance in mono-association 278

allows calculation of the distribution of expected PVi values (see S5 File). 279

We plot the measured and predicted distributions of intestinal abundances of each of 280

the five species for the five-species co-inoculation experiment in Fig 4D. The measured 281

distributions of each of the species are very similar to each other. In contrast, the 282

distributions of the predicted abundances vary significantly by species. For two of the 283

species, AC and PS, the mean of the observed and predicted distributions are similar. 284

For the other three species, in contrast, the observed and predicted populations are in 285

strong disagreement, with the pairwise prediction being at least an order of magnitude 286

lower than the observed abundances. For EN and PL in particular, we would expect 287
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Fig 4. Communities are more diverse and abundant in five-species
experiments than would be predicted solely based on two-species pairwise
interactions (A) Stacked bar plot of the relative abundances of the five bacterial
species when all five were co-inoculated. Each bar is from a single dissected fish. The
bars are ordered by total bacterial load. (B) Histogram of the total number of bacterial
species present in the gut when all five species were co-inoculated. (C) The total
bacterial load as a function of the number of inoculated species. Each circular datapoint
is a CFU value from an individual fish (N = 63, 232, 187, and 202, from left to right),
with the mean and standard deviation indicated by the square marker and error bars.
(D) The predicted (blue Xs) and measured (brown circles) abundances of each bacterial
species in the zebrafish gut when all five species are co-inoculated. Predictions are
based on an interaction model that is linear in log-abundance using the pairwise CIIij
coefficients, as described in the main text. Solid square markers indicate the mean and
standard deviation of the distributions excluding null counts. The dotted line indicates
the experimental detection limit of 25 cells. The experimental data is from N = 202 fish
in total and the predicted distributions arise from 250 samples of the distribution of
interaction coefficients. (E) The observed frequency of occurrence in the gut from the
five-species co-inoculation experiment versus the predicted frequencies for each of the
five species. (F) The Pearson correlation coefficients calculated from the relative
abundances of pairs of species when all five species were co-inoculated.

extinction in a large fraction of fish due to strong negative pairwise interactions; in 288

actuality, both species are common and abundant. 289

Similarly, we can extract from the model the predicted frequency of occurrence of 290
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each of the species, regardless of abundance. We find that the predicted frequency is 291

much lower than the experimentally observed frequency for PL and EN (Fig 4E). 292

By measuring absolute abundances of bacterial populations in the gut, we provide 293

direct assessments of inter-species interactions. More common sequencing-based 294

methods, applied for example to the human gut microbiome, typically provide relative 295

measures of species abundance, i.e. each taxonomic unit’s fraction of the total load. 296

Correlations among relative abundances are often used as measures of interaction 297

strengths [59,60]. Calculating the Pearson correlation coefficients of the relative 298

abundances of each pair of species in fish inoculated with all five bacterial species, we 299

find a strikingly different interaction matrix (Fig 4F) than that inferred from absolute 300

abundance changes (Fig 4B), with many strong negative values. By definition, the 301

correlation matrix is symmetric (Cij = Cji), which does not capture the asymmetry 302

inferred from absolute abundance data (Figs 2C, 3B). 303

Discussion 304

Using a model system comprising five commensal bacterial species in the larval zebrafish 305

intestine, we have characterized aspects of gut microbiome assembly. Controlled 306

combinations of inoculated species and measurements of absolute abundance in the gut, 307

both challenging to perform in other vertebrate systems, reveal clear signatures of 308

interactions among species. We find strong, competitive interactions among certain 309

pairs in fish inoculated with two bacterial species. In contrast, pairwise interactions are 310

weak in intestines colonized by four to five species, and all species are present at equal 311

or greater abundance than would be predicted based on two-species data. 312

Our quantification of interaction strengths relies on a minimal set of assumptions 313

that serve as a general test of additive models. Interaction strengths are necessarily 314

parameters of some model. In the text, we make use of a model in which the 315

log-transformed population of a species is a linear function of the other species’ 316

log-transformed populations, and a more general power law model that spans both 317

sub-linear and super-linear dependences on population sizes. There are good reasons to 318

be skeptical of such frameworks. First, intestinal populations may not be well described 319

by equilibrium, steady-state values. Second, these models lack spatial structure 320

information. In vivo microscopy of one or two species in the zebrafish gut [39,40,61] 321

underscores both of these concerns: populations are very dynamic with rapid growth 322

and stochastic expulsions; interactions can be mediated by complex intestinal 323

mechanics; and aggregation and localization behaviors are species-specific. 324

Imaging also, however, provides justifications for these rough models. Prior 325

microscopy-based studies have shown that growth rates are rapid, with populations 326

reaching carrying capacities within roughly 12 hours [39,61], well below the 48 hour 327

assessment time considered here. Because of strong aggregation observed in nearly all 328

bacterial species, most individual bacteria residing in the bulk of clusters will not 329

directly interact with other species, leading to interactions that are sub-linear in 330

population size, suggesting a logarithmic or α < 1 power-law functional form. 331

Furthermore, stochastic dynamics can be mapped onto robust average properties for 332

populations [39,62]. It is therefore reasonable to make use of simple models, not as 333

rigorous descriptions of the system but as approximations whose parameters 334

characterize effective behaviors. We note that all these issues also affect more commonly 335

used models, such as standard competitive Lotka-Volterra models that are linear in 336

population sizes. These models are often applied to gut microbiome data and used to 337

infer interaction parameters [26, 63, 64] despite a lack of information about their realism. 338

The power law model of interactions provides the strongest indication of the generality 339

of our conclusions. Over a range of interaction forms extending from highly sublinear 340
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(α = 0.1) to super-linear (α = 2.0), strong competitive interactions are damped when 341

four or five species are present (Fig 3), suggestive of higher order interactions among 342

intestinal bacteria. 343

The ecological potential for higher-order or indirect interactions, i.e. interactions 344

that cannot be reduced to pairwise additive components but rather result from the 345

activities of three or more species, to be important determinants of community 346

structure has been appreciated for decades [41,42,47]. Identification of higher-order 347

interactions among constituent species is important for accurate prediction of responses 348

to ecological perturbations such as species invasion or extinction, as well as functions of 349

multi-species communities, as such features will not be adequately forecast by 350

examination of direct interactions in subsystems [41,65]. 351

Inferring and quantifying indirect interactions in natural ecosystems is, however, 352

challenging, calling for subtle and model-dependent statistical tests [41,42,66]. 353

Constructed or manipulated systems enable more straightforward assays in which 354

particular species are introduced or removed amid a backdrop of others. Several such 355

systems involving macroscopic organisms [67–71], as well as microorganisms [32,50] 356

have uncovered significant indirect interactions. However, some studies of microbial 357

communities have found weak or negligible higher order interactions [47,48], including 358

one study examining combinations of species introduced to the C. elegans gut [31]. The 359

complexity of interactions in a vertebrate gut has remained unclear, and 360

correlation-based methods for inferring interactions from sequencing-based data have 361

assumed that pairwise interactions suffice [59,72,73]. 362

Our measurements using gnotobiotic larval zebrafish, a model vertebrate, show 363

strong pairwise interactions when only two bacterial species are present in the intestine 364

and weak pairwise interactions when four to five species are present, indicating strong 365

higher-order interactions (Fig 3). In many cases, the effect is evident from the raw data 366

itself. For example, EN is strongly suppressed by AE if the two are inoculated together 367

(Fig 2B). Comparing EN abundance in fish colonized by all species except AE with its 368

abundance in fish colonized by all species, however, shows little difference, indicating 369

that the EN-AE interaction is strongly attenuated by the presence of the other bacterial 370

groups (Fig 3A). 371

Two additional observations also imply the presence of strong higher-order 372

interactions in our intestinal ecosystem. Considering fish colonized by all five bacterial 373

species, the abundance of each species is at least as high (Fig 4D) and the diversity of 374

bacterial species is higher than the values that would be predicted solely from direct 375

interactions (Fig 4E). 376

Our finding of increased species diversity in a system of several gut bacterial species 377

is consistent with recent theoretical studies that suggest, for a variety of reasons, that 378

higher-order interactions are likely to stabilize communities and promote coexistence. 379

The topic of multi-species coexistence has a long history in ecology. Especially since 380

classic work by Robert May showing that a system comprising pairwise interacting 381

constituents will, in general, be less stable as the number of species increases [74], 382

explaining how complex communities can exist has been a theoretical challenge. There 383

are many resolutions to this paradox, such as spatial heterogeneity, interactions across 384

trophic levels, and temporal variation. However, even without such additional structure, 385

incorporating higher order terms into general random competitive interaction models 386

leads to widespread coexistence [43–45]. Such large-scale coexistence can also emerge 387

naturally from contemporary resource competition models [46,75], in which 388

cross-feeding or metabolic tradeoffs necessarily involve multiple interacting species. 389

Intriguingly, the abundance distributions of all five of our gut bacterial species, when 390

inoculated together, are similar to one another. The average Shannon entropy of the 391

five species community (H = 1.16± 0.24) also resembles that of a purely neutrally 392
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assembled community (H = 1.61), reminiscent of dynamics mimicking neutral assembly 393

that emerge from multi-species dynamics driven by resource use constraints [46,76]. 394

Our findings imply that measurements of two-species interactions among microbial 395

residents of the vertebrate gut are likely to be insufficient for predictions of community 396

dynamics and composition. Moreover, they imply that inference from microbiome data 397

of inter-species interactions, for example by fitting Lotka-Volterra-type models with 398

pairwise interaction terms [26,63,64,77] should not be thought of as representing 399

fundamental pairwise interactions that would be manifested, for example, if the 400

constituent species were isolated, but rather as effective interactions in a complex milieu. 401

Our measurements do not shed light on what mechanisms give rise to higher-order 402

interactions in our system. Likely candidates include metabolic interactions among the 403

species, interactions mediated by host activities such as immune responses, and 404

modulation of spatial structure by coexisting species. Immune responses are sensitive to 405

specific bacterial species [78] and to bacterial behaviors [79]. Regarding spatial 406

structure in particular, in vivo imaging of these bacterial species in mono-association 407

has shown robust aggregation behaviors that correlate with location in the gut [55] 408

Given the physical constraints of the intestinal environment, we think that modification 409

of spatial organization due to the presence of species with overlapping distributions is a 410

likely mechanism for higher order interactions. Notably, both immune responses and 411

spatial structure are amenable to live imaging in larval zebrafish [39,40,55]. Though the 412

parameter space of transgenic hosts, fluorescent labels, and interaction timescales to 413

explore in imaging studies is potentially very large, such future studies are likely to 414

yield valuable insights into the mechanisms orchestrating the strong interactions 415

observed here. Furthermore, examination of the roles of priority effects and other 416

aspects of initial colonization, as well as stability of diverse communities with respect to 417

invasion, may reveal potential routes for intentionally manipulating the vertebrate 418

microbiome to engineer desired traits. 419

Supporting information 420

S1 File Absolute abundance data for all in vivo experiments Spreadsheet 421

containing absolute counts of bacterial cells observed for the each of the species for each 422

fish inoculated in 1,2,4 and 5 experiments. Data from each experiment is in a separate 423

sheet titled with experiment name eg. ‘2-species’. Within each sheet, separated columns 424

represent the species combination inoculated for that particular experiment. 425

S2 File Absolute bacterial cell counts for all in vitro experiments 426

Spreadsheet containing absolute counts of bacterial cells/mL for in vitro 427

mono-association (sheet 1-species) and di-association (sheet 2-species) experiments in 428

Lysogeny broth (LB) media. 429

S3 File Pairwise interaction coefficients (CIIij ) for two species experiments 430

calculated from the power law model Spreadsheet containing the interaction 431

coefficients for the two species experiments calculated using the power law model for 432

different values of α. Each sheet contains the mean and standard deviation of the 433

pairwise interaction coefficients for a single value of α. The first column in each sheet 434

depicts the species pair (i-j). 435

S4 File Pairwise interaction coefficients (CVij ) for five species experiments 436

calculated from the power law model Spreadsheet containing the interaction 437

coefficients for the five species experiments calculated using the power law model for 438
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different values of α. Each sheet contains the mean and standard deviation of the 439

pairwise interaction coefficients for a single value of α. The first column in each sheet 440

depicts the species pair (i-j). 441

S5 File Predicted abundance distributions for log transformed abundance 442

model The file contains the predicted five species abundances of species using the 443

linear additive model described in main text and the pairwise coefficients determined 444

using the log transformed abundance model. Each row represents the predicted log10 445

abundance of species AC, AE, EN, PL and PS in one fish. 446

S6 File Predicted abundance distributions for linear abundance model 447

The file contains the predicted five species abundances of species using the linear 448

additive model described in S1 Text and the pairwise coefficients determined using the 449

absolute abundance model. Each row represents the predicted absolute abundance of 450

species AC, AE, EN, PL and PS in one fish. 451

S
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s
 i

Species j 452

S1 Fig. The total load for di-association experiments The total bacterial load 453

for different di-association experiments, expressed as the mean and standard deviation 454

of log10 (total CFUs). The values on the diagonal are the mean load from 455

mono-association experiments. 456
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S2 Fig. Pairwise interaction coefficients for two-species experiments using 458

the log-transformed model The mean pairwise interaction coefficients CIIij showing 459

the effect of species j on species i calculated using the log-transformed abundance model. 460

The standard deviations are calculated using a subsampling approach described in S1 461

Text. 462
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463

S3 Fig. Pairwise interaction coefficients from in vitro two-species 464

experiments The matrix of interaction coefficients showing the mean and standard 465

deviation of CIIij from in vitro competition experiments. 466
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467

S4 Fig. Pairwise interaction coefficients for five-species experiments using 468

the log-transformed model The mean pairwise interaction coefficients CVij 469

calculated using the log-transformed abundance model from experiments with four and 470

five inoculated species. The standard deviations are calculated using a subsampling 471

approach described in S1 Text. 472
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S5 Fig. Pairwise interaction coefficients for select α values for two and 474

five-species experiments using the power law model Interaction coefficients 475

generated from the linear absolute abundance model for are compared for the 476

one-to-two species (left) and four-to-five species (right) experiments. The legend at the 477

bottom-right shows the species labels for the rows and columns. The data is tabulated 478

in S3 File and S4 File. 479
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S6 Fig. Pairwise interaction coefficients for two and five-species 481

experiments using a linear model The mean and standard deviation of the 482

interaction coefficients for the two species CIIij and five species CVij experiments 483

calculated using a model linear in absolute species abundance. 484
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S7 Fig. Predicted five species distributions from the linear model A. 486

Predicted (blue xs) and measured (brown circles) absolute abundance distributions for 487

five-species inoculation experiments calculated from the linear model for pairwise 488

interactions, for each of the five species. The means of the predicted and measured 489

distributions excluding nulls are shown using bold blue circles and brown square 490

markers, respectively, with error bars indicating the standard deviation. The dotted line 491

indicates the experimental detection limit of 25 cells. The predicted distributions are 492

generated from sampling the interaction coefficient distributions as described in S1 Text, 493

while the experimental distributions comprise abundances from N = 202 fish. B. The 494

observed occurrence frequencies of each species in five-species experiments plotted 495

against the predicted frequencies generated from the linear model. 496

S1 Text. Math Supplement File containing a detailed description of the different 497

interaction models and the procedures followed for carrying out the analysis of the 498

experimental data. 499
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Gratadoux JJ, et al. Faecalibacterium prausnitzii is an anti-inflammatory
commensal bacterium identified by gut microbiota analysis of Crohn disease
patients. Proceedings of the National Academy of Sciences of the United States
of America. 2008;105(43):16731–16736. doi:10.1073/pnas.0804812105.

19. Zhu W, Winter MG, Byndloss MX, Spiga L, Duerkop BA, Hughes ER, et al.
Precision editing of the gut microbiota ameliorates colitis. Nature.
2018;553(7687):208–211. doi:10.1038/nature25172.

20. Everard A, Belzer C, Geurts L, Ouwerkerk JP, Druart C, Bindels LB, et al.
Cross-talk between Akkermansia muciniphila and intestinal epithelium controls
diet-induced obesity. Proceedings of the National Academy of Sciences of the
United States of America. 2013;110(22):9066–9071. doi:10.1073/pnas.1219451110.

21. Dethlefsen L, Relman DA. Incomplete recovery and individualized responses of
the human distal gut microbiota to repeated antibiotic perturbation. Proceedings
of the National Academy of Sciences. 2011;108(Supplement 1):4554–4561.
doi:10.1073/pnas.1000087107.

22. Modi SR, Collins JJ, Relman DA. Antibiotics and the gut microbiota. The
Journal of Clinical Investigation. 2014;124(10):4212–4218. doi:10.1172/JCI72333.

23. Zhao L, Zhang F, Ding X, Wu G, Lam YY, Wang X, et al. Gut bacteria
selectively promoted by dietary fibers alleviate type 2 diabetes. Science.
2018;359(6380):1151. doi:10.1126/science.aao5774.

24. Ye L, Mueller O, Bagwell J, Bagnat M, Liddle RA, Rawls JF. High fat diet
induces microbiota-dependent silencing of enteroendocrine cells. eLife.
2019;8:e48479. doi:10.7554/eLife.48479.

25. Carmody RN, Gerber GK, Luevano JM, Gatti DM, Somes L, Svenson KL, et al.
Diet dominates host genotype in shaping the murine gut microbiota. Cell host &
microbe. 2015;17(1):72–84. doi:10.1016/j.chom.2014.11.010.

26. Fisher CK, Mehta P. Identifying Keystone Species in the Human Gut
Microbiome from Metagenomic Timeseries using Sparse Linear Regression. PLoS
ONE. 2014;9(7):e102451. doi:10.1371/journal.pone.0102451.

May 28, 2020 19/23

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 29, 2020. ; https://doi.org/10.1101/2020.05.28.121855doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.28.121855
http://creativecommons.org/licenses/by-nd/4.0/


27. Shang Y, Sikorski J, Bonkowski M, Fiore-Donno AM, Kandeler E, Marhan S,
et al. Inferring interactions in complex microbial communities from nucleotide
sequence data and environmental parameters. PloS One. 2017;12(3):e0173765.
doi:10.1371/journal.pone.0173765.

28. Carr A, Diener C, Baliga NS, Gibbons SM. Use and abuse of correlation analyses
in microbial ecology. The ISME Journal. 2019;13(11):2647–2655.
doi:10.1038/s41396-019-0459-z.

29. Lovell D, Pawlowsky-Glahn V, Egozcue JJ, Marguerat S, Bähler J.
Proportionality: A Valid Alternative to Correlation for Relative Data. PLOS
Computational Biology. 2015;11(3):e1004075. doi:10.1371/journal.pcbi.1004075.

30. Zmora N, Zilberman-Schapira G, Suez J, Mor U, Dori-Bachash M, Bashiardes S,
et al. Personalized Gut Mucosal Colonization Resistance to Empiric Probiotics Is
Associated with Unique Host and Microbiome Features. Cell.
2018;174(6):1388–1405.e21. doi:10.1016/j.cell.2018.08.041.

31. Lopez AO, Vega NM, Gore J. Interspecies bacterial competition determines
community assembly in the C. elegans intestine. bioRxiv. 2019; p. 535633.
doi:10.1101/535633.

32. Gould AL, Zhang V, Lamberti L, Jones EW, Obadia B, Korasidis N, et al.
Microbiome interactions shape host fitness. Proceedings of the National Academy
of Sciences. 2018;115(51):E11951–E11960. doi:10.1073/pnas.1809349115.

33. Aranda-Dı́az A, Obadia B, Dodge R, Thomsen T, Hallberg ZF, Güvener ZT,
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Ecological Modeling from Time-Series Inference: Insight into Dynamics and
Stability of Intestinal Microbiota. PLOS Computational Biology.
2013;9(12):e1003388. doi:10.1371/journal.pcbi.1003388.

64. Marino S, Baxter NT, Huffnagle GB, Petrosino JF, Schloss PD. Mathematical
modeling of primary succession of murine intestinal microbiota. Proceedings of
the National Academy of Sciences. 2014;111(1):439–444.
doi:10.1073/pnas.1311322111.
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