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Abstract

Non-coding RNAs (ncRNAs) are small non-coding sequences involved in gene regulation
in many biological processes and diseases. The lack of a complete comprehension of
their biological functionality, especially in a genome-wide scenario, has demanded new
computational approaches to annotate their roles. It is widely known that secondary
structure is determinant to know RNA function and machine learning based approaches
have been successfully proven to predict RNA function from secondary structure
information.

Here we show that RNA function can be predicted with good accuracy from raw
sequence information without the necessity of computing secondary structure features
which is computationally expensive. This finding appears to go against the dogma of
secondary structure being a key determinant of function in RNA. Compared to recent
secondary structure based methods, the proposed solution is more robust to sequence
boundary noise and reduces drastically the computational cost allowing for large data
volume annotations.

Scripts and datasets to reproduce the results of experiments proposed in this study
are available at: https://github.com/bioinformatics-sannio/ncrna-deep

Introduction 1

Recent advances in whole transcriptome sequencing have led to the discovery of novel 2

functional non-coding transcript elements classified into miRNA, siRNA, piRNA and 3

lncRNAs. In the past considered as dark matter, they are recognized nowadays to play 4

key roles in gene expression regulation in many biological processes and diseases [1]. 5

The functional characterization of ncRNAs at wide scale is currently one of the main 6

challenges of modern genome biology as – compared to protein coding RNAs – they are 7

usually less conserved and expressed. 8

The consolidated evidence that the function of protein coding sequences is strongly 9

associated with the folded secondary and tertiary molecular structure leads to suppose 10

that the secondary structure is a key factor to determine the function of non-coding 11

RNA sequences [2]. Recently, several machine learning based approaches have been 12

successfully proven to predict RNA function (Rfam family) from secondary structure 13

information. 14

Comparative sequence-based approaches, such as BLAST, are computationally very 15

efficient, but exhibit high false negative rates, as they are not able to detect conserved 16
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secondary structures. Folding approaches, such as GraPPLE [3], ignore nucleotide 17

composition, are computationally expensive, and incur in high false positive rates, as 18

sequence information is not taken into account. Approaches that combine both 19

structural and sequential information are preferable for a better tradeoff between false 20

positives and false negatives. To this aim, INFERNAL adopts a stochastic context-free 21

grammar to capture position-specific conservation and incorporates the RNA secondary 22

structure information directly into the mode [4]. A significant improvement with respect 23

to INFERNAL has been obtained with EDeN, a machine learning method that adopts a 24

graph kernel to model the RNA secondary structure input representation [5]. 25

Comparable results have been obtained with nRC, a deep learning approach based on 26

features extracted from secondary structure [6], and RNAGCN, based on a graph 27

convolutional network built on RNA folding data [7]. 28

In this paper we show that non coding RNA function can be predicted with good 29

accuracy just from raw sequence information without the necessity of computing 30

secondary structure features which is known to be computationally demanding. Besides 31

the advantage in terms of computational time this finding poses a question against the 32

dogma of secondary structure being a key determinant of function in RNA. Evidence 33

shows that with a 3 layer Convolutional Neural Network (CNN) the sequence alone is 34

enough to predict the function of an RNA. Moreover, compared to recent secondary 35

structure based methods, the proposed solution is more robust to sequence boundary 36

noise and is able to reject effectively non-functional sequences. The last two advantages 37

together with fast classification speed are essential for large genome annotation. 38

CNN has emerged as an approach to extract local feature patterns of high-level 39

abstraction from different and sparsely preprocessed data [8, 9]. Then it is likely that 40

high level functional RNA features are directly learned from sequence by a CNN 41

architecture. How such features are related, if they are, to secondary structure features 42

remains an open question. 43

Materials and methods 44

Datasets 45

We compare our deep learning based approach against EDeN, nRC, and RNAGCN, the 46

current state-of-the-art. We do not include INFERNAL as its computational cost is 47

prohibitively expensive and, in literature, it has been shown outperformed by EDeN [5]. 48

We design the evaluation experiments considering two datasets: i) a novel dataset 49

composed of sequences extracted from the Rfam database, a collection of non-coding 50

RNA sequences manually grouped in families/classes if they share the same function 51

and have a clear common ancestor [10]; and ii) a public available dataset of ncRNA 52

sequences distributed among 13 functional macro-classes adopted to evaluate RNAGCN 53

and nRC [7], as the authors of RNAGCN do not provide a public available tool. 54

To build the novel dataset, we started with a set of 197922 sequences distributed 55

among 41 classes. Sequences encoded with letters different from canonical A, T, C, or G 56

were excluded to simplify computation. This is not a limitation as they constitute a very 57

small subset from the total (∼ 5 out of 1000). We removed classes that can be strongly 58

predicted only by sequence length. To detect such classes we performed a 10-fold cross 59

validation of a C5.0 decision tree algorithm trained only with sequence lengths. The 60

algorithm performed overall with an average accuracy of 0.57 (±0.001) and Kappa 61

statistic of 0.54 (±0.001), while per class performance were strongly variable (average 62

F1 measure ranging between 0.11 and 0.99). We removed two classes, RRF00163 and 63

RF00409, that can be predicted by sequence length with an average F1 measure greater 64

than 0.80. This reduced the number of classes to 39 and the total number of sequences 65
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by 13% to 171106. To keep computational time into limit we further removed sequences 66

greater than 150 bases, and, to make each Rfam class sufficiently representative, we 67

excluded classes with less than 400 samples. This conducted to a final set of 162608 68

sequences distributed among 29 different Rfam classes (Figure 1). Table 1 shows how 69

Rfam classes are distributed among different non-coding macro classes and Figure 2 70

shows how sequence lengths are distributed among Rfam classes. 71

Table 1: Distribution of downloaded Rfam classes among non-coding macro classes.
non-coding class Rfam classes

snRNA snoRNA RF00015, RF00016, RF00020, RF00026,
RF00066, RF00097, RF00156, RF00560,
RF00619

Cis-regulatory RF00050, RF00059, RF00162, RF00504,
RF00557, RF01055, RF01725, RF01739

miRNA RF00645, RF00875, RF00876, RF00906,
RF01059, RF01942

sRNA RF00019, RF00169, RF01705
Intron RF00029
rRNA RF00001
tRNA RF00005
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Fig 1: Distribution of sequences among 29 Rfam classes downloaded from Rfam database.

Input representation of ncRNA sequences 72

Data representation can strongly affect the performance of machine learning algorithms 73

as they require a good set of hand designed features to work effectively. Instead, the 74

paradigm of deep learning allows in principle to take simple representation of raw data 75

at the lowest (input) layer that is increasingly transformed into abstract feature 76

representations in subsequent layers. However, as deep learning evolved historically 77

around image analysis, the input of a neural network is typically a matrix which has the 78

intrinsic property to completely preserve pixels locality. 79

In genomics, as the input is a sequence, typical k-mer representation is able to 80

capture the proximal composition of each nucleotide position. This allows to learn local 81
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Fig 2: Distribution of sequence lengths among 29 Rfam classes downloaded from Rfam
database.

patterns of small nucleotide sequence motifs, such as binding sites, but in principle it 82

may not be suited to detect complex spatial patterns of RNA sequences that fold into a 83

3-dimensional structure, where also distant nucleotides could interact. So it may be 84

necessary to introduce alternative input representations that allow to map linear 85

structures into bi- or tri-dimensional structures where such patterns could be detected 86

effectively. Current literature methods basically rely on 3-dimensional secondary 87

structure features predicted using popular RNA folding tools, such as ViennaRNA [11] 88

and iPknot [12]. Although such features have been proven to predict RNA function 89

effectively, they require high computational cost (Table 2). Here we investigate whether 90

less computationally expensive sequence encodings are sufficient to predict the RNA 91

function. Specifically we consider k-mer and space-filling curves, a lightweight input 92

representation that preserves, almost well, space locality. 93

K-mer encoding is the most common and basic representation of genomic sequence 94

data adopted in deep learning architectures. It consists of associating a binary vector 95

with every consecutive non overlapping k bases. The vector is all zeros except for the 96

i-th entry associated with the unique k word obtained by concatenating k letters from 97

the DNA alphabet (Figure 3). So, for example, a 2-mer encoding of a 100 long sequence 98

produces a sequence of 50 binary vectors of 24 = 16 entries. In our experiments we 99

consider k varying from 1 to 3. 100

A space-filling curve is a way to traverse a multi-dimensional space of cell elements 101

where every cell is visited exactly once [13]. Thus, a space-filling curve imposes a linear 102

order of points in the multi-dimensional space that can be mapped to a linear sequence 103

of elements. Different space-filling curves have been proposed, each differing in their 104

way to traversing the multi-dimensional space. We consider three types of 2D 105

space-filling curves: Hilbert [14], Morton [15], and Snake (Figure 4). Each cell is then 106

encoded with a four length binary vector of zeros except for the i-th entry associated 107

with the unique DNA letter. 108

Deep network architecture 109

We adopt the standard deep learning CNN architecture depicted in Figure 5. The 110

network is composed of multiple layers of parametrized kernel convolutions, each 111

composed with: a rectified linear unit (ReLU) activation function to reduce the effect of 112
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Fig 3: k-mer representation, examples of one, two, and tri-mer encodings.

Table 2: Computational cost required to build the input representations of a sequence of
length N .

Input representation Computationa cost Adopted in

Hilbert O(N
√
N) Noviello et al., 2020

Morton O(N
√
N) Noviello et al., 2020

Snake O(N) Noviello et al., 2020
k–mer O(N) Noviello et al., 2020
iPknot O(N5) nRC [6]
ViennaRNA O(N7) EDeN [5] and

RNAGCN [7]

gradient vanishing, a max-pooling layer to reduce the size of output, and a 50% 113

drop-out layer to reduce overfitting [16]. We consider an increasing number of CNN 114

layers (ranging from 1 to 3), while the dimension of convolution layers is 1D for k-mer 115

input encodings and 2D for space-filling curve encodings. Input sequence 116

representations are first encoded into binary vectors, where each entry corresponds to a 117

CNN channel, and then padded to the maximum dimension allowed for that 118

representation (Table 3). We consider three padding criteria: i) random, where vacant 119

cells are filled with random symbols; ii) constant, where vacant cells are filled with a 120

constant symbol drawn from the DNA alphabet; and, iii) new, where vacant cells are 121

filled with a new symbol not belonging to the DNA alphabet. 122

Table 3: Maximum dimension allowed for each input representation and sequence of at
most 150 nucleotides. Dimensions of Hilbert and Morton spaces are the lowest powers of
two greater than 150, while the dimension of Snake can be simply obtained consider the
ceiling of

√
150.

Input representation Maximum dimension allowed

Hilbert 16 × 16
Morton 16 × 16
Snake 13 × 13
k–mer 150/k

We set empirically the kernel size to 3 and the number of filters at each i-th layer to 123
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Fig 5: A graphical representation of the deep learning architecture. The raw RNA
sequence is first encoded into an input layer representation (e.g. Hilbert filling-curve),
then up to 3 convolution layers with rectifier activation followed by max-pooling layers
perform the learning steps of sub-sequences with functional properties. Finally, two
dense layers of rectified linear units are added to reduce data dimension to a softmax
multi-class classification output layer.

32 · 2i. The architecture is completed with a flatten layer, to turn spatial features into a 124

vector, two dense layers (respectively of 1000 and 500 nodes), and a softmax output to 125

achieve multi-class classification. For the training step, we adopt Adam [17] as 126

optimization algorithm and categorical cross-entropy loss function, suitable for 127

multi-class classification problem [18]. 128

Experiment setup 129

We considered the ncRNA functional annotation task as a multi-class problem where 130

each class is a collection of functionally related ncRNAs. Accuracy and Kappa statistic 131

are adopted to estimate the overall prediction performance, while per class prediction 132

capability is estimated with weighted F1-measure as more informative in highly 133

unbalanced datasets. 134

To test for the generalization capacity of the algorithm, we split each Rfam class in 135

three random subsets: train (80%), validation (10%), and test (10%). Validation set was 136

used only to tune the hyper-parameters of the learning algorithm, while test set was 137

used to estimate the predictive performance. To limit the bias due to an overpresence of 138

very similar homologous sequences in random splits, we ensured that for each class all 139

sequences in validation and test sets have a similarity - computed in terms of normalized 140
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Hamming distance - less than 0.50 with any other sequence in the training set. 141

Following the experimental assessment conducted in [5] we assess the prediction 142

performance also under the uncertainty of where ncRNA sequence starts and ends. This 143

could happen, for example, with noise coming from next generation sequencing. We 144

added to each sequence a varying boundary noise, consisting of a random number of 145

nucleotides at the beginning and the end of a sequence preserving the nucleotide and 146

di-nucleotide frequency of the original sequence [19]. We consider the length of the 147

added noise varying among 0%, 25%, 50%, 75%, 100%, 125%, 150%, 175%, and 200% of 148

the original sequence length. 149

Moreover we test the rejection capability of the algorithm, i.e. the behaviour of the 150

algorithm if presented with non-functional RNA sequences – sequences that do not 151

belong to any of the considered classes – or with uncertain sequences. Recently it has 152

been shown that excluding uncertain samples from test set can drastically improve 153

model performance [20,21]. To this aim we adoped Monte Carlo Dropout to estimate 154

the classification uncertainty of a test sample and decide whether reject or not the 155

sample. We trained the 3 layer CNN architecture with the training set and performed 156

Monte Carlo dropout during test time. Monte Carlo dropout consists to use Nmc 157

different dropout versions of the trained model on the same test sample [20]. In each 158

version, i = 1, . . . , Nmc, a random set of nodes is deleted allowing to obtain a discrete 159

probability distribution pik among all class values, k = 1, . . . , C. From such a 160

distribution the uncertainty of classification can be estimated in different ways [20,21]. 161

In our experiment we adoped Nmc = 50 and evaluated two uncertainty estimators: 162

Information Entropy and Top Difference. Information entropy is defined as: 163

H = −
∑
k

pklog2(pk + ε)

where pk = 1
Nmc

∑
i

pik, is the mean over all predicted probabilities for a class k, and ε is 164

added for numerical stability. The Top Difference is defined as the difference between 165

the two top, in average most probable, predicted classes k1 and k2, calculated as: 166

D = pk1
− cσk1

− (pk2
+ cσk2

)

where σk is the standard deviation of the discrete probability distribution pik among i, 167

and c a costant we set to c = 0.6. 168

We evaluated the capability to predict functional vs. non-functional RNA sequences 169

plotting the ROC curve of each estimator on a doubled test set obtained by adding to 170

each sequence of the original test set a shuffled version preserving di-nucleotides 171

distribution. Then we evaluated the gain in classification performance on the original 172

test set where uncertain sequences are filtered out considering the following decision 173

thresholds for the estimators: H > 1
3 log2( 1

C ) for the Information Entropy estimator and 174

D < 0 for Top Difference estimator. 175

Results and discussions 176

Padding with random symbols affects space filling curve 177

performance 178

First we evaluated the impact on classification performance of different input sequence 179

representations and padding criteria. To this aim we adopted a 3 CNN layer 180

architecture and evaluated the prediction performance against the novel Rfam dataset. 181

Figure 6 shows the obtained results, in terms of Accuracy (ACC). k -mer encodings are 182
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Fig 6: Classification performance in term of Accuracy obtained in the test set with
different padding schemas. The deep learning architecture is composed by 3 CNN layers.
Confidence intervals are drawn assuming a normal distribution of classification error.

not sensitive to padding criteria, while space-filling curve encodings exhibit a significant 183

accuracy drop (∼ 10-15%) with random padding. 184

Having in proximity both distal and close elements of a sequence constitute a 185

disadvantage when inputs are filled with random padding, while constant and new 186

symbol padding are less prone to affect overall prediction performance. 187

CNN number of layers contributes to performance improvement 188

Figure 7 shows the impact of neural network depth, codified with the number of CNN 189

layers, on the classification performances. A number of CNN layers equal to zero 190

corresponds to a dense network. According to the results of the previous Section, new 191

symbol has been used as padding criteria and performances were evaluated against the 192

novel Rfam dataset. 193

As expected, the absence of CNN layers strongly affects the learning step resulting 194

in a low rate of accuracy for all the tested input representations. In a dense network, 195

fully connected layers see the data as 1D vectors so it is likely that high level (spatial) 196

relationships and local patterns are not captured. Conversely, increasing architecture’s 197

depth enhances, almost linearly, the learning process of high-level abstract and spatially 198

localized features supposedly connected to RNA function. Adding just one CNN layer 199

increases the prediction accuracy by two fold, advancing it to the range 0.80–0.90 for all 200

input representations. Adding more layers, slightly increases the performance to over 201

0.90 for some all representations. A significant increment is registered for k-mer and 202

Snake input representations, while adding more layers to Morton and Hilbert 203

representations does not significantly affect the prediction performance. The use of 204

space-filling curves as a proxy for modelling long-range interactions between nucleotides 205

show the worst performance. This does not exactly dismiss the importance of structural 206

effects but poses a question on the necessity to go through the RNA structure to learn 207

RNA functions. 208
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Fig 7: Classification performance in term of Accuracy obtained in the test set with
different number of layers using CNNs where inputs are padded with a new symbol.
Zero indicates a dense network. Confidence intervals are drawn assuming a normal
distribution of classification error.

K-mer encodings are more robust to boundary noise 209

Figure 8 shows the impact of boundary noise on classification performances against the 210

novel Rfam dataset for each considered input sequence representations. The comparison, 211

in terms of accuracy, with state-of-the-art methods, EdeN and nRC, is also shown. 212

According to the above results, new symbol has been used as padding criteria and three 213

CNN layers as depth of the architecture. At 0% of boundary noise, i.e. original 214

sequences without noise addition, all considered input data representations reach the 215

highest levels of accuracy. With the exception of Morton and Hilbert all the other 216

methods exhibit an accuracy ranging around 0.9. Increasing the percentages of 217

boundary noise a decrement of performance is registered for all methods, more slightly 218

for k-mer representation, while more prominent for spatial-curve representations and 219

even for the state-of-art methods, EdeN and nRC. At 200% of boundary noise the 220

performance of k-mer representations are slightly less than 0.90, in terms of accuracy, 221

while for all others the performance drops to around 0.75. 222

Table 4 shows the breakdown of the classification performances of a 3 CNN layers 223

architecture at class level in terms of F1-measure (F1), and its macro and weighted 224

averages. Input sequences are considered with the maximum noise level (200%) and 225

padded with a new symbol. Per class performances with the minimum noise level (0%) 226

are shown in Supplemental Table S1. In terms of weighted averages, the F1-measure of 227

k-mer representations around 7.5% greater than any other method. In terms of macro 228

averages, such increments increase to around 8.3%. 229

A high concordance of per class performance can be observed within the k-mers 230

group, between EDeN and nRC, and within spatial-filled curves. There are classes where 231

all methods are wrong in a similar way, such as: RF00016, RF00020, RF00029, RF00619, 232

RF00876, RF01725, RF01739. Instead, other classes where k-mer, and in some cases 233

spatial-curves, go significantly better than the state-of-art, such as: RF00156, RF00162, 234

RF00169, RF00557, RF00560, RF00645, RF00875, RF01055, RF01059. For all the other 235

classes good performance results are uniformly distributed among all methods. No 236
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Fig 8: Classification performance in term of Accuracy obtained in the test set at different
boundary noise levels. The deep learning architecture is composed by 3 CNN layers and
inputs are padded with a new symbol.

complementarity among methods can be observed. K-mer representations outperform 237

all other methods, predicting almost correctly 22 out of 29 classes (F1-measure > 0.70). 238

Monte Carlo Dropout robustly recognizes non-functional RNA 239

sequences and improves prediction performance on non-rejected 240

sequences 241

Figure 9 shows the performance, estimated in terms of Area under ROC, of rejecting 242

non-functional RNA sequences of two classification uncertain estimators, Information 243

Entropy and Top Distance. Both estimators exhibit similar performance, 0.94 for 244

Information Entropy and 0.92 for Top Distance. 245

Table 5 and Figure 10 show, respectively, the overall and per class performance after 246
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Fig 9: Recognizing non-functional RNA with Monte Carlo Dropout. Sequences are
encoded with 1-mer and performance is estimated in terms of Area under ROC (on the
left). Figures on the right shows the distributions of functional and non-functional RNA
sequences among Information Entropy (H) and Top Distance (D).
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Table 4: Per class performance evaluated with a 3 layer CNN network, new padding symbol, and 200% of
boundary noise. In each row the maximum value is in boldface.

Rfam Class 3mer 2mer 1mer Snake Morton Hilbert EdeN nRC Class size

RF00001 0.89 0.91 0.91 0.80 0.84 0.86 0.78 0.75 3886
RF00005 0.87 0.88 0.84 0.81 0.76 0.73 0.77 0.82 2315
RF00015 0.90 0.93 0.81 0.74 0.83 0.80 0.63 0.61 221
RF00016 0.35 0.31 0.26 0.08 0.11 0.17 0.32 0.38 134
RF00019 0.96 0.94 0.95 0.90 0.95 0.91 0.86 0.88 456
RF00020 0.39 0.45 0.45 0.17 0.23 0.21 0.58 0.48 86
RF00026 0.97 0.98 0.96 0.92 0.91 0.90 0.90 0.88 1813
RF00029 0.04 0.04 0.02 0.01 0.01 0.00 0.03 0.02 5
RF00050 0.98 0.98 0.95 0.94 0.86 0.88 0.78 0.77 378
RF00059 0.93 0.94 0.93 0.74 0.75 0.73 0.78 0.80 1561
RF00066 0.69 0.58 0.84 0.64 0.63 0.67 0.76 0.76 137
RF00097 0.96 0.97 0.96 0.94 0.93 0.94 0.72 0.81 717
RF00156 0.71 0.65 0.62 0.32 0.37 0.39 0.41 0.40 79
RF00162 0.69 0.73 0.82 0.46 0.45 0.28 0.58 0.48 128
RF00169 0.89 0.91 0.83 0.63 0.80 0.75 0.66 0.59 381
RF00504 0.89 0.92 0.89 0.53 0.61 0.71 0.79 0.80 478
RF00557 0.88 0.87 0.86 0.59 0.66 0.64 0.48 0.35 74
RF00560 0.84 0.86 0.71 0.36 0.78 0.57 0.54 0.45 111
RF00619 0.43 0.54 0.40 0.27 0.44 0.37 0.30 0.24 48
RF00645 0.82 0.77 0.85 0.23 0.27 0.21 0.51 0.66 62
RF00875 0.93 0.95 0.91 0.85 0.42 0.57 0.46 0.66 125
RF00876 0.45 0.36 0.40 0.55 0.34 0.27 0.27 0.39 28
RF00906 0.78 0.76 0.81 0.80 0.76 0.71 0.76 0.78 75
RF01055 0.79 0.77 0.76 0.67 0.58 0.57 0.47 0.46 111
RF01059 0.69 1.00 1.00 0.90 1.00 0.23 0.56 0.25 9
RF01705 0.84 0.86 0.86 0.72 0.71 0.66 0.81 0.81 403
RF01725 0.26 0.46 0.51 0.22 0.30 0.25 0.48 0.36 66
RF01739 0.25 0.43 0.18 0.26 0.17 0.12 0.30 0.37 21
RF01942 0.95 0.91 0.91 0.91 0.79 0.82 0.85 0.86 622
Weigthed avr 0.89 0.90 0.88 0.78 0.79 0.78 0.77 0.77 -
Macro avr 0.73 0.75 0.73 0.58 0.60 0.55 0.59 0.58 -
Accuracy 0.87 0.89 0.86 0.75 0.76 0.74 0.74 0.75 -

Monte Carlo Dropout of uncertain samples encoded with no boundary noise. Overall 247

performance is calculated in terms of Accuracy, Kappa statistic, and Matthew 248

Correlation Coefficient (MCC), while per class performance is calculated in terms of 249

F1-measure. The percentage of dropped samples for each class and the overall 250

percentage of dropped samples are also shown. 251

For all input representations an overall increment of accuracy can be registered. 252

Comparing results reported in Table 5 with Supplemental Table S1 the following 253

increments can be observed for Information Entropy, 3-mer 4.30%, 2-mer 11.23%, 1-mer 254

7.60%, Snake 4.39%, Morton 14.11%, Hilbert 16.66%; and the following for Top 255

Distance, 3-mer 4.30%, 2-mer 10.11%, 1-mer 7.60%, Snake 3.29%, Morton 12.94%, 256

Hilbert 15.47%. The highest percentage of dropout samples is registered for Hilbert 257

with Information Entropy (33.53%), while the lowest is registered for 1-mer with Top 258

Distance (10.85%) 259

The worst per class performance is registered for RF00029 and RF00020 which are 260

also strongly drooped out. Other classes, such as RF00016, RF00619, RF00645, 261

May 27, 2020 11/16

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 28, 2020. ; https://doi.org/10.1101/2020.05.27.118778doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.27.118778
http://creativecommons.org/licenses/by-nc-nd/4.0/


RF01705, gain more performance (see Supplemental Table S1) but are also strongly 262

dropped out. 263

Table 5: Overall performance improvement, in terms of Accuracy, Kappa, and MCC,
after Monte Carlo Dropout of uncertain samples encoded with 1-mer

% of rejected
Estimator Approach Accuracy Kappa MCC samples

3mer 0.97 0.97 0.97 22.05
2mer 0.99 0.98 0.98 19.81

Information 1mer 0.99 0.99 0.99 11.16
Entropy Snake 0.95 0.94 0.95 26.55

Morton 0.97 0.97 0.97 28.45
Hilbert 0.98 0.97 0.97 33.53
3mer 0.97 0.97 0.97 19.69
2mer 0.98 0.98 0.98 18.09

Top 1mer 0.99 0.99 0.99 10.85
Distance Snake 0.94 0.93 0.94 25.62

Morton 0.96 0.96 0.96 22.96
Hilbert 0.97 0.97 0.97 27.45

Comparison with RNAGCN 264

Table 6: Summary of results on the dataset called test13 containing 13 non-coding classes.
Results for nRC and RNAGCN are taken from [7].

CNN
Architecture Approach Accuracy Recall Precision F1-score MCC

EDeN 0.67 0.60 0.75 0.65 0.61
nRC 0.82 0.82 0.81 0.82 0.80
RNAGCN 0.86 0.86 0.86 0.86 0.85
1mer 0.88 0.88 0.89 0.88 0.87
2mer 0.83 0.83 0.84 0.83 0.82

standard 3mer 0.81 0.81 0.82 0.81 0.79
Morton 0.78 0.78 0.79 0.78 0.77
Snake 0.82 0.82 0.83 0.81 0.80
Hilbert 0.81 0.81 0.84 0.82 0.80
1mer 0.96 0.96 0.96 0.96 0.96
2mer 0.92 0.92 0.92 0.92 0.91

improved 3mer 0.88 0.88 0.88 0.88 0.86
Morton 0.86 0.86 0.88 0.86 0.85
Snake 0.86 0.86 0.88 0.86 0.85
Hilbert 0.86 0.87 0.89 0.87 0.86

The recent proposed RNAGCN method, based on a graph convolutional network, is 265

evaluated against a dataset where ncRNA sequences are classified over 13 functional 266

macro-classes [7]. As the authors of such a method do not provide an executable tool, 267

we were not able to evaluate the proposed method against our novel Rfam dataset 268

containing 30 Rfam classes. So we evaluated our approach against the public available 269

datasets which were originally adopted by the authors of nRC [6]. In particular we 270

choose the dataset called test13 which is the one that shows best RNAGCN results. 271
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Fig 10: The effect on per class prediction performance of rejecting uncertain samples
(1-mer encoded) with Monte Carlo Dropout
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Table 6 reports the results obtained. Surprisingly EDeN exhibits a performance that 272

is significantly lower, in terms of Accuracy, than those obtained against the novel Rfam 273

dataset. Instead with a 3 CNN layers architecture of Figure 5 we obtained performances 274

almost similar to RNAGCN and nRC and almost consistent with those obtained in 275

previous experiments. To test if there is room of improvement we explored alternative 276

CNN architectures. After a thorough empirical evaluation of different architectures we 277

obtained an improved configuration that shows an increment between 5% and 10%, in 278

terms of Accuracy, with respect to the standard architecture adopted in previous 279

experiments (Table 6). The improved architecture is composed of 5 CNN layers 280

interleaved with batch normalization, Leaky ReLU activation, and max-pooling. 281

GaussianNoise to reduce overfitting is added every 2 CNN layers and a dropout rate at 282

20% is added after the last CNN layer. The network is completed with two dense layers, 283

respectively of 128 and 64 units, to reduce input dimensions, and a final softmax layer 284

for the output class. AMSGrad optimization [22], with a learning rate at 0.0005, has 285

been adopted in the learning step. 286

Conclusion 287

In this work, we proposed a deep learning approach to classify non coding RNA 288

sequences into Rfam classes. A comparative assessment with the state-of-the-art graph 289

kernel methods shows that the deep learning approach is more robust to boundary noise 290

when k-mer input representations are adopted. CNN number of layers contributes to 291

performance improvement while random padding schema affects negatively space filling 292

curve performance. The deep learning architecture allows for less computational cost 293

input representations than sequence-structure input representations of graph kernel 294

methods. This allows for classification of large scale genomic data and poses and 295

interesting question against the dogma of secondary structure being a key determinant 296

of function in RNA. 297

The CNN paradigm let us suppose that abstract features associated with RNA 298

functions are effectively learned from simple input representations (i.e. k-mer) and that 299

any further structural encoding in the input representation, such as those carried by 300

space filling curves, does not contribute to performance improvement. To what extend 301

such features are related to secondary structure features remains an open question. 302
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