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Abstract 
Accumulation of diverse types of omics data on schizophrenia (SCZ) requires a systems approach to 

jointly modeling the interplay between genome, transcriptome and proteome. Proteome dynamics, as 

the definitive cellular machinery in human body, has been lagging behind the research on 

genome/transcriptome in the context of SCZ, both at tissue and single-cell resolution. We introduce a 

Markov Affinity-based Proteogenomic Signal Diffusion (MAPSD) method to model intra-cellular protein 

trafficking paradigms and tissue-wise single-cell protein abundances. MAPSD integrates multi-omics 

data to amplify the signals at SCZ risk loci with small effect sizes, and reveal convergent disease-

associated gene modules in the brain interactome as well as more than 130 tissue/cell-type 

combinations. We predicted a set of high-confidence SCZ risk genes, the majority of which are not 

directly connected to SCZ susceptibility risk genes. We characterized the subcellular localization of 

proteins encoded by candidate SCZ risk genes in various brain regions, and illustrated that most are 

enriched in neuronal and Purkinje cells in cerebral cortex. We demonstrated how the identified gene set 

may be involved in different developmental stages of the brain, how they alter SCZ-related biological 

pathways, and how they can be effectively leveraged for drug repurposing. MAPSD can be applied to 

other polygenic diseases, yet our case study on SCZ signifies how tissue-adjusted protein-protein 

interaction networks can assist in generating deeper insights into the orchestration of polygenic 

diseases. 
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Introduction 
The emergence of omics technologies has revolutionized neuropsychiatric research1 by generating high-

throughput genomic data, bridging genome and transcriptome to phenome2. For example, genome-

wide association studies (GWAS) such as Psychiatric Genomics Consortium (PGC)3 and CLOZUK 

consortium4 have created a repertoire of thousands of samples worldwide, leading to the discovery of 

many common variants associated with schizophrenia (SCZ). While such studies mark important 

milestones in schizophrenia research, they face critical challenges with regard to extracting novel 

biological insights and finding additional therapeutic targets or pathways. In fact, only one recognized 

drug target dopamine receptor D2 (DRD2) has been re-identified by GWAS5. It is not trivial to accurately 

pinpoint the corresponding risk genes in each GWAS risk locus, as such loci may cover a myriad of genes 

while the genuine causal variants may be far away from the top-ranking SNPs 6. 

In addition to genetic association studies, tremendous efforts have been made over the course of years 

to understand the machinery of gene regulation. Whole-body proteomics data, such as the Human 

Protein Atlas7,8, now delineates protein expression not only across tens of various tissues but at certain 

cell-types, while drawing their subcellular localization. Moreover, large-scale epigenomics data such as 

Functional Annotation of the Mammalian Genome 5 (FANTOM5)9 and genome-scale chromosome 

conformation capture (Hi-C)10,11 technology have brought about unprecedented opportunities to 

elucidate long-range interactions among genetic loci. Given that individual omics data serve as 

complementary elements to each other, integrating multi-omics data-types can strengthen subtle 

disease signals from risk genes5,12. In fact, such multi-omics perspective amplifies signals from genetic 

loci with small effect sizes, and help support converging evidence on certain biological processes. This is 

of paramount importance in understanding polygenic diseases such as SCZ. 

The current available omics data on SCZ are predominantly related to those of nucleic acids, e.g., 

genomics, transcriptomics, and epigenomics, while the use of proteomics information is quite limited 13. 

As the functional machinery in a cell, proteins essentially reflect the functional consequences of 

genome, epigenome, and transcriptome. Although proteins are treated as proxies of gene functions, 

multiple lines of evidences report a maximum of 60% correlation between the gene and protein 

expression levels in certain organisms14,15. Moreover, functionality of proteins is not restricted to their 

abundances, where other determinants such biochemical and physical properties such as subcellular 

localization, protein-protein interactions, and post-translational modifications affect such functions16. 

This mandates an inclusive in-depth analyses of the proteome and its physical and biochemical 

properties, not only at the tissue level but at the cell resolution in SCZ. Although proteomic 

investigations have been historically hampered due to the lack of low-cost and reliable high-throughput 

assay platforms17,18, there have been recent advances in improving the mass spectrometry-based 

proteomics platforms19,20 which has resulted in the generation of valuable resources such as the Human 

Protein Atlas7,8. On the other hand, subcellular fraction allows probing enrichment of proteins in micro-

domains within cells (such as neurons), and offers insights into understanding the intracellular trafficking 

trajectories of proteins. There have been several proteomic studies on SCZ21-24 which mainly focus on 

observing the differential expression of proteins in post-mortem brains, without taking into account 

tissue- or cell-specific biochemical and biophysical interactions. For a full review on proteome studies in 

SCZ, refer to the reference13 . 
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In this study, we introduce MAPSD, Markov Affinity-based Proteogenomic Signal Diffusion, a multi-omics 

network-based computational method to identify novel risk genes for polygenic diseases. MAPSD 

leverages multiple layers of omics information, as well as the under-studied proteome subcellular 

localization patterns and tissue-wise cell-specific abundances of proteins in tens of different tissues and 

a wide-range of cells, followed by propagating the biological signals across human interactome to 

characterize potential disease-associated risk genes. The proposed model has several unique advantages 

including: (a) it employs protein trafficking information in subcellular micro-domains in over 130 tissues 

and cell-types, including multiple regions in the brain from the Human Protein Atlas7,8, (b) MAPSD 

employs five layers of omics data including differentially expressed (DE) genes2, GWAS hits3,4, rare and 

de novo mutations25, differentially methylated genes26-28 and open chromatin accessibility data29; (c) 

MAPSD can effectively model interactions of genome, epigenome, transcriptome, and proteome at a 

single-cell resolution. Although we used SCZ as a test case in the study, MAPSD is flexible and can be 

effectively applied to other polygenic diseases other than SCZ. The outcome of MAPSD is accurate 

prediction of risk levels of all human genes in SCZ, which has led to the identification of a set of new 

candidate genes for SCZ. Our functional evaluation on these candidate genes indicate how the MAPSD-

identified genes are predominantly enriched in certain cell-types within specific brain regions. In 

particular, the novel candidate genes identified by us are enriched for the targets of approved drugs for 

neurological disorders and suggest opportunities for re-purposing the existing therapies for SCZ.  

Results 

Overview of the MAPSD framework 
MAPSD is a multi-step tissue/cell-specific proteogenomic method to identify risk genes through 

leveraging complementary biological signals from distinct omics data modalities. The overall structure of 

MAPSD is provided in Figure 1. MAPSD starts with a large-scale protein-protein interaction (PPI) network 

which was assembled from multiple sources30-33 (see Experimental Procedures). Using the PPI network, 

an affinity matrix is created. This matrix is binary in which if two nodes (proteins) interact then their 

corresponding matrix elements will be 1, otherwise 0. The PPI network is then adjusted to include 

molecular trafficking patterns. This adjustment is conducted using the subcellular localization data from 

the Human Protein Atlas (Figure 2a). The rationale behind this adjustment is that if two proteins being 

connected in the PPI network co-localize in the same micro-domain within the cell, then they are more 

likely to be interacting with each other. In total, 32 micro-domains have been used in this study. 

Therefore, the weight of connecting edges of co-localized proteins in the PPI network is amplified by a 

factor of 1.5 while the remaining edges have a weight of 1 (see Experimental Procedures). Using the 

adjusted affinity matrix, the Markov Transition Distribution Matrix 𝑀 is created. Using Graph Laplacian 

concept in Graph Theory, a one-step probability distribution from each node to its neighbors is 

computed (see Experimental Procedures). 

The multi-omics data sets have been collected from multiple sources (see Experimental Procedures). We 

used SCZ as a test case in our study to evaluate the MAPSD approach, due to the availability of large-

scale genomics, transcriptomics and epigenomics data sets on SCZ. Five layers of omics data have been 

employed in this study including: differentially expressed (DE) genes, GWAS hits, rare and de novo 

mutation loci, differentially methylated loci, and loci being differentially accessible in open chromatin 

regions in neuronal cells. The corresponding Ensembl IDs for all of these loci were obtained and the final 
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Signal Matrix was created. Since MAPSD operates at the single cell resolution, it needs to adjust the 

created initial signal vector 𝑆 based on the tissues as well as their corresponding cell-types to project the 

variations between the protein abundances among them (see Experimental Procedures). To illustrate 

elements of the vector 𝑆, suppose a gene to be differentially expressed and differentially methylated in 

SCZ compared to controls. Then, the initial signal intensity of this gene in 𝑆 equals 2. Using the available 

protein abundance data in various tissues and cell types from the Human Protein Atlas, we adjusted the 

signal vector 𝑆 for 131 combinations of tissues and cell-types (Figure 2b, see Experimental Procedures). 

For instance, we have five regions in the brain including cerebral cortex, cerebellum, caudate, 

hippocampus, and hypothalamus as well as seven cell-types including neuronal cells, Purkinje cells, glial 

cells, endothelial cells, neutrophils, and cells in granular and molecular layers. Protein abundances vary 

across tissues and cell-types. Therefore, it is required to overlay the knowledge on such expression 

patterns onto the signal matrix 𝑆. The adjusted signal matrix is called 𝑆∗ which shows the signal 

intensities of SCZ risk genes in all of the considered tissues and cell-types. In the next step, using the 

Markov operator matrix 𝑀 and the created tissue/cell-specific signal intensity matrix 𝑆∗, MAPSD diffuses 

the available adjusted signal intensities onto the adjusted networks aimed at estimating the disease 

signal intensities of the unknown proteins (see Experimental Procedures). Upon termination of the 

algorithm, MAPSD outputs the signal intensities of all of the proteins in 131 different combinations of 

tissues and cell-types, on which we conducted several tests. The MAPSD results are unbiased given that 

the adjusted network for signal diffusion is independently created from SCZ signal intensities and does 

not contain any prior information of the disease. Given that the PPI network is adjusted for subcellular 

localization of the nodes, the overall topology of the network shows a more realistic picture of 

subcellular molecular trafficking and protein interactions. The lower panel in Figure 1 represents a toy 

example of diffused signals as well as the original SCZ signal intensities in two different cell-types. Given 

the abundance of proteins in each tissue and cell-type, the overall diffusion patterns of SCZ signals 

varies in the two networks. 

Applying MAPSD on SCZ to identify disease risk genes 
We created a large PPI-network containing 232,801 edges and 16,185 nodes. As described above, 

considering five layers of omics evidences (gene expression, methylation, GWAS hits, rare and de novo 

mutation loci, and open chromatin regions), 3,915 genes were curated to be associated with SCZ with 

various degrees of signal intensities (Figure 3a). DGKZ showed the highest signal intensity of 4. DGKZ is a 

well-studied SCZ risk gene evidenced to be DE2 and differentially methylated27 as well as harboring 

GWAS hits3,4 and de novo mutations25. Six genes were found to have a signal intensity of 3 including 

DNAJA4, TCF4, CHRNA2, CPNE8, GRIN2A, and ZNF536. Notably, in a recent study34 we had identified 

TCF4 to act as a transcriptional master regulator in SCZ, based on expression network analysis of human 

dorsolateral prefrontal cortex (DLPFC). Upon initiating the diffusion process, MAPSD terminated the 

diffusion at the time step 𝑡 = 3 (Figure 3c). A sharp decrease in Figure 3c indicates the tendency of the 

graph toward over-smoothness. Therefore, 𝑡 = 3 is an appropriate cut-off point to prevent this 

phenomenon. After completion of the diffusion process, we sought to check how many of the SCZ risk 

genes show the highest signal intensity in all of the brain regions (Figure 3b). We can see that DGKZ as 

well as two other genes with signal intensity of 3 were preserved in the brain. MAPSD resulted in 704 

genes (4.4% of the total) to bear the highest SCZ risk signal uniquely in several brain regions, including 

cerebral cortex, cerebellum, hippocampus, and caudate. We checked this gene set to look for the SCZ 

risk genes (which were used as the input to the method) showing the highest risk signal intensity upon 
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executing the MAPSD. We found that 190 genes have the highest signal intensities only in the brain 

(Figure 3b). We checked the signal intensity of the remaining SCZ-associated genes (n=3,725). We found 

3,480 genes to bear the highest signal intensity in the brain as well as at least one other tissue other 

than the brain, while 245 genes showed higher risk signals in other tissues other than brain.  

MAPSD-identified SCZ risk genes are enriched in specific subcellular domains 

in neuronal cells 
To evaluate the reliability of the MAPSD-identified candidate risk genes, we separated the 704 identified 

genes with the highest signal intensity in the brain into two groups: 190 known SCZ-risk genes and 514 

newly identified genes (Figure 4a-b). Using the protein abundances from the Human Protein Atlas, we 

checked in what specific brain regions and cell-types the protein products of these genes are expressed. 

Of 190 known SCZ risk genes, 126 genes (66.3%) were highly expressed in neuronal cells in cerebral 

cortex while in total, 138 genes (~72.3%) of the entire gene set were highly expressed in various cells-

types in cerebral cortex. We next sought to evaluate the set of newly identified genes in the brain. We 

made a similar analysis on the 514 newly identified gene set by MAPSD. Among them, 360 genes (~70%) 

were highly expressed in neuronal cells in cerebral cortex. In total 396 genes were highly expressed only 

in cerebral cortex which accounts for 77% of the total number of the newly identified gene set. Notably, 

these observations reveal an agreement between the enrichment patterns of the both gene sets and 

suggests reliable cell-specificity of the MAPSD approach. This finding is in agreement with the cell-types 

suggested to be underlying SCZ pathogenesis35. In an important study, Skene et al., had investigated the 

enrichment of SCZ common variants in adult brain temporal cortex and prefrontal cortex. Cell-types 

being studied in these regions included: astrocytes, oligodendrocyte progenitor cells (OPCs), 

oligodendrocytes, microglia, pyramidal neurons, and cortical interneurons. In both regions, pyramidal 

neurons and interneurons shared the highest degree of enrichment of GWAS loci compared to the other 

cell-types. Our observations also show that the identified risk genes, at protein level, are predominantly 

highly expressed in neuronal cells compared to other available cell-types in this region. We also noted 

that endothelial cells share the lowest fraction of SCZ risk genes in our study. This is also the case in the 

findings of Skene et al., in which the enrichment of SCZ common variants in endothelial cells in 

prefrontal cortex is the lowest compared to the other cell-types. 

We were interested in finding the localization of SCZ risk genes in subcellular domains, using the 

subcellular localization domains obtained from Human Protein Atlas (Figure 2b). An immediate 

observation is significant enrichment of SCZ risk loci at protein level in various sub-cellular micro-

domains of neuronal cells within cerebral cortex (Figure 4c). 78% of the original SCZ risk genes found by 

MAPSD were enriched in neuronal cells in cerebral cortex and across different subcellular domains. 

Among them, ~96% were enriched only in neuronal cells across different micro-domains. Further 

focusing on neuronal cells, we found that five micro-domains including cytosol, nucleus, nucleoplasm, 

plasma membrane, and vesicles share ~70% of the entire SCZ-associated protein products in cerebral 

cortex. Across the entire subcellular micro-domains, cerebellum harbors ~13% of the candidate SCZ-risk 

genes, in which Purkinje cells shares the highest fraction of SCZ candidate risk genes at protein level.  

We compared the enrichment patterns of the MAPSD newly identified genes with the known SCZ risk 

genes based on their corresponding micro-domains. Similar to the SCZ risk genes, subcellular micro-

domains in neuronal cells within cerebral cortex share the largest fraction of the identified genes. We 

checked the newly identified gene set in cerebral cortex. Considering all of the micro-domains, ~96% of 
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the entire identified proteins are expressed predominantly in neuronal cells (Figure 4d). Within neuronal 

cells, five micro-domains share 72.5% of these proteins including: cytosol, nucleus, nucleoplasm, plasma 

membrane, and vesicles. This fraction is very similar to the localization of SCZ-associated protein 

products in neuronal cells within cerebral cortex. 

We compared the proportions of enrichment of SCZ genes and the identified genes based on their 

localizations within each cell in separate brain regions. In cerebral cortex, considering all of the micro-

domains and cell types, fractions of the both known SCZ risk genes and MAPSD newly identified genes 

were similar with no significant difference observed (Chi-Square P-value=0.79). We further compared 

the differences between the proportions of the major subcellular domains indicated above in neuronal 

cells within cerebral cortex. Except Vesicles (Chi-Square P-value=0.018), no significant difference was 

observed between their proportions: plasma membrane (Chi-Square P-value=0.9432), cytosol (Chi-

Square P-value=0.114), nucleus (Chi-Square P-value=0.842), nucleoplasm (Chi-Square P-value=0.191). 

These observations extends further support regarding efficacy of MAPSD in modeling a more realistic 

map of proteomic properties of SCZ at the cellular resolution. 

MAPSD recovers potential disease-associated susceptibility protein complexes  
In addition to finding novel candidate risk genes, MAPSD can also reveal protein complexes that may be 

involved in disease pathogenesis. We tested MAPSD to show how it can facilitate recovering the SCZ risk 

signals in the brain. We ran MAPSD 100 times and in each time randomly removed one SCZ risk gene 

with the highest signal intensity in the brain. MAPSD successfully recovered their signal intensities to 

bear the highest SCZ signal intensities in the brain. As an example, we illustrate the signal intensity of 

two SCZ risk genes (DGKZ and ST8SIA2) to show the highest signal intensity levels in the brain. DGKZ has 

been implicated in SCZ to be DE, differentially methylated, as well as harboring de novo mutations. 

MAPSD signal intensities for this gene (Figure 5a) are the highest in three regions including: neuronal 

cells in cerebral cortex, Purkinje cells in cerebellum, and neuronal cells in caudate.  ST8SIA2 (Figure 5b) is 

known to be associated with SCZ in various ways such as its impacts on cerebral white matter diffusion 

properties in SCZ36 as well as harboring multiple SCZ-associated single nucleotide polymorphisms 

(SNPs)3,37. After removing this gene from the initial signal matrix, we ran MAPSD and observed that 

MAPSD yields the highest SCZ signal intensities in cerebral cortex and cerebellum. These experiments 

verifies the robustness of MAPSD when the initial signal information for a disease is partially complete 

and that the method is capable to re-identify genuine SCZ risk loci given the topology of the adjusted PPI 

networks as well as proteome information incorporated into the model. Looking at the outcome of 

MAPSD in the newly identified gene set, we found several genes to be implicated in other neurological 

disorders. Considering that MAPSD can recover known SCZ-associated risk factors, we hypothesize that 

the newly identified genes may potentially implicate in SCZ. On the other hand, we are already aware 

that many psychiatric disorders such as SCZ, autism, and bipolar disorder share substantial genetic 

susceptibility 38. Therefore, as a proof of concept, we picked some of the top MAPSD genes with the 

highest signal intensity and evaluated whether they have already been indicated in other brain diseases. 

As a proof of concept, we picked NRXN3 which shows the highest signal intensity in neuronal cells in 

cerebral cortex upon executing MAPSD (Figure 5c). The autism risk gene NRXN339,40 is a member of 

Neuroxin gene family which encodes neuronal adhesion proteins with critical roles in synapse 

development and function. Although restricted evidences such as copy number variation41 and a 

polymorphism42 on NRXN3 have been reported to be associated with SCZ in small population cohorts, its 
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association to the disease has not been replicated 43 or widely recognized. We investigated the PPI 

network to look for the genes connected to NRXN3. NRXN3 is directly connected to six genes, where the 

majority of them are significantly associated with diseases related to the central nervous system (CNS). 

These genes include: NLGN1, NLGN2, NLGN3, CASK, AFDN, and PAX4. NLGN1, NLGN2, and NLGN3 

belong to the family of neuronal cell surface proteins, Neuroligin, and are involved in formation of CNS 

synapses44. They have been implicated in epilepsy45, autism spectrum disorders (ASD)46, and post-

traumatic stress disorder (PTSD)47. Notably, MAPSD recapitulated these three genes in the brain where 

NLGN1 and NLGN2 were input to the model as SCZ risk genes yet NLGN3 was identified by MAPSD as a 

susceptibility disease risk gene. This finding is in concordance with the well-established observations 

that Neuroligin protein members act as ligands for Neuroxins, resulting in the connections between 

neurons and generation of synapses48. CASK and AFDN have also been implicated in CNS diseases such 

intellectual disabilities49,50 and CNS leukemia51,52, respectively. Given that AFDN interacts with NRXN353, 

we can conclude that MAPSD is capable of recovering high-risk loci in protein complexes and can infer a 

big picture of the converging disease-risk modules in the human interactome. 

Tissue and developmental stage-specific expression of MAPSD risk genes 
To further gain evidence supporting their disease relevance, we analyzed the tissue-specific expression 

levels of the identified SCZ risk genes at mRNA level. For this, we used gene expression levels on 53 

different tissues from the Genotype-Tissue Expression (GTEx) project54. GTEx data contains mRNA levels 

across the entire transcriptome, which enables specifying to what extent a gene is expressed in distinct 

tissues. We divided the MAPSD risk genes into two groups, including the known SCZ risk genes with the 

highest signal intensities in the brain and newly identified genes with the highest signal intensity in the 

brain. We queried the GTEx data and observed that in both sets, the outputs of MAPSD are highly 

enriched in brain tissues (Figure 6a). In fact, frontal cortex showed remarkably higher enrichment 

scores, which is supported by the previous findings regarding its implications in SCZ2,55. The extent of 

enrichment in distinct brain regions were different. For instance, frontal cortex and cerebral hemisphere 

represented a much stronger enrichment significance compared to other regions in the brain, while 

amygdala and hippocampus, despite being significant, were less implicated in our analysis. In addition to 

the provided significance P-values, we calculated the fold enrichment ratios (FER) for the top five 

significant brain regions for the set of identified genes including: frontal cortex (FER=8.9), cortex 

(FER=8.8), anterior cingulate cortex (FER=21.7), nucleus accumbens (FER=5.1), and cerebellar 

hemisphere (FER=2.9). These observations suggest that integrating cell-specific genome and proteome 

knowledge in modeling the disease can lead to more sensitive and reliable identification of novel risk 

factors. 

Since SCZ is likely a neurodevelopmental disorder, we next investigated if the brain-specific MAPSD 

genes are dysregulated during various developmental stages in human brain. We used the Atlas of the 

Developing Human Brain (Brain Span)56 on three brain regions including dorsolateral frontal cortex 

(DFC), cerebral cortex (CBC), and hippocampus 5757. Next, we divided the data into two large categories 

of prenatal and postnatal stages, each with various time points. Prenatal stage includes: 0-12 post-

conception weeks (pcw), 13-24 pcw, and 25-36 pcw. Postnatal stages include: 0-2 yr, 3-8 yr, 9-16 yr, and 

>17 yr. We averaged the expression levels of each MAPSD genes across different stages of pre- and 

postnatal stages and looked for DE genes (Figure 6b). Our observation indicates that almost half these 

genes were DE in postnatal stages versus the prenatal stages. The overall pattern of the number of DE 

genes in SCZ and MAPSD genes was almost similar. We were interested to specify what biological 
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pathways are disrupted by the dysregulated genes during neurodevelopment in DFC, CBC, and HIP. We 

conducted pathway enrichment analysis (see Experimental Procedures) on these three gene sets. 

Although several pathways were nominally significant, none of them passed the false discovery rate 

(FDR) threshold of 0.05. On the other hand, checking the SCZ-associated genes which demonstrated the 

highest signal intensity while being DE during neurodevelopment led to finding multiple pathways that 

are statistically significant (FDR<0.05). The majority of these pathways were shared by the three regions 

such as: glutamatergic synapse (DFC: FDR=2.3×10-8, Fold Enrichment Ratio (FER)=15.4; CBC: FDR=8.5×10-

9, FER=13.8; HIP: FDR=2.8×10-7, FER=11.8), calcium signaling pathway (DFC: FDR=1.32×10-7, FER=10.4; 

CBC: FDR=8.5×10-9, FER=10; HIP: FDR=2.8×10-7, FER=8.7), circadian entertainment (DFC: FDR=7.5×10-6, 

FER=13.2; CBC: FDR=2.2×10-7, FER=13.6; HIP: FDR=4.4×10-7, FER=12.8), and cholinergic synapse (DFC: 

FDR=2.1×10-5, FER=11.3; CBC: FDR=7.3×10-4, FER=8.2; HIP: FDR=2×10-4, FER=8.8). 

MAPSD risk genes are potential drug targets 
We were interested in whether the MPASD-identified SCZ risk genes act as targets of known drugs 

related to CNS. We used the list of FDA-approved drug targets by Santos et al.58 comprising 4,631 drug-

target connections as well as their mechanism of action. The data contained 881 unique protein targets 

in which the Ensemble IDs of 713 proteins were obtained. Among 514 newly identified MAPSD risk 

genes, we found 38 genes (Table 1) to be the targets of available FDA-approved drugs (FET P-

value=2.68×10-4). We found multiple calcium channel mRNAs to be of high risk signal intensities such as 

CACNB1, CACNG2, CACNG3, and CACNG7. These genes are known to be the targets of fragile X mental 

retardation protein (FMRP) which cause Fragile X syndrome (FXS) and autistic symptoms59. These 

proteins were highly enriched in the brain, specifically in neuronal cells in cerebral cortex (Figure 6c). We 

were interested in finding the genes which are already targets of drugs developed for CNS diseases. 21 

(56%) of the 38 genes were targets of drugs developed for CNS-related diseases (Supplementary Figure 

1). Some of these genes are well-documented risk loci in neurological diseases. For instance, SCN1A, a 

voltage-dependent sodium channel gene is known to be associated with epilepsy60,61. These genes are 

essential in generating action potentials in neurons and muscles. We found this gene to be the target of 

16 drugs primarily developed to treat epilepsy. We had found this gene to exhibit the highest signal 

intensity in neuronal cells in cerebral cortex. Similarly, SCN3A, an epilepsy gene was picked up by MAPSD 

in neuronal cells in cerebral cortex and hippocampus. These two genes have been widely studied in 

epilepsy as well as mental retardation and other neuropsychiatric disorders60. We recognize that these 

genes may have a different mode of action (gain-of-function versus loss-of-function) in different brain 

disorders, but our analysis demonstrated a proof of principle that MAPSD may facilitate drug 

repurposing efforts by integrating more fine-grained (tissue-specific, cell type-specific, and subcellular 

localization-specific) omics information on brain disorders. 

Another highly connected gene within the created drug-target network was HRH1. This gene was found 

to be the target of 51 drugs, of which 10 were developed for CNS diseases. This gene showed the 

highest MAPSD signal intensity in neuronal cells in cerebral cortex despite not being used initially as a 

SCZ signature in MAPSD. A few studies have investigated its association with SCZ. For example, Nakai et 

al62 have shown the possible associations between HRH1 and SCZ, despite of a borderline evidence for 

association in GWAS63. We found this gene to be connected to ADRA1B through two antipsychotic drugs 

Chlorpromazine and Trimipramine. Such interdependencies between the original SCZ risk genes supplied 

to MAPSD and the identified high signal genes further supports an orchestrated mechanism of the 

disease through interactions in convergent modules in the human interactome. 
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Among the identified genes to be drug targets, CHRM1 and CHRM2 were found to be targeted by over 

30 drugs, 8 related to CNS. These genes are implicated in alcohol dependence64, major depression65, as 

well as possible involvements in SCZ66. In addition to the identified genes which might have been 

implicated in neuropsychiatric disorders, MAPSD revealed new candidates for treatment of SCZ. For 

instance SLC12A1, a solute carrier transporter, was found with the highest signal intensity in the brain to 

be targeted by five drugs. This gene is essentially targeted to reduce edema caused by kidney or heart 

failure. However, granted the role of such membrane-bound proteins in transferring substrates within 

the cell such as dopamine and serotonin67, they can be further studied for the treatment of SCZ. 

Discussion 
In our view, the extreme polygenic nature of complex psychiatric disorders, such as SCZ, necessitates 

taking a more holistic view on the overall system of the diseases. One critical component of such a 

system is proteome and its dynamics, given that proteins are in fact work horses of intra-cellular 

activities. Proteins reflect the genetic, epigenetic, and transcriptomic alterations which are caused by 

the disease. Yet, research on proteome lags behind other omics data-types, especially those generated 

on DNA and RNA levels13, due to technical limitations in data generation. Recent advances in proteome 

experimental paradigms has created new horizons to further employ proteome knowledge in studying 

SCZ. Integrated analysis of omics data-types at nucleic acid and amino acid levels makes it possible to 

accurately pinpoint SCZ drivers as well as accurate isolation of gene modules whose orchestrated 

interactions may confer susceptibility to the disease. Taking a multi-layer approach to SCZ, we 

introduced MAPSD, a proteogenomic signal diffusion method which accounts for subcellular localization 

of the proteins and intra-cellular trafficking in an integrated manner. Our study demonstrated the 

effectiveness of the MAPSD in recovering known SCZ risk genes and identifying novel candidate risk 

genes, and in identifying possible drug targets for drug repurposing studies. 

MAPSD has unique characteristics which are worth further discussion. MAPSD features modeling the 

protein localization in subcellular micro-domains as well as tissue-wise cell-specific distribution of 

protein abundances in the human body. Taking all this information into account, MAPSD creates 

dedicated cell-specific PPI network for tens of distinct human tissues. This allowed us to create more 

realistic PPI networks that can lead to more accurate prediction of disease drivers. MAPSD jointly uses 

GWAS hits, DE genes, rare and de novo mutations, and open chromatic accessibility data followed by 

diffusing this repertoire of information into each dedicated cell-specific PPI network to predict the signal 

intensities of novel candidate genes and their potential role in the disease onset and progression. The 

Markov Affinity-based criterion borrowed from Graph Theory as well as the designed termination 

criterion ensures accurate transition of information across the network, while avoiding over-smoothing 

the signal intensities. Therefore, the highest amount of information will flow through the network while 

preventing the signals at each node are distinctive enough. MAPSD enables ranking the genes related to 

SCZ given their signal intensity levels in the brain.  

An important strength of MAPSD is that the identified novel disease risk gene may not by immediate 

neighbors of known SCZ risk genes. For example, 217 genes out of 514 (~42%) identified risk genes by 

MAPSD are not directly connected to disease susceptibility loci. We checked the topology of the PPI 

network on the identified MAPSD risk genes, which were connected to at least one SCZ risk gene. Given 

the direct neighbors of MAPSD genes, we categorized them into four groups (Figure 6d) followed by 
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counting the number of SCZ risk genes which are connected to each MAPSD risk gene within each group. 

93% of MAPSD genes have 1 to 30 direct neighbors among which the median percentage of SCZ risk 

genes is ~30%. In other words, on average, 30% of the accumulated signals in MAPSD risk genes were 

transmitted directly from neighboring SCZ risk genes, while the remaining signal intensities are 

transmitted from distant genes. This is remarkable given that MAPSD can capture the signals from 

distant risk loci so that the convergence of small effect size loci can be observed and modeled. Another 

major property of MAPSD is its resilience against noise. Markov operators in graph-signal processing act 

as a low-pass filter68. Therefore in case of introducing false signals, i.e., noise, to the MAPSD initial signal 

matrix, these signals will automatically filter out during the signal diffusion. As a result, MAPSD is 

significantly noise-resistant. MAPSD was able to recover a significant fraction of known SCZ susceptibility 

genes from multi-omics studies. For example, in a recent study by Wang et al5., multiple SNPs were 

reported to be associated with the disease. A significant overlap between MAPSD identified genes and 

their reported loci was observed (FET P-value=2.1×10-4, Enrichment Ratio=3.2). Among them, 85% of 

these genes were enriched in neuronal cells in cerebral cortex, 7.5% in Purkinje cells in cerebellum, and 

7.5% in neuronal cells in caudate. This observation further supports the mechanism introduced in 

MAPSD to jointly model mutual interactions between omics data modalities for identification of novel 

risk genes and susceptibility risk modules in PPI networks. 

MAPSD takes advantage of high-dimensional omics data and is not tied to specific phenotypes. 

Therefore, it can effectively be applied to any complex disease such as autism spectrum disorders (ASD) 

or autoimmune diseases, when necessary multi-omics data sets are available. MAPSD provides an ideal 

platform to leverage the outcomes of ongoing massive-scale projects such as The Psychiatric Genomics 

Consortium (PGC)69, the largest consortium in psychiatry genetics, and the PsychENCODE project70, 

which is actively generating extensive epigenomic data on various psychiatric disorders. We envision 

MAPSD to be useful to the community to catalyze integrated evaluation of candidate genes for various 

neuropsychiatric and neurodevelopmental disorders at a systems level. 

Experimental Procedures 

Description of the data used in the study 
Interaction networks used in this study were collected from three sources including: PICKLE 2.332,33, The 

Human Reference Interactome31, and human Interactome Database30. Upon removing the duplicate 

interaction, the final network being used by MAPSD contained 232,801 interactions. The list of 

differentially expressed genes were obtained from the CommonMind Consortium2. GWAS hits on SCZ 

were downloaded from the CLOZUK consortium4 and Psychiatric Genomics Consortium3. Rare and de 

novo mutations were downloaded from denovo-db v.1.6.125. DNA methylation data were downloaded 

from the works by Vitale et al.26, Aberg et al.27, and Alelu-Paz et al.28. Open chromatin accessibility peaks 

were downloaded from the study by Bryois et al.29. Protein abundances in all of the tissues and cell-

types as well as the subcellular localization of all of the proteins were obtained from the human Protein 

Atlas project7,8. Tissue-specific gene expression levels were obtained from the GTEx project54 consortium 

on 53 tissues. 

Creating the Signal Matrix 
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The initial signal matrix 𝑆, is an overlaid column vector which contains the cumulative levels of biological 

evidences such as transcriptional signatures, methylation, GWAS etc. For each level of information for a 

specific gene, we add a point 1 if there was an evidence. To create 𝑆, first we introduce evidence matrix 

𝐸𝐺×𝐿 where 𝐺 denotes the total number of genes and 𝐿 is the number of omics data layers (in this 

study, 5). Therefore: 

{
𝐸𝑖𝑗 = 1;  𝑖𝑓 𝑓𝑜𝑟 𝑔𝑒𝑛𝑒 𝑖 𝑡ℎ𝑒𝑟𝑒 𝑖𝑠 𝑎𝑛𝑑 𝑒𝑣𝑖𝑑𝑒𝑛𝑐𝑒 𝑖𝑛 𝑙𝑎𝑦𝑒𝑟 𝑗

𝐸𝑖𝑗 = 0;  𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

Next, using 𝐸, we can create 𝑆 as follows: 𝑆𝑖 = ∑ 𝑒𝑖𝑗
𝐿
𝑗=1 . As example if a gene 𝑖 is DE and differentially 

methylated, then 𝑆𝑖 = 2. 

 

Adjusting the PPI network weights and creating the affinity matrix 

Subcellular localization data used in MAPSD were downloaded from Human Protein Atlas project7,8. In 

total, 32 subcellular domains were available. To project this information onto the PPI network, first the 

affinity matrix 𝐴 was created. 𝐴 is a 𝑛 × 𝑛 binary matrix where 𝑎𝑖𝑗 = 1 if two proteins 𝑖 and 𝑗 are 

connected in the network, otherwise 𝑎𝑖𝑗 = 0. 𝑛 denotes the total number of unique proteins in the PPI 

network. MAPSD scans the entire elements of 𝐴 and checks its localization microdomain. If two proteins 

𝑖 and 𝑗 are connected in the network while co-localizing in the same microdomain, then 𝑎𝑖𝑗 = 1.5. 

However, If two proteins 𝑖 and 𝑗 are connected in the network while not being co-localized in the same 

microdomain, then 𝑎𝑖𝑗 = 1. Note that 𝐴 is a symmetric matrix, i.e., 𝑎𝑖𝑗 = 𝑎𝑗𝑖. 

Creating the Markov Transition matrix from affinity matrix 
Upon adjusting the raw affinity matrix to contain the subcellular localization information, MAPSD 

obtains the Markov operator matrix (𝑀). 𝑀 is a 𝐺 × 𝐺  transition probability matrix whose element 𝑚𝑖𝑗  

denoted the probability of single-step random walk from the node 𝑖 to the node 𝑗 and 𝐺 denotes the 

total number of proteins being considered. Leveraging Random Walk Laplacian in the Graph Theory71, 𝑀 

can be obtained as follows: 𝑀 = 𝐷−1𝐴 where 𝐴 denotes the adjusted affinity matrix above which 

consists subcellular localization information on all of the edges in the network and 𝐷 represents the 

degree matrix. 𝐷 is a diagonal matrix of the degree 𝑛,  generated from 𝐴 whose non-zero elements can 

be obtained as follows: 𝐷𝑖𝑖 = ∑ 𝑎𝑖𝑗
𝑛
𝑗=1 . Therefore, each element of the main diagonal in 𝐷 equals the 

row-wise summation of its corresponding protein in the affinity matrix 𝐴. 

Creating tissue/cell-specific signal matrix 
To use the knowledge on the expression levels of each protein in each cell within each tissue, Human 

Protein Atlas data was leveraged. In this data, expression levels are defined by four qualitative terms 

including High, Medium, Low, and Not Detected. To employ his knowledge in MAPSD, we converted 

them into a weight matrix 𝑊𝐺×𝑇 where 𝐺 is the total number of proteins being considered and 𝑇 is the 

total number of tissues and cell-types. The total combinations of tissues and cell-types in this study is 

131. Therefore, the expression degree of protein 𝑖 in the tissue/cell 𝑗 is denoted by 𝑤𝑖𝑗 as follows:  
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𝑤𝑖𝑗 = {

𝐻𝑖𝑔ℎ = 1
𝑀𝑒𝑑𝑖𝑢𝑚 = 0.75

𝐿𝑜𝑤 = 0.5
𝑁𝑜𝑡 𝐷𝑒𝑡𝑒𝑐𝑡𝑒𝑑 = 0.25

 

Later, we convert the signal vector 𝑆 to tissue/cell-specific signal matrix 𝑆∗ by scalar multiplying the 

weight matrix 𝑊 and the initial signal vector 𝑆 as follows: 

𝑆∗ = 𝑊 ⊙ 𝑆 where 𝑆∗ is a 𝐺 × 𝑇 matrix and ⊙ denotes dot (scalar) product. Here, 𝑆𝑖𝑗
∗  represents the 

disease signal intensity of the protein 𝑖 in the tissue/cell 𝑗. 

Signal diffusion process in MAPSD 
MAPSD uses the Markov operator matrix 𝑀 and tissue/cell-specific signal intensity matrix 𝑆∗ to initiate 

the diffusion process. During the diffusion process, given the topology of the PPI network, for each 

combination of tissues and cell-types, signal intensities of SCZ risk loci are propagated onto the network 

so the signal intensities of unknown proteins are estimated. The higher the signal intensity of a protein 

in the brain, the higher the likelihood of its association to SCZ. MAPSD is an iterative process where in 

each iteration signal intensities from disease risk genes are propagated through the network using the 

following equation: 𝑆𝑡 = 𝑀𝑡 × 𝑆∗ where 𝑡 denotes the diffusion time, i.e., the length of a random walk 

of size 𝑡 from each node. A critical point to address during the diffusion process is choose of an 

appropriate diffusion time given that very large values of 𝑡 leads to over-smoothness of the signal 

intensities. In other words, when the signal are over-smooth, then the signal intensities across all of the 

network will converge to a constant value leading to the loss of useful information. To avoid this 

situation, we have created a termination criterion called Smoothness Rate (𝑅) as follows: 𝑅 =
𝑆𝑆𝐸

𝑆𝑆𝑇
 where 

𝑆𝑆𝐸 stands for Sum of Square Error and 𝑆𝑆𝑇 stands for Sum of Square Total and can be calculated as 

follows:  

𝑆𝑆𝐸 = ∑ ∑ 𝑒𝑖𝑗
2𝑇

𝑗=1
𝐺
𝑖=1  where 𝑒 denotes a single element of the error matrix 𝐸 = 𝑀𝑡+1𝑆∗ − 𝑀𝑡𝑆∗.  

𝑆𝑆𝑇 = ∑ ∑ 𝑘𝑖𝑗
2𝑇

𝑗=1
𝐺
𝑖=1  where 𝑘 denotes a single element of the total matrix 𝐾 = 𝑀𝑡+1𝑆∗ + 𝑀𝑡𝑆∗. MAPSD 

terminates the diffusion process if 𝑅 ≤ 0.05. In other words, if the normalized difference of changes 

between signal intensities do not change at a certain threshold, then MAPSD stop the diffusion to avoid 

over-smoothing the signals of the protein across the network. 

Pathway enrichment analysis  
Pathway enrichment and GO analysis were conducted using WebGestalt72 v. 2019. KEGG was used as 

the functional database the list of expressed genes were used as the background. The maximum and 

minimum number of genes for each category were set to 2000 and 5, respectively based on the default 

setting. Bonferroni-Hochberg (BH) multiple test adjustment was applied to the enrichment output. FDR 

significance threshold was set to 0.05.  

 

Code and data availability 
MAPSD scripts and all of the data required for running the platform are available online at: 

https://github.com/adoostparast/MAPSD. 
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Fig. 1. The structure of MAPSD. MAPSD steps include: creating the protein-protein interaction network followed by 
adjusting it for subcellular localizations, creating the Markov transition distribution matrix, assembling SCZ 
signatures from genome, epigenome, and transcriptome sources followed by creating the signal matrix and adjust 
it for different tissues and cell-types within them, creating tissue-cell-specific interaction networks, and signal 
diffusion across all of the dedicated networks to measure the disease signal intensities in unannotated proteins. 
Each dot on the human body scheme denoted the tissue being evaluated. 
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Fig. 2. The list of cell-types and tissues used in this study. (a) 131 combination of cell-types and tissues. Each color 
denotes a tissue and the forks for each color represents their corresponding cell-types in this study; (b) The list of 
subcellular domains in this study followed by the number of proteins being expressed in each subcellular domain. 

 

 

 

 

 

Fig. 3. Distribution of SCZ signal intensities. (a) Distribution of initial signal intensities in the original signal vector; 
(b) Distribution of initial signal intensities enriched in the brain after signal diffusion; (c) Changes of smoothing rate 
during the diffusion time. 
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Fig. 4. Expression patterns of MAPSD brain-specific genes at cell resolution and subcellular domains. (a) Frequency  
of MAPSD newly identified SCZ risk genes at single cell resolution to be highly expressed in four brain regions; (b) 
Frequency of MAPSD original SCZ risk genes at single cell resolution to be highly expressed in four brain regions; (c) 
Frequency of MAPSD original SCZ risk genes at protein level to be highly expressed in various subcellular domains in 
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five cell-types across four different brain regions; (d) Frequency of MAPSD newly identified SCZ risk genes at protein 
level to be highly expressed in various subcellular domains in five cell-types across four different brain regions. 
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Fig. 5. MAPSD signal intensities upon diffusion in three genes. (a) MAPSD signal intensities of the SCZ risk gene 
DGKZ; (b) MAPSD signal intensities of the SCZ risk gene ST8SIA2; (c) MAPSD signal intensities of the gene DGKZ 
NRXN3 found to show the highest risk signals in the brain. 
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Fig. 6. Tissue-wise enrichment statistics for SCZ and MAPSD identified genes at gene expression level. (a) –log10(P-

value) of SCZ and MAPSD risk genes with the highest signal intensity in brain tissues in GTEx consortium gene 

expression data; (b) The number of differentially expressed SCZ and MAPSD risk genes in cerebral cortex (CBC), 

dorsolateral frontal cortex (DFC) and hippocampus 57 between prenatal and postnatal developmental stages using 

BrainSpan data; (c) Number of MAPSD risk genes to be the targets of FDA-approved drugs being enriched in specific 

cell-types in certain brain regions; (d) Percentage of SCZ-associated genes to be direct neighbors of the MAPSD 

identified genes where each color represents MAPSD genes with a certain number of immediate connecting nodes 

in the PPI network.  

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted May 30, 2020. ; https://doi.org/10.1101/2020.05.28.121517doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.28.121517


26 

 

Table 1. MAPSD identified risk genes which are targets of available drugs 
Gene UniProt Accession PROTEIN_NAME 

CACNB1 Q02641 Voltage-dependent L-type calcium channel subunit beta-1 
CACNG7 P62955 Voltage-dependent calcium channel gamma-7 subunit 

GRIA4 P48058 Glutamate receptor 4 
GRIA1 P42261 Glutamate receptor 1 

ADRA1B P35368 Alpha-1B adrenergic receptor 
KCNA4 P22459 Potassium voltage-gated channel subfamily A member 4 
CA12 O43570 Carbonic anhydrase 12 

KCNQ2 O43526 Potassium voltage-gated channel subfamily KQT member 2 
NDUFB3 O43676 NADH dehydrogenase [ubiquinone] 1 beta subcomplex subunit 3 
NDUFS7 O75251 NADH dehydrogenase [ubiquinone] iron-sulfur protein 7, mitochondrial 
GRIN2C Q14957 Glutamate receptor ionotropic, NMDA 2C 
HCN4 Q9Y3Q4 Potassium/sodium hyperpolarization-activated cyclic nucleotide-gated channel 4 
IL12B P29460 Interleukin-12 subunit beta 

CHRM1 P11229 Muscarinic acetylcholine receptor M1 
LAMC3 Q9Y6N6 Laminin subunit gamma-3 

CHRNA4 P43681 Neuronal acetylcholine receptor subunit alpha-4 
CACNG2 Q9Y698 Voltage-dependent calcium channel gamma-2 subunit 
EPHB4 P54760 Ephrin type-B receptor 4 
PDE8A O60658 High affinity cAMP-specific and IBMX-insensitive 3',5'-cyclic phosphodiesterase 8A 
SCN1A P35498 Sodium channel protein type 1 subunit alpha 
CHRM2 P08172 Muscarinic acetylcholine receptor M2 
HRH1 P35367 Histamine H1 receptor 
CNR1 P21554 Cannabinoid receptor 1 
GRIK1 P39086 Glutamate receptor ionotropic, kainate 1 

MT-ND2 P03891 NADH-ubiquinone oxidoreductase chain 2 
KCNQ3 O43525 Potassium voltage-gated channel subfamily KQT member 3 
GRIN3B O60391 Glutamate receptor ionotropic, NMDA 3B 

PAH P00439 Phenylalanine-4-hydroxylase 
GRIK3 Q13003 Glutamate receptor ionotropic, kainate 3 

HCRTR1 O43613 Orexin receptor type 1 
CACNG3 O60359 Voltage-dependent calcium channel gamma-3 subunit 
KCNQ4 P56696 Potassium voltage-gated channel subfamily KQT member 4 
PTGER1 P34995 Prostaglandin E2 receptor EP1 subtype 

TYMS P04818 Thymidylate synthase 
SLC12A1 Q13621 Solute carrier family 12 member 1 
GNRHR P30968 Gonadotropin-releasing hormone receptor 
HCN3 Q9P1Z3 Potassium/sodium hyperpolarization-activated cyclic nucleotide-gated channel 3 

SCN3A Q9NY46 Sodium channel protein type 3 subunit alpha 
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