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Abstract 16 

Background 17 

Aging is a multifactorial process that affects multiple tissues and is characterized by changes in 18 

homeostasis over time, leading to increased morbidity. Whole blood gene expression signatures have 19 

been associated with aging and have been used to gain information on its biological mechanisms, which 20 

are still not fully understood. However, blood is composed of many cell types whose proportions in 21 

blood vary with age. As a result, previously observed associations between gene expression levels and 22 

aging might be driven by cell type composition rather than intracellular aging mechanisms. To 23 

overcome this, previous aging studies already accounted for major cell types, but the possibility that the 24 

reported associations are false positives driven by less prevalent cell subtypes remains.  25 

Results 26 

Here, we compared the regression model from our previous work to an extended model that corrects 27 

for 33 additional white blood cell subtypes. Both models were applied to whole blood gene expression 28 
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data from 3165 individuals belonging to the general population (age range of 18-81 years). We 29 

evaluated that the new model is a better fit for the data and it identified fewer genes associated with 30 

aging (625, compared to the 2808 of the initial model; P ≤ 2.5⨯10-6). Moreover, 511 genes (~18% of 31 

the 2,808 genes identified by the initial model) were found using both models, indicating that the other 32 

previously reported genes could be proxies for less abundant cell types. In particular, functional 33 

enrichment of the genes identified by the new model highlighted pathways and GO terms specifically 34 

associated with platelet activity.  35 

Conclusions 36 

We conclude that gene expression analyses in blood strongly benefit from correction for both common 37 

and rare blood cell types, and recommend using blood-cell count estimates as standard covariates when 38 

studying whole blood gene expression.  39 

 40 

Keywords: whole blood, gene expression, cell counts correction, aging, platelet activity 41 

 42 

Background 43 

Aging, defined as a time-dependent process characterized by physical and cognitive decline, is one of 44 

the main risk factors for autoimmune diseases, neurodegenerative diseases, cancer and diabetes [1,2]. 45 

To better understand this process on a molecular level, changes in gene expression during aging have 46 

been previously studied in whole blood [3,4]. However, blood contains many cell populations, such as 47 

white blood cells (WBC) that can be divided into granulocytes, lymphocytes and monocytes, and further 48 

into more specific WBC subtypes [5]. Since the proportions of these cell populations vary with age [6–49 

9], it is necessary to correct for cell counts when using gene expression from blood. Indeed, uncorrected 50 

gene expression data from whole blood has been shown before to be biased by the gene expression 51 

pattern of the most abundant cell type at the moment of sampling [10].  52 

 53 

Here, to better identify cell-independent transcriptional signatures during aging, we expanded the 54 

regression model that corrects for the number of WBC presented in our previous work [3] (hereafter 55 

called Initial Model, IM), by taking into account additional specific WBC subtype counts in our new 56 
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model (hereafter called Extended Model, EM). We compared the performance of these two models in 57 

a meta-analysis using 3165 human peripheral blood-derived RNA-seq samples from four independent 58 

Dutch cohorts present in the BIOS consortium, namely LifeLines Deep, Leiden Longevity Study, 59 

Netherlands Twin Registry and Rotterdam Study [11–14]. Further, we show that the EM complies with 60 

the assumptions of linear regression and provides a better fit to the data as residuals decrease. Lastly, 61 

we analyze the genes significantly up- and downregulated by functional enrichment in order to 62 

understand to which extent the models and cell correction can be used to extract biological information 63 

regarding aging in a general population. 64 

 65 

Results 66 

Improved cell correction is necessary to identify cell-independent gene expression patterns  67 

We performed an association of gene expression changes with age using data from four Dutch cohorts 68 

(Tab. S1). To take into account the differences in the data, we conducted a meta-analysis across these 69 

cohorts. We included only samples with all categorical covariates reported, leaving a total of 3165 70 

individuals (Tab. S1). An overview of this study is presented in Fig. 1.  71 

 72 

 73 
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Fig. 1. Overview of this study. 3165 complete samples from four BBMRI-NL BIOS consortium 74 

cohorts were used (see text for details). Gene expression was related to age and selected covariates 75 

depending on the regression model applied (Initial or Extended). Genes significantly associated with 76 

age were retrieved by applying Bonferroni correction (P ≤ 2.5*10-6) and gene lists obtained were 77 

compared to establish the efficiency of the models and analyzed to get insights on the process of aging. 78 

 79 

We tested 19932 genes expressed in blood and analyzed the data by applying two models, the IM and 80 

the EM (see Methods and Fig. 1). The IM was presented previously [3]: it accounts for the main WBC 81 

types (number of granulocytes, lymphocytes, monocytes), erythrocytes and platelets, while our new 82 

model here presented, EM, corrects for 33 additional WBC subtypes (see Methods, Tab. S2 and S3). 83 

These additional WBC subtypes were imputed with Decon-cell [15]. We observed small but significant 84 

correlations between age and most measured and imputed cell counts (Fig. S1), presenting evidence 85 

that adding WBC subtypes is beneficial for the correction models. For example, different imputed cell 86 

types, such as naïve CD8+ subtypes (IT50 and IT54 [16]), show a strong negative correlation with age 87 

when considering both the overall (Fig. S1) and the single cohorts (data not shown).  88 

 89 

Using the IM, we identified 1338 genes significantly downregulated and 1470 upregulated with age 90 

after Bonferroni correction (P ≤ 2.5⨯10-6) (Tab. S4 and Fig. 1). The EM, however, reduced the number 91 

of results substantially: we identified 335 downregulated and 290 upregulated genes significantly 92 

associated with aging at the same significance threshold (Tab. S4 and Fig. 1). This decrease was 93 

expected, as many of the results from the IM may have been driven by the composition of less prominent 94 

cell types that were included in our EM model. While 511 out of 625 EM genes were also present in 95 

the IM results, the 114 additional EM genes were only detected after rigorous correction for cell types 96 

(Fig. S2). To validate our results, we compared the number of genes retrieved through our models with 97 

the 1497 genes reported in our previous work [3] (gene set 1, GS1) and the 481 genes identified by Lin 98 

and colleagues [4] (gene set 2, GS2), a study that uses a slightly different correction model to study 99 

aging. As reported in Tab. S5, the highest number of overlapping genes was found between the IM and 100 

the GS1 (672, 24% of our 2808 IM genes). Considering that the number of tested genes is different 101 
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(11908 for GS1 and 19932 for IM, 10890 in common), this overlap is quite large. Moreover, all genes 102 

had the same direction of association with age. These results are unsurprising, because we used the 103 

same previous correction model [3]. When comparing the EM results with the GS1, the number of 104 

overlapping genes decreased (172, 28% of our EM genes) but the majority still had the same direction 105 

(98%). The lowest number of overlapping genes was found between the EM results and the GS2 (9 106 

genes overlapping, 7 with the same direction). In general, differences in the number of overlapping 107 

genes may result from: 1) differences in the model used, 2) differences in the technical analyses 108 

performed [17] and 3) differences between the genes used in the discovery phase. Overall, the models 109 

show a good conservation of direction for overlapping genes, which indicates that correcting for cell 110 

populations identifies common whole blood gene expression patterns.  111 

 112 

The Extended Model performs better than the Initial Model  113 

We next investigated whether both IM and EM met assumptions of linear regression. To this end, we 114 

analyzed the mean squared errors (MSE), the distribution of gene expression residuals and their 115 

homoscedasticity after applying the IM and EM. We first analyzed the impact of adding additional 116 

terms to our regression models on the MSE. As expected, MSE values of the regressions for every gene 117 

decreased when applying the EM (total EM median MSE value: 0.267, total IM median MSE value: 118 

0.334) (Fig. 2A-B and Tab. S6). We next created QQ-plots and calculated the Pearson correlation 119 

coefficient between the observed and expected distributions to assess normality. For most genes, 120 

including the 511 shared between IM and EM, we found that applying the EM resulted in more normally 121 

distributed residual values and the correlation values were higher (total EM median r value: 0.995, total 122 

IM median r value: 0.994) (Fig. 2C-D, Tab. S6 and S7). Lastly, we wanted to evaluate heteroskedasticity 123 

(i.e. the skewness on the distribution of residuals), as this can indicate a relation between the error and 124 

the explained variable, violating the model assumptions. For this purpose, we created a modified version 125 

of both models that included all covariates with the exception of age and applied the four resulting 126 

models (IM, EM, IM-age, EM-age) in each cohort. Then, we used the rank-based Spearman correlations 127 

to correlate gene expression residuals with age [18,19]. We checked the normality of these Spearman ρ 128 

values and meta-analyzed them across the cohorts (Fig. S3). We observed that the absolute correlations 129 
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were smallest in the EM model (EM median value: 9⨯10-3), and largest in the IM without age (IM-age 130 

median value: 6⨯10-2) (Fig. 2E-F, Tab. S6 and S7). Large ρ values indicate a less precise prediction 131 

and larger errors. In general, the EM performs better than the IM, and it is specifically noteworthy that 132 

the EM without age performs better than the IM without age. Adding cell counts clearly improves the 133 

prediction of gene expression values. These three analyses indicate that the EM satisfies the assumptions 134 

of linear regression better than IM. Moreover, adding cell counts as covariates improves reliable 135 

identification of aging-related genes in whole blood. 136 
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Fig. 2. Gene expression residuals decrease with the EM. MSE values for regressions related to genes 138 

in every cohort after applying the IM and the EM are reported for all genes in (A), and the 511 shared 139 

genes in (B). QQ plot Pearson correlation coefficients (r values) related to the distributions of gene 140 

expression residuals are shown for all genes in (C) and for the shared genes significantly associated to 141 

aging in (D), after applying the IM and EM models. Homoscedasticity was evaluated by correlating 142 

gene expression residuals from every model with age, and the absolute Spearman ⍴ values obtained 143 

after meta-analysis are reported for all genes (E) and the shared genes significantly associated with 144 

aging (F). LL, LifeLines DEEP; LLS, Leiden Longevity Study; NTR, Netherlands Twin Registry; RS, 145 

Rotterdam Study; EM, extended model; IM, initial model; EM-age, extended model without age as 146 

covariate; IM-age, initial model without age as covariate. Statistical significance was assessed with a 147 

paired, one-tailed Wilcoxon test. The stars indicate statistical significance: *** P ≤ 0.001, ** P ≤ 0.01, 148 

* P ≤ 0.05. 149 

 150 

Single-cell RNA-seq data reveals the contribution of cell types to gene expression during aging 151 

Every cell type has its own gene expression pattern, so the composition of blood cells influences the 152 

total gene expression observed in whole blood RNA-seq data. To test to which extent the aging-related 153 

genes found by the models were influenced by blood cell populations, we investigated the mean 154 

expression of these aging-related genes in single-cell RNA-seq (scRNA-seq) data of 11 different blood 155 

cell types [20]. As shown in the t-SNE plots (Fig. 3A), aging-related genes retrieved through the IM 156 

have a propensity to be expressed in specific parts of the t-SNE plot that match with cell types, while 157 

EM genes maintain a lower and more stable expression across cell types (Wilcoxon test, P ≤ 2.2⨯10-16, 158 

Fig. 3B on the left), suggesting that it is not a specific cell type driving the associations. Secondly, we 159 

used differential expression patterns to identify blood cell type specific markers in the list of IM or EM 160 

significant aging-related genes, and visualized the mean expression in t-SNE plots (Fig. S4). The EM 161 

aging-related genes contain fewer cell type specific markers: no markers could be identified for three 162 

cell types (Natural Killer bright subset, CD8+ T and B cells). Importantly, the cell type marker genes 163 

that were identified among EM genes are less representative for their cell types than the IM markers, as 164 

shown in Fig. S4. In addition, we observed that the mean expression range for the EM genes was always 165 
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larger, highlighting a higher gene expression variation (mean expression of IM genes per cell: 0.05 - 166 

0.21; EM: 0.02 - 0.28, Fig. 3A and S4). This observation was supported by the scRNA-seq coefficients 167 

of variation calculated for the EM genes (Wilcoxon test, P = 3.794⨯10-10, Fig. 3B on the right). In 168 

summary, the scRNA-seq data indicate that EM genes are less driven by cell types than the IM genes, 169 

suggesting that the EM model enables a better identification in blood of cell-quantity independent genes 170 

related to aging.  171 

 172 

 173 

Fig. 3. scRNA-seq data reveals that the aging-related genes found with the EM are not related to 174 

specific blood cell populations. The mean expression value of aging-related genes is plotted in relation 175 

to blood cell populations in A): the upper t-SNE plots refer to the IM, on the left, and the EM, on the 176 

right. In B), the distributions of the means for gene expression for every cell in the above t-SNE plots 177 

according to the IM and EM are reported on the left, while on the right the distributions of the coefficient 178 

of variation are presented for both the IM and EM. Statistical significance was assessed with a Wilcoxon 179 
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test. The level of statistical significance was set at P ≤ 0.05. For details regarding cell population-180 

specific regions, refer to [20]. 181 

 182 

Functional enrichment analysis and aging signatures  183 

In order to investigate whether the EM-derived aging-related genes were more informative than the IM-184 

derived genes, we performed functional enrichment using Enrichr [21]. As 82% of the EM genes were 185 

also present in the IM list, we expected comparable functional enrichments. On the contrary, very few 186 

pathways and GO terms were shared between the EM and IM lists (Tab. S8). The fact that we observed 187 

a smaller number of genes in the EM list did not translate to a lower number of EM-specific 188 

enrichments. Therefore, we hypothesized that although a high number of genes is shared between the 189 

EM and the IM, the difference in the functional enrichment results was due to the exclusion of genes 190 

that are influenced by cell quantity, for which the IM did not correct. Indeed, the enrichments for the 191 

EM genes clustered around potential aging-related mechanisms. For example, changes in GO biological 192 

processes ascribable to the regulation of gene expression were downregulated (e.g. ‘regulation of 193 

transcription, DNA-templated’ - GO:0006355, ‘regulation of nucleic acid-templated transcription’ - 194 

GO:1903506, ‘regulation of protein processing’ - GO:0070613), in agreement with previous findings 195 

[3] and the IM results. 196 

 197 

Hemostasis, the process to prevent and stop bleeding, emerged as a key upregulated pathway from the 198 

various EM-related enrichment analyses (Tab. S8). The Kegg pathway ‘coagulation cascade’ and the 199 

Reactome pathway ‘hemostasis’ were both significantly upregulated (P ≤ 6.2⨯10-4, P ≤ 4.5⨯10-6, 200 

respectively), suggesting that changes in the expression of genes related to hemostasis and platelet 201 

functioning during aging have a very robust signature, as previously reported [22–26]. Changes in GO 202 

biological process terms related to platelet activity (GO:0045055, GO:0002576, Tab. S8) and GO 203 

cellular compartment terms linked to platelet granules (e.g. ‘platelet alpha granule’ - GO:0031091, Tab. 204 

S8) were also found to be significant. Notably, both models included the correction for platelet counts, 205 

suggesting that these functional enrichments described the activity of platelets independently of their 206 
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prevalence. Platelet count remained more or less stable during aging in our data (Fig. S1), so the number 207 

of platelets is not expected to drive these enrichments.  208 

 209 

 210 

Fig. 4. Heatmap of gene expression residuals correlations for EM upregulated aging-related 211 

genes. Upregulated EM aging-related genes were clustered based on the correlations of gene expression 212 

residuals and highly correlating clusters were identified and highlighted with a yellow border. The 213 

cluster in the upper left corner contains genes associated with platelet activity pathway and GO terms. 214 

 215 

After applying the EM, we expected that genes involved in the same biological process and under the 216 

same regulation could show a common pattern. To identify this pattern, we calculated the correlations 217 

between the gene expression residuals. We observed several clusters with highly correlating values (Fig. 218 

4 and Fig. S5), which we further analyzed with Enrichr. While most clusters did not show a clear 219 

enrichment, cluster 1 of the upregulated EM aging-related genes (Fig. 4, upper left corner) was enriched 220 

for terms related to platelet activity, again highlighting its role in aging. Five genes (PF4, PPBP, 221 

STON2, MYLK, LMNA) from the platelet-related cluster 1 were previously identified to be differentially 222 
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expressed with age in platelets [25]. Although PF4 and PPBP did not show the same direction of effect, 223 

a difference that may result from the sample size or the model used, the overall finding that platelets 224 

show increased activity with age is conserved [22,23,25,26]. 225 

 226 

Discussion 227 

Aging is a process that enhances the probability of getting diseases such as cancer, diabetes and various 228 

types of neurodegenerations. In order to understand how an organism reaches these diseased states, it 229 

is valuable to study the preceding period, where the organism ages. Changes can be investigated by 230 

analyzing aging cohorts as representatives of an aging population. Following this reasoning, in this 231 

study we used four Dutch aging cohorts (Tab. S1) and analyzed gene expression changes during aging 232 

in whole blood, an easily accessible tissue, by implementing a new model (EM) to correct for cell type 233 

proportions. This extended cell correction enabled us to calibrate gene expression according to the 234 

number of blood cells and extract an aging gene expression pattern that was less influenced by cell 235 

quantity compared to previously published models [3,4]. To test the performance of our EM, we 236 

evaluated its compliance to the assumptions of regression. The EM outperformed the old model, IM, 237 

when analyzing the MSE, normality of residuals and homoscedasticity, highlighting that an increased 238 

cell correction results in a more accurate gene expression estimation during aging.  239 

 240 

Next, we asked which cell population contributed the most to the list of aging-related genes provided 241 

by both the IM and EM. For this purpose, we calculated per cell type the mean gene expression of both 242 

IM and EM genes using scRNA-seq data from ~25000 blood mononuclear cells of 45 donors [20]. The 243 

EM aging-related genes had lower mean gene expression levels, fewer cell type specific marker genes 244 

and those markers that were present were less abundantly expressed (Fig. S4). We consequently 245 

reasoned that these genes are less influenced by cell composition and quantity. 246 

 247 

We performed a functional enrichment analysis for GO terms, Kegg and Reactome pathways in order 248 

to gain insight on the blood-based biological mechanisms driving aging. Although many of the EM 249 

genes were also identified using the IM, the enrichments were often not overlapping suggesting an 250 
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increased precision in evaluating the relation between gene expression and age. In particular, platelet-251 

related categories stood out in these results. We clustered the EM genes based on gene expression 252 

residuals and again found the strongest enrichment in the upregulation of platelet activity. 253 

 254 

Since our EM includes a correction for platelet counts, the observation that platelet activation is 255 

enriched in relation to the EM aging-related genes is possibly due to the following reasons: 1) the EM 256 

did not correct for cell counts sufficiently or 2) an increase in platelet activity is a true signature of 257 

aging. While we cannot exclude the first reason, the fact that platelets do not associate with age in our 258 

data make it less plausible. Moreover, platelet activity has been reported to increase with age in literature 259 

[22,23,25,26] and incubating human platelets with media from senescent human fibroblasts increases 260 

platelet activation and degranulation [24]. Upon degranulation, platelets release the factors present in 261 

their granules into the surrounding environment. Of note, our functional enrichment analysis retrieved 262 

GO terms related to alpha granules, which store PPBP and PF4. These proteins are known to be 263 

increasingly secreted during aging [22,27,28]. The genes encoding these proteins were found to be 264 

upregulated aging-related genes and, more specifically, they contributed to the enrichment of alpha-265 

granule-related cell compartment GO terms (Tab. S8). Interestingly, an earlier study that performed 266 

RNA-seq within isolated platelets has observed decreased expression of PF4 and PPBP with age (n = 267 

154 [25]), while studies in whole blood show upregulation with age (current study: both genes 268 

significant; in the previous study [3]: PF4 not tested, PPBP nominally significant). Within our scRNA-269 

seq data, both genes are specifically expressed in megakaryocytes, the precursors of platelets (Fig. S6), 270 

suggesting that the observed upregulation is not driven by the expression in any other blood cell types, 271 

but by platelets or megakaryocytes themselves. Although these results may arise from differences in 272 

sample sizes or models used, this observation coupled with the fact that older individuals have higher 273 

levels of PF4 and PPBP protein in their plasma indicates that platelets become more active with age as 274 

reflected both in gene expression levels and protein abundance. 275 

 276 

In addition, alpha granules are known to store aging-related proteins, such as IGF1, a protein that has 277 

been extensively connected to aging together with its orthologs in multiple organisms [29,30]. 278 
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Therefore, an enhanced platelet degranulation itself could have a major impact on the progression of 279 

aging. In summary, we hypothesize that the platelet enrichment observed in the EM aging-related genes 280 

represents one of the molecular signatures of aging. The increased platelet activation and subsequent 281 

release of aging factors could affect other cells and in turn the whole organism. However, many details 282 

regarding the mechanisms that are affected by these aging factors remain to be discovered. 283 

 284 

Conclusions 285 

Overall, we have shown that an extensive correction for cell type differences can dramatically alter the 286 

effect sizes and significance of associations between genes and age. On top of this correction for 287 

measured or imputed cell counts, we believe that large scRNA-seq datasets (e.g. sc-eQTLGen 288 

consortium [31], The Human Cell Atlas [32]) will be essential to visualize and quantify to what extent 289 

associations are independent of cell type composition. Our and previous findings [25] indicate that it 290 

will be essential to investigate to what extent the increased platelet activity is driven by megakaryocytes 291 

using larger blood-based scRNA-seq datasets [33]. Lastly, while the current study was performed in 292 

blood, other tissues also feature cell type heterogeneity. As such, we conclude that rigorous correction 293 

for cell type counts is important for studies in whole blood, and will help to better understand immune 294 

aging and other gene expression association studies.  295 

 296 

Methods 297 

Study populations 298 

We performed a meta-analysis using 3165 human peripheral blood samples obtained from four 299 

independent Dutch cohorts: LifeLines DEEP (LLD, n = 1100) [11], Leiden Longevity Study (LLS, n = 300 

585) [12], Netherlands Twin Registry (NTR, n = 852) [13] and Rotterdam Study (RS, n = 628) [14] 301 

with participants from a wide age range (Tab. S1). All cohorts followed similar protocols for genotyping 302 

and gene expression as part of the BIOS Consortium, an initiative of the Biobanking and Biomolecular 303 

Resources Research Infrastructure - The Netherlands [34]. 304 

 305 

Gene expression 306 
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Gene expression data was obtained using the same protocol across all studies, as previously described 307 

[35]. Briefly, RNA was extracted from whole blood using PAXgene Blood miRNA Kit (Qiagen, 308 

California, USA) and paired-end sequenced with the Illumina HiSeq 2000 platform. After quality 309 

control by FastQC, adapters were removed and read quality trimming steps executed. Reads were 310 

aligned with STAR using GRCh37 as a reference while masking common (MAF > 1%) SNPs in the 311 

Genome of the Netherlands (GoNL) [36]. Reads were assigned to genes with HTseq using gene 312 

definitions from Ensembl v71. Subsequently, expression values for all exons of each gene were added 313 

up to represent gene expression, measured in base count per gene. Prior to normalization, population 314 

outliers were removed based on a plot of the first two principal components (PCs), calculated on non-315 

imputed genotypes. The first step in the normalization procedure was the application of the trimmed 316 

mean of M-values normalization method [37]. Next, we removed genes with no variance, log2 317 

transformed the expression matrix and Z-transformed by centering and scaling of the genes, following 318 

a previously published protocol described in detail in the online cookbook [38]. 319 

 320 

Cell count imputation 321 

We then performed imputation of cell counts, since these were not present for all included samples. For 322 

imputation, we only considered samples where all categorical covariates (sex, smoking status, fasting 323 

before blood sampling, RNA plate) were available (see Tab. S2 for missing values). We estimated the 324 

33 WBC subtypes included in the EM using the R package Decon-cell, a method that quantifies cell 325 

types using expression of marker genes (Tab. S3) [15]. The red blood cell (RBC) count was imputed 326 

using multivariate imputation by chained equations (MICE) from the R package MICE version 2.30 327 

[39] because this cannot be imputed based on gene expression values, but rather relies on the other cell 328 

type counts and other phenotypes (Tab. S2). In MICE, we used predictive mean matching, as it has the 329 

advantage of imputing missing values within the observed spectrum after creating a normal distribution 330 

[39,40]. Values outside the range of ± 3 standard deviations from the mean were removed after log2 331 

transformation.  332 

 333 

Models for differential expression during chronological age 334 
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The IM was taken from the previous work [3] and is: 335 

 336 

                                𝑦 𝑖 ≈ 𝛽0 + 𝛽1𝑎𝑔𝑒𝑖 + 𝛽2𝑥𝑖2+. . . +𝛽𝑝𝑥𝑖𝑝 + 𝜀𝑖      337 

 338 

with y being gene expression levels for every gene, i the number of cohort samples, age (xi1) in years at 339 

time of blood sampling, and the following additional variables being the other covariates, including cell 340 

counts (for a total of p predictors). To prevent overfitting, we required at least 10 samples for each 341 

available gene [41]. As covariates, we included sex, smoking status, fasting before blood sampling, 342 

RNA plate and GC content (an RNA-sequencing quality control score). All covariates were fixed 343 

effects, except for RNA plate, which was set as a random effect. As cell counts, we included the number 344 

of RBCs, platelets, granulocytes, lymphocytes and monocytes (Tab. S1). In our EM, the imputed 345 

proportions of 33 WBC subtypes were included as additional cell count measures, to increase the power 346 

to detect cell-independent age effects. For a complete overview of WBC subtypes see Tab. S3. Both the 347 

IM and EM were tested on 19932 genes that showed expression in blood of at least 0.5 counts per 348 

million in at least 1% of the samples [42]. For these tests, we used the lmer function from the R package 349 

lme4 version 1.1.13 [43]. Sample sizes, effect directions, and P-values were extracted from the result 350 

files of both linear models. 351 

 352 

Meta-analysis 353 

To combine associations across the four cohorts and to avoid bias of results due to cohort-specific 354 

effects, we first analyzed each cohort separately and then conducted a meta-analysis. We used the meta-355 

analysis tool for genome-wide association scans (METAL) to calculate weighted Z-scores and P-values 356 

for every gene [44]. Although originally developed for meta-analysis of genome wide association 357 

studies (GWAS), METAL was easily adapted for expression associations as described in the previous 358 

work [3].  359 

 360 

Evaluation of the regression models 361 
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To evaluate the performance of the regression models, we used gene expression residuals and 362 

investigated MSE values, distribution of residuals and homoscedasticity. The distribution of residuals 363 

was evaluated by calculating the QQ plot Pearson correlation coefficient from sample and theoretical 364 

quantiles, considering that the higher the correlation value, the more the distribution approximates 365 

normality. Regarding homoscedasticity, meta-analysis was conducted on cohort-related, gene-specific 366 

Spearman ρ values (rho values) obtained by correlating age with the gene expression residuals, 367 

calculated from the application of the IM and EM. For this purpose, a Fisher Z-transformation was 368 

applied to the ρ values after evaluating the approximation of their distribution to normality with a QQ 369 

plot. Then, Z-scores were combined across the cohorts using a weighted approach as described in [45] 370 

and the overall Z-score converted to ρ with the inverse Fisher transformation.  371 

 372 

Functional enrichment analysis 373 

To better understand gene function, we performed functional enrichment using Enrichr [21]. For this 374 

analysis, we grouped genes significantly associated with aging in either the IM or the EM into up- and 375 

downregulated genes. Using this approach, we retrieved information regarding enrichment in pathways 376 

based on KEGG and Reactome or GO terms.  377 

 378 

single-cell RNA-seq data and visualization 379 

To interpret the cell type specificity of our age-associated genes, we used scRNA-seq data for 380 

approximately ~25000 peripheral blood mononuclear cells from 45 LLD donors. Collection and 381 

normalization of the data has been described previously [20]. We used the R package Seurat version 382 

1.4.0.13 for scRNA-seq analyses and visualizations [46]. ScRNA-seq data enabled the detection of 383 

eleven cell types: classical and non-classical monocytes, myeloid and plasmacytoid dendritic cell, CD56 384 

bright and dim natural killer cells, CD4+ and CD8+ T-cells, B-cells, plasma cells and megakaryocytes 385 

[20]. Within these cell types, we calculated the mean expression of the genes significantly associated 386 

with aging identified by the IM and the EM, and represented their expression in t-SNE plots. We then 387 

identified genes that we considered markers for each of the 11 cell types using the function 388 
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`FindMarkers()` from Seurat using the loose thresholds of min.pct = 0.5, min.diff.pct = 0.2 to evaluate 389 

whether the aging-related genes were reflecting specific cell types. 390 

 391 
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