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ABSTRACT  17 

 18 

Deletions and duplications of the distal region of the long arm of chromosome 1 are 19 

associated with brain abnormalities and developmental delay. Because duplications are 20 

less frequent than deletions, no detailed account of the cognitive profile of the affected 21 

people is available, particularly, regarding their language (dis)abilities. In this paper we 22 

report on the cognitive and language features of a girl with one of the smallest 23 

interstitial duplications ever described in this region, affecting to 1q42.3q43 (arr[hg19] 24 

1q42.3q43(235,963,632-236,972,276)x3). Standardized tests as well as the analysis of 25 

her language use in natural settings suggest that the proband’s speech is severely 26 

impaired, exhibiting dysarthric-like features, with speech problems also resulting from 27 

a phonological deficit boiling down to a verbal auditory memory deficit. Lexical and 28 

grammatical knowledge are also impaired, impacting negatively on both expressive and 29 

receptive abilities, seemingly as a consequence of the phonological deficit. Still, her 30 

pragmatic abilities seem to be significantly spared, granting her a good command on 31 

the principles governing conversational exchanges. In silico analyses (literature mining, 32 

network analysis) and in vitro analyses (microarray) point to several genes as potential 33 

candidates for the observed deficits in the language domain. These include one gene 34 

within the duplicated region (LYST), one predicted functional partner (CMIP), and three 35 

genes outside the 1q42.3q43 region, which are all highly expressed in the cerebellum: 36 

DDIT4 and SLC29A1, found strongly downregulated in the proband compared to their 37 

healthy parents, and CNTNAP3, found strongly upregulated. 38 

 39 

Keywords: 1q distal duplications; language deficits; speech problems; differentially-40 

expressed genes  41 
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INTRODUCTION 42 

 43 

Deletions and duplications of the distal region of the long arm of chromosome 1 result 44 

in developmental anomalies, including intellectual disability and language problems. 45 

Deletions usually entail microcephaly, seizures, cognitive and psychomotor delay, 46 

growth delay, facial dysmorphisms, and cardiac defects (Juberg et al., 1981; Roberts et 47 

al., 2004; van Bon et al., 2008). That said, the exact symptoms exhibited by patients 48 

depend on the extension of the deleted region and consequently, on the number and 49 

functions of the affected genes. Duplications of this region are less frequent and patients 50 

exhibit a more variable clinical presentation, although common symptoms include 51 

intellectual disability and delayed psychomotor development, facial anomalies, and 52 

macrocephaly (Hemming et al., 2016; Morris et al. 2016). 53 

 54 

In this paper, we report on a girl with an interstitial duplication in the 1q42.3q43 region. 55 

Rearrangements of this region are rare. Silipigni and colleagues (2017) reviewed 7 56 

cases found in the literature, affecting to a slightly broader region (1q42.13q43), and 57 

described 2 new cases: a deletion of 1q42.13q43 and the reciprocal duplication, found 58 

in two consanguineous probands. Subjects with duplications suffer from language 59 

deficits. Specifically, the child examined by Silipigni et al. (2017) showed cognitive 60 

and social delay, and said his first words at the age of 2 only. Nonetheless, a detailed 61 

characterization of the language problems exhibited by patients with duplications of the 62 

distal region of the long arm of chromosome 1 is still pending. Not surprisingly, no 63 

conclusive genotype-phenotype link has been found for language deficits. One reason 64 

is that the role of the duplicated genes in neurodevelopment, and particularly, in 65 

language development, is mostly unknown. A second reason is that patients usually 66 
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bear complex translocations involving other chromosomes. In this paper we provide a 67 

comprehensive account of the language deficits and strengths of our proband, including 68 

a detailed psycholinguistic profile and an in-depth analysis of her language in use. We 69 

further advance a hypothesis about the molecular causes of language dysfunction. For 70 

this, we have relied on available evidence of the role played by the duplicated genes in 71 

brain development and function, but also, on predicted functional links between some 72 

of these genes and selected strong candidates for language development and language 73 

evolution in the species. Additionally, we have relied on results of our analysis of 74 

whole-genome gene expression pattern of the blood of our proband compared to her 75 

healthy parents.  76 

 77 

MATERIAL AND METHODS 78 

Linguistic, cognitive, and behavioral assessment 79 

The global developmental profile of the proband was evaluated with the revised version 80 

of the Batería de Aptitudes Diferenciales y Generales [Battery for Differential and 81 

General Abilities] (BADyG) (Yuste and Yuste, 1998) and with the Spanish version of 82 

the Inventory for Client and Agency Planning (ICAP) (Montero, 1996). The proband’s 83 

linguistic skills were evaluated with the Spanish versions of the Peabody Picture 84 

Vocabulary Test (PPVT-3) (Dunn et al., 2006), the Gardner Receptive One Word 85 

Picture Vocabulary Test (ROWPVT) (Gardner, 1987), and the Illinois Test of 86 

Psycholinguistic Abilities (ITPA) (Kirk et al., 2009). The Registro Fonológico Inducido 87 

test [Induced Phonological Register] (Monfort and Juárez, 1988) was used to achieve a 88 

detailed knowledge of the proband’s phonological awareness.  89 

 90 

 91 
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The Battery for Differential and General Abilities (BADyG) 92 

The BADyG evaluates the child’s abilities in 9 different domains: verbal 93 

comprehension (understanding of direct commands involving spatial concepts), verbal 94 

reasoning (finding analogical relationships between concepts), numerical 95 

comprehension (performing simple arithmetic calculations), numerical reasoning 96 

(understanding and solving simple mathematical problems), processing of rotated 97 

figures (rotating figures mentally), spatial reasoning (inducing the rules governing the 98 

assembly of geometric figures), visuo-auditive memory (recalling meanings from a 99 

story which is also displayed graphically), writing abilities (absence of dyslexic-like 100 

features), and discrimination (finding subtle differences between geometric figures). 101 

Scores are subsequently grouped to obtain 5 composite measures: verbal abilities 102 

(verbal comprehension + verbal reasoning), numerical abilities (numerical 103 

comprehension + numerical reasoning), visuospatial abilities (processing of rotated 104 

figures + spatial reasoning), logical reasoning (verbal reasoning + numerical reasoning 105 

+ spatial reasoning), and general intelligence (verbal comprehension + verbal reasoning 106 

+ numerical comprehension + numerical reasoning + processing of rotated figures + 107 

spatial reasoning). The version of the test employed in this case was BADyG/E1, aimed 108 

for children between 6 and 7 years old. 109 

 110 

The Inventory for Client and Agency Planning (ICAP)  111 

The ICAP is aimed to evaluate the subject's functional abilities and maladaptive 112 

behaviors in the following general areas: motor skills, social and communication skills, 113 

personal living skills, and community living skills. The ICAP measures the frequency 114 

and severity of 8 types of behavioral disturbances, which are organized in 3 subscales: 115 

asocial maladaptive behavior (uncooperative behavior and socially offensive behavior), 116 
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internalized maladaptive behavior (withdrawn or inattentive behavior, unusual or 117 

repetitive habits, and self-harm), and externalized maladaptive behavior (disruptive 118 

behavior, destructive to property, and hurtful to others). Behavior is rated as normal or 119 

abnormal, whereas behavioral problems are subsequently rated as marginally serious, 120 

moderately serious, serious, or very serious. 121 

 122 

The Peabody Picture Vocabulary Test (PPVT-3) 123 

This test is aimed to assess the correct acquisition and the level of receptive vocabulary 124 

in subject from 2.5 years to 90 years. It consists of 192 sheets with four colored 125 

drawings each. After hearing a word, the subject must indicate which illustration best 126 

represents its meaning.  127 

 128 

Gardner Receptive One Word Picture Vocabulary Test (GROWPVT)  129 

This test is aimed to assess receptive vocabulary in children between 2 and 11 years 130 

old, as a screening tool for detecting possible speech defects, learning disorders, 131 

auditory processing deficits, or problems for auditory-visual association. It consists of 132 

100 picture-naming tasks: after hearing a word, the subject has to choose (either 133 

verbally or by pointing) the correct picture out of four different colored pictures. 134 

 135 

Illinois Test of Psycholinguistic Abilities (ITPA) 136 

This test aims to detect preserved psycholinguistic skills and specific difficulties 137 

experienced by children when trying to produce an adequate communicative 138 

contribution. In this test, psycholinguistic skills are construed as psychological 139 

processes and functions enabling the subject to convey his intentions during the 140 

communicative use of language (Kirk and McCarthy, 1961). These psychological skills 141 
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are ultimately related to the core processes involved in the reception, understanding, 142 

and transmission of a linguistic message. The ITPA comprises several subtests that are 143 

organized into two levels: the Representative Level and the Automatic Level. The 144 

Representative Level assesses the management of symbols via the evaluation of 145 

different kinds of processes: i) Receptive processes, including a) the ability to obtain 146 

meaning from a spoken word (Listening comprehension), and b) the ability to obtain 147 

meaning from a visual symbol, assessed through the capability to choose from among 148 

a group of drawings the one that is similar to the stimulus picture (Visual 149 

comprehension); ii) Organizational processes, including a) the ability to relate spoken 150 

words in a meaningful way, which is tested using a series of verbal analogies of 151 

increasing difficulty (Auditory association); and b) the aptitude to relate visual symbols, 152 

which is assessed through the matching of the stimulus picture to one drawing chosen 153 

among a set of four (Visual association); and iii) Expressive processes, including a) 154 

verbal fluency, which is estimated from the number of concepts expressed verbally 155 

(Verbal expression), and b) the ability to express concepts through gestures (Motor 156 

expression). Regarding the Automatic Level, it assesses how different habits, such as 157 

memory or remote learning, are integrated to produce an automatic chain of responses. 158 

The assessment is conducted via the evaluation of different kinds of processes: i) 159 

Integration or closure tests, including a) the competence to automatically use grammar 160 

in a task of sentence completion supported by drawings (Grammar integration or 161 

closure), b) the ability to identify a common object from its incomplete representation 162 

in a relatively complex context (Visual integration), c) the ability to produce a word 163 

from partially pronounced words (Aural integration), and d) the ability to synthesize 164 

the separate sounds of a word in order to produce the complete word (Sound gathering); 165 

ii) Sequential memory tests, including a) the ability to recognize and produce a word 166 
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from its partial pronunciation (Auditory sequential memory), and b) the ability to 167 

reproduce by heart sequences of non-significant figures after viewing the sequence for 168 

a short period of time (Visomotor Sequential Memory). 169 

 170 

Induced Phonological Register (RFI) 171 

This tests assesses phonological and articulatory abilities of Spanish-speaking children 172 

between 3 and 7 years old by means of elicited word production and repetition. Word 173 

production is induced by showing the child different pictures that she has to name. If 174 

the child is unable to produce the name, the speech-language therapist will provide her 175 

with the correct name and will ask the child to repeat it. The test comprises every 176 

possible sound of the Spanish language, so that it can be used to detect dyslalia as well 177 

as phonological impairment.   178 

 179 

Language in use 180 

In addition, the proband’s language in use and communication skills were assessed 181 

through the analysis of a 12-minutes sample of her talk while chatting with her family. 182 

Three different settings were considered: 1) a meal at home with her parents, 2) a family 183 

meeting with her parents, her brother and her grandparents; and 3) a conversation with 184 

her mother and her brother after one school day. The conversations were video-recorded 185 

and then transcribed and coded using the tools provided by the CHILDES Project 186 

(MacWhinney, 2000). In brief, speech production phenomena (including relevant 187 

information about articulatory processes, prosody, and fluency) were coded in the main 188 

lines of the transcript using CHAT (Codes for the Human Analysis of Transcripts). 189 

Relevant information about gestural communication and the communicative use of gaze 190 

was included in the main lines within square brackets. Lastly, phonological, 191 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted May 29, 2020. ; https://doi.org/10.1101/2020.05.26.117903doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.26.117903


9 
 

morphological, syntactic, lexical and pragmatic phenomena were coded in dependent 192 

lines. Because functional approaches to language impairment demand taking into 193 

account the pragmatic consequences of structural errors, we first tagged structural 194 

errors and then evaluated their communicative effects using the “Pragmatic Evaluation 195 

Protocol of Corpora” (PREP-CORP). This protocol has been satisfactorily used to 196 

provide the pragmatic profiles of diverse neurodevelopmental disorders (Fernández-197 

Urquiza et al., 2015, Fernández-Urquiza et al., 2017, Diez-Itza et al., 2018). Finally, a 198 

whole pragmatic profile of the proband was built up. For this, we computed the number 199 

of occurrences of each label using CLAN (Computerized Language Analysis) (Conti-200 

Ramsden, 1996). 201 

 202 

Assessment of the parents’ cognitive and language abilities 203 

The linguistic profile of the proband’s parents was assessed with the verbal scale of the 204 

Spanish version of the WAIS-III (Wechsler, 2002), the Test de Aptitud Verbal "Buenos 205 

Aires" [Buenos Aires Verbal Aptitude Test] (BAIRES) (Cortada de Kohan, 2004), the 206 

Batería para la Evaluación de los Procesos Lectores en Secundaria y Bachillerato 207 

[Battery for the Evaluation of Reading Abilities in High School Students] (PROLEC-208 

SE) (Ramos and Cuetos, 2011), and one specific task aimed to evaluate the 209 

comprehension of passive sentences and co-referential expressions. The verbal scale of 210 

the WAIS-III comprises 6 tasks aimed to assess the subject’s abilities in two different 211 

domains of language processing: verbal comprehension (Similarities (S), Vocabulary 212 

(V), Information (I), and Comprehension (CO)) and working memory (Digits (D) and 213 

Arithmetic (A)). The BAIRES test aims to evaluate language comprehension and 214 

production in subjects above 16 years old. It comprises two tasks which assess, 215 

respectively, the subject’s ability to understand language and her ability to provide 216 
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synonymic words and verbal definitions. Regarding the PROLEC-SE, it is mostly used 217 

to assess reading abilities of youngsters between 12 and 18 years old, but because a full 218 

reading competence is usually acquired before 18, it can be also used with adults. It 219 

comprises six tasks that evaluate three different aspects of reading: lexical processes 220 

(word reading, pseudoword reading), semantic aspects (text comprehension, text 221 

structure), and syntactic abilities (picture-sentence matching, punctuation marks). To 222 

end, the ad-hoc task was a sentence-picture matching task aimed to evaluate the 223 

comprehension of bound anaphora in complex sentences (that is, the ability to properly 224 

bind a noun phrase in the dependent clause to a referential element in the main clause) 225 

and of canonical long passive structures (that is, with a by-phrase). While the first task 226 

is highly-demanding in computational terms, the second task is usually difficult to 227 

perform by people with poor reading abilities, because passives are very infrequent in 228 

spoken Spanish.  229 

 230 

Cytogenetic and molecular analyses 231 

Karyotype analysis 232 

Peripheral venous blood lymphocytes were grown following standard protocols and 233 

collected after 72 hours. A moderate resolution G-banding (550 bands) karyotyping by 234 

trypsin (Gibco 1x trypsin® and Leishmann stain) was subsequently performed. 235 

Microscopic analysis was conducted with a Nikon® eclipse 50i optical microscope and 236 

the IKAROS Karyotyping System (MetaSystem® software). 237 

 238 

DNA from the patient and her parents was extracted from 100 μl of EDTA-239 

anticoagulated whole blood using MagNA Pure (Roche Diagnostics, West Sussex, UK) 240 

and used for subsequent analyses. 241 
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Fragile X syndrome analysis 242 

CGG expansions affecting the gene FMR1 (the main determinant factor for X-fragile 243 

syndrome) were analyzed in the proband according to standard protocols. Polymerase 244 

chain reaction (PCR) of the fragile site was performed with specific primers for the 245 

fragile region of the FMR1 locus and the trinucleotide repeat size of the resulting 246 

fragments was evaluated by electrophoresis in agarose gel. 247 

 248 

Multiplex ligation-dependent probe amplification (MLPA) 249 

MLPA was conducted to detect abnormal copy-number variations (CNVs) in 250 

subtelomeric regions of the chromosomes, as well as frequent interstitial CNVs. MLPA 251 

consists on the amplification of different probes using a single PCR primer pair. Each 252 

probe detects a specific subtelomeric DNA sequence. Three different kits from MRC-253 

Holland were employed. Two of them (SALSA® MLPA® probemix P036-E3 254 

SUBTELOMERES MIX 1 and SALSA® MLPA® probemix P070-B3 255 

SUBTELOMERES MIX 2B) were used for examining subtelomeric regions. The third 256 

one (SALSA® MLPA® probemix P245-B1 Microdeletion Syndromes-1A) was used to 257 

detect frequent microdeletion and microduplication syndromes: 1p36 deletion 258 

syndrome, 2p16 deletion syndrome, 2q23 deletion syndrome (involving MBD5), 2q33 259 

deletion syndrome (involving SATB2), 3q29 deletion syndrome, Wolf-Hirschhorn 260 

syndrome (resulting from a 4p16 3 deletion), Cri du Chat syndrome (resulting from a 261 

5p15 deletion), Sotos syndrome associated to a 5q35.3 deletion, Williams syndrome 262 

(resulting from a 7q11.23 deletion), Langer-Giedion syndrome (resulting from a 8q 263 

deletion), 9q22.3 deletion syndrome, 15q24 deletion syndrome, Prader-Willi and 264 

Angelman syndromes (resulting from paternal or maternal 15q11.2 deletions), a severe 265 

variant of Rubinstein-Taybi syndrome resulting from a deletion in 16p13.3, 17q21 266 
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deletion syndrome, Miller-Dieker syndrome (resulting from a 17p deletion), Smith-267 

Magenis syndrome (resulting from a 17p11.2 deletion), NF1 microdeletion syndrome 268 

(aka Van Asperen syndrome), linked to a 17q11.2 deletion), Phelan-McDermid 269 

syndrome (resulting from a 22q13 deletion), Di George syndrome (resulting from 270 

deletions in 22q11, distal 22q11, or 10p14 ), Rett syndrome (associated to MECP2 271 

deletion) and MECP2 duplication syndrome. The PCR products were analyzed by 272 

capillary electrophoresis in an automatic sequencer Hitachi 3500 and further analyzed 273 

with the Coffalyser V 1.0 software from MRC-Holland. 274 

 275 

Microarrays for whole-genome CNVs search and chromosome aberrations analysis 276 

The DNA from the patient and her parents was hybridized on a CGH platform (Agilent 277 

Technologies). The derivative log ratio spread (DLRS) value was 0.172204. The 278 

platform included 60.000 probes. Data were analyzed with Agilent CytoGenomics 279 

3.0.5.1 and qGenViewer, and the ADM-2 algorithm (threshold = 6.0; abs (log2ratio) = 280 

0,25; aberrant regions had more than 4 consecutive probes). 281 

 282 

Microarrays for DEGs search  283 

In order to determine the genes that could be differentially expressed in the proband 284 

(DEGs) compared to her healthy parents, microarray analyses of blood samples from 285 

the three of them were performed. Total RNA was extracted with the PAXgene Blood 286 

RNA Kit IVD (Cat No./ID: 762164). RNA quality and integrity were confirmed with a 287 

Bioanalyzer RNA 6000 Nano. All samples had RNA integrity number (RIN) values 288 

above 9. An Affymetrix® Scanner 3000 7G was then used for analyzing transcriptome 289 

changes. The resulting raw data were processed with the Affymetrix® GeneChip® 290 

Command Console® 2.0 program. Next, *.CEL files were checked to certify the RNA 291 
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integrity and the suitability of the labeling and the hybridization processes. Finally, the 292 

raw data from the different arrays were normalized with the SST (Signal Space 293 

Transformation)-RMA (Robust Microarray Analysis) tool (Irizarry et al., 2003). 294 

Normalized data (*.CHP files) were subsequently used to search for DEGs in the 295 

proband compared to her parents. Statistical analyses were conducted with the LIMMA 296 

(Linear Models for Microarray Analysis) package of BioConductor, using the TAC 4.0 297 

software.  298 

 299 

RESULTS 300 

Clinical History 301 

The proband (Figure 1A) is a girl born by normal delivery after 36 weeks of low-risk 302 

gestation. The mother was a 29-year-old woman, who suffered from Crohn’s disease 303 

treated with Imurel. At delivery, no signs of disease were observed in the newborn 304 

(serology was negative and there was no evidence of group B streptococcus (GBS) 305 

infection). Nonetheless, the baby exhibited a supernumerary digit in her right hand, 306 

which was subsequently removed by surgery. At birth, her weight was 3.51 kg 307 

(percentile 79th), her height was 52 cm (percentile 95th), and her occipitofrontal 308 

circumference was 36 cm (percentile 96th). Apgar scores were 9 (at 1’) and 10 (at 5’). 309 

When she was 12 months old, her weight was 8,64 kg (percentile 38th), her height was 310 

73,5 cm (percentile 42th), and her occipitofrontal circumference was 47 cm (percentile 311 

93th). At age 1 year and 7 months, her weight was 10 kg (percentile 34th), her height 312 

was 81 cm (percentile 42th), and her occipitofrontal circumference was 48,5 cm 313 

(percentile 93th).  314 

 315 
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The proband’s parents reported on hypotonia that hindered sucking during her first 316 

months of life. Hypotonia worsened with time and when she was 12 months old, a 317 

cranial magnetic resonance imaging (MRI) was performed. Main findings were a 318 

reduced white matter signal-intensity in the temporal lobe of both hemispheres, mostly 319 

impacting on the left hemisphere, as well as a mild delay in the myelination pattern of 320 

subcortical areas. At the age of 34 months, a prominent forehead (SD < 2) was a 321 

distinctive feature, as well as 4 hyperchromic spots and abnormally high levels of 322 

thyroid-stimulating hormone (TSH). Overall, the girl showed a significant psychomotor 323 

delay. At 12 months of age, she had not taken her first steps and showed unstable head 324 

control and sitting. Generalized hypotonia, as well as motor and cognitive delay were 325 

diagnosed at that age. She was able to stand up and wander with support only at 24 326 

months of age. She also began to manipulate objects at that age. When she was 32 327 

months old, she was able to move from dorsal decubitus to sitting without help. At 34 328 

months of age, she showed typical strength, muscle tone, and spontaneous movements. 329 

At this age, she was also able to stand stably and to wander without aid. She succeeded 330 

in grabbing objects, passing them from one hand to the other, and in coordinating fine 331 

movements. When she was 4 years old, she already walked without aid, but some motor 332 

clumsiness and frequent falls were observed. She still suffered from slight hypotonia 333 

with kyphosis when sitting without support. When the proband was 6 years old, she 334 

was diagnosed with Valgus foot on both feet. She still fell down frequently and reported 335 

pain in both soles. 336 

 337 

 338 

 339 

 340 
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Early language development 341 

Regarding language development, babbling was first observed at the age of 12 months, 342 

whereas bi-syllabic utterances were first reported when the proband was 2 years old. At 343 

that age, she already understood simple direct commands. Pointing appeared at the age 344 

of 27 months. First words were attested at the age of 32 months. When the proband was 345 

4 years old, she was able to understand complex verbal orders. Nonetheless, expressive 346 

language was severely impaired. Accordingly, the two-word stage was reached at the 347 

age of 56 months only, with an active vocabulary of around 20 words and the use of 348 

non-inflected verbs as a hallmark of her discourse. Telegraphic speech was reported 349 

from age 6-7 only.  350 

 351 

In spite of her marked language deficits, the proband has being attending a regular 352 

school. During the preschool education period, her teachers reported that she mostly 353 

communicated through screaming, gesturing, and bringing others to the place where 354 

objects of interest were placed, as she was unable to name them. She experienced 355 

difficulties with focused attention and she was not interested in new stimuli. She 356 

seemed to understand simple commands and sometimes she produced some 357 

understandable words. When she was 3 years old she scored significantly low in the 358 

Gardner Receptive One Word Picture Vocabulary (ROWPVT), with a verbal age of 2 359 

years and 2 months. At the age of 6, her receptive language was still seriously delayed. 360 

She scored 16 direct points in the Peabody Picture Vocabulary Test (PPVT-3) (< 1st 361 

percentile; -3 SD), which corresponds to a verbal IQ of 55 and a verbal age of 2 years 362 

and 7 months. She communicated mostly through facial or body gestures, or touching 363 

the other with her hand, as speech and expressive language was seriously impaired. 364 

When the proband was 8 years old, her cognitive development was assessed with the 365 
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Batería de Aptitudes Diferenciales y Generales (BADyG). She scored far below 366 

typicality, being the verbal abilities the most impaired domain, whereas spatial abilities 367 

were quite preserved (Figure 1B). At the time of our evaluation, when she was 9 years 368 

and 8 months old, the proband was attending a normal classroom, although she was 369 

assisted by a support teacher and a speech therapist.  370 

 371 

Detailed cognitive and language assessment 372 

At the age of 9 years and 8 months, the proband’s global developmental profile and 373 

adaptive behavior were evaluated with the Spanish version of the Inventory for Client 374 

and Agency Planning (ICAP). The resulting scores were suggestive of a delay of 3 years 375 

and 3 months, being motor skills and communication skills the most impaired domains, 376 

whereas personal living skills were the most preserved domain. Community living 377 

skills were moderately delayed (Figure 1C; see Supplemental file 1 for details).  378 

 379 

Focusing on language, her psycholinguistic development was assessed in detail with 380 

the Spanish version of the Illinois Test of Psycholinguistic Abilities (ITPA). The 381 

resulting composite psycholinguistic age was 5 years and 2 months, well below her 382 

chronological age. Still, she showed a quite irregular profile, with visual and motor 383 

abilities being quite spared, but with auditory and grammatical processing abilities, as 384 

well as vocal emission, being the most impaired domains (Figure 1D; see Supplemental 385 

file 1 for details). More specifically, we found that her receptive language was seriously 386 

delayed. She scored 53 direct points in the Peabody Picture Vocabulary Test (PPVT-387 

3), which is suggestive of a verbal age of 5 years and 1 month (see Supplemental file 1 388 

for details). Poor vocabulary is expected to account as well for her problems for 389 

understanding language. Likewise, we found that speech production and phonological 390 
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awareness were severely delayed, exhibiting features that are typically found in 391 

children between 4-6 years old, according to the Registro Fonológico Inducido test (see 392 

Supplemental file 1 for details). Fluency problems were frequently attested. The 393 

proband experienced marked problems for correctly uttering tri-syllabic words, or even 394 

bi-syllable words containing consonant clusters. Deletions of weak syllables were 395 

frequently observed (e.g. tuga for tortuga ‘turtle’), as well as cluster reduction (e.g. 396 

peso for preso ‘prisoner’) and assimilations resulting in consonant harmony (e.g. zaza 397 

instead of taza ‘cup’ or pambor instead of tambor ‘drum’). 398 

 399 

 400 

Figure 1. Main physical and cognitive findings in the proband. A. Facial picture of the 401 

proband. B. Developmental profile of the proband at the age of 8 years according to the 402 

Batería de Aptitudes Diferenciales y Generales (BADyG). C. Developmental profile of 403 

the proband at the age of 9 years and 8 months according to the Spanish version of the 404 

Inventory for Client and Agency Planning (ICAP). In order to make more reliable 405 

comparisons, the resulting scores are shown as relative values referred to the expected 406 
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scores according to the chronological age of the child. Abbreviations: DA, 407 

developmental age; CA, chronological age. D. Developmental profile of the proband at 408 

the age of 9 years and 8 months according to the Spanish version of the Illinois Test of 409 

Psycholinguistic Abilities (ITPA). Abbreviations: DA, developmental age; CA, 410 

chronological age.  411 

 412 

Lastly, we examined how the proband put her knowledge of language into use for 413 

communicating. We analyzed three different naturally-occurring interactions with her 414 

family (see Supplemental file 2 for details). At the expressive level, we confirmed the 415 

existence of widespread articulatory problems, including consonant deletions (e.g. 416 

apatos instead of zapatos ‘shoes’; artera instead of cartera ‘bag’; e instead of él ‘he’; 417 

Carcola instead of Caracola ‘The Seashell’), deletions of weak syllables (e.g. tuche 418 

instead of estuche ‘case’; pues instead of después ‘after’; mano instead of hermano 419 

‘brother’; jama instead of pijama ‘pyjama’), and simplifications of consonant clusters 420 

(e.g. apoco instead of tampoco ‘neither’; epués instead of después ‘after’; pima instead 421 

of prima ‘cousin’). We also observed frequent sound assimilations (e.g. Canme instead 422 

of Carmen (proper noun)), non-pervasive frontalizations (e.g. da instead of la ‘the’; 423 

dlase instead of clase ‘class’), and many instances of loose articulation. Phonetic 424 

pharaphasia (e.g. felfa* instead of lazo ‘bow’; tunales* instead of naturales ‘natural 425 

sciences’) sometimes resulted in idiosyncratic neologisms. Overall, these expressive 426 

difficulties seriously hindered the intelligibility of the proband’s discourse. The mean 427 

length of utterance in words (MLUw), a common measure of language structural 428 

complexity, was 3.9, which is typically found in children aged between 3 years and 6 429 

months and 3 years and 11 months (Rice et al., 2010). Morphosyntactic errors included 430 

omissions and substitutions of bound morphemes (e.g. viene instead of vienenPL ‘they 431 
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come’; quién es instead of quiénesPL sonPL ‘who are they’; el instead of la ‘theFEM’), and 432 

omissions of different word classes such as prepositions (e.g. veintiséis mayo instead 433 

of veintiséis de mayo ‘May the 26th’; hablar instead of para hablar ‘to talk’), object 434 

pronouns (pongo instead of me pongo ‘I wear’; gusta instead of te gusta ‘do you like’), 435 

articles (a piscina instead of a la piscina ‘to the swimming pool’), and auxiliary verbs 436 

(ía instead of he ido ‘I have gone’). Sporadic inversions of the canonical word order in 437 

Spanish were also attested (i.e. subject-object-verb instead of subject-verb-object). 438 

 439 

In spite of these problems with structural components of language, the proband’s 440 

pragmatic skills (i.e. how language is put into use) were significantly spared. First, she 441 

mastered turn-taking during conversational exchanges (Sacks et al., 1974), including 442 

gaze selection of the interlocutor (even among six participants), or the use of 443 

paralinguistic, non-verbal, and echolalic devices for taking the floor. Second, she 444 

exhibited signals of metapragmatic awareness, as when feeling embarrassed because of 445 

her slow take of the floor during conversational exchanges due to her poor expressive 446 

abilities. Third, she seemed to master Grice’s Cooperative Principle (Grice, 1975), 447 

including the ability to infer implicit meanings resulting from the flouting of Gricean 448 

maxims (Davies, 2007). Accordingly, our proband was able to detect blatant violations 449 

of the maxim of quality (‘assume that an utterance will generally be true’) for humorous 450 

purposes, and to flout the maxim of quantity (‘give the right amount of information 451 

taking into account contextual requirements’) for conveying implicit meanings.  452 

 453 

Cytogenetic and molecular analyses 454 

Routine cytogenetic and molecular analyses of the proband were performed when she 455 

was 8 years old. PCR analysis of the FMR1 fragile site resulted normal. MLPAs of 456 
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selected subtelomeric regions yielded normal results too. Probes for common CNVs 457 

failed to detect genomic signatures of high prevalent syndromes resulting from 458 

microdeletions or microduplications.  459 

 460 

A comparative genomic hybridization array (array-CGH) was then performed. The 461 

array-CGH identified a duplication of 1 Mb in the 1q42.3q43 region (arr[hg19] 462 

1q42.3q43 (235,963,632-236,972,276)x3) (figure 2A). The duplicated region includes 463 

16 genes of which 9 are protein-coding genes (figure 2B). The proband also bears a 464 

second microduplication in chromosome 1 (arr[hg19] 1q21.2 (148,867,551-465 

149,244,468)x3). The duplicated region contains 6 pseudogenes and 2 genes coding for 466 

snRNAs, but no protein-coding genes, and the duplication is predicted as benign.  467 

 468 

Figure 2. Chromosomal alterations found in our proband. A. Screen capture of the 469 

array-CGH of the proband’s chromosome 1 showing the microduplication at 470 

1q42.3q43. B. Screen capture of the UCSC Genome Browser 471 

(https://genome.ucsc.edu/) showing the genes duplicated in the proband.  472 

 473 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted May 29, 2020. ; https://doi.org/10.1101/2020.05.26.117903doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.26.117903


21 
 

Our proband exhibits some of the physical, behavioral, and cognitive features of partial 474 

1q duplications (Table 1). The duplication in 1q42.3q43 was inherited from the 475 

proband’s non-symptomatic father (figure 3A). The man exhibits an average verbal IQ, 476 

with no evidence of impairment in any of the assessed domains (figure 3B). 477 

Additionally, he exhibits a good command of verbal abilities as assessed with the 478 

BAIRES test, around 82nd percentile, but low reading abilities as assessed with the 479 

PROLEC-SE test, below 5th percentile, mostly resulting from poor text understanding 480 

(figure 3C). He doesn’t show any of the other distinctive features of partial 1q 481 

duplications. 482 

 483 
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 484 

Table 1. Summary table with the most relevant clinical features of our proband 485 

compared to other patients with distal 1q duplications (following Hemming et al. 2016 486 

and Morris et al. 2016) 487 

 488 

Clinical Features  

Cognitive/behavioural features 

Intellectual disability X 

Developmental delay X 

Neurological findings 

Seizures  

Physical features 

Microcephaly  

Dysmorphic facial features  

Abnormal face shape/size  

Long and smooth philtrum  

Micrognathia   

Narrow palpebral fissures  

Wide, flat nasal bridge  

Abnormal palate (cleft or high-arched)  

Abnormal ears (low-set or posteriorly rotated, poorly formed helices)  

Abnormal fingers or toes (camptodactyly)  

Preaxial polydactyly X 

Other medical problems 

Heart disease  
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 489 

Figure 3. Chromosomal alterations and linguistic profile of the proband’s father. A. 490 

Screen capture of the array-CGH of the chromosome 1 of the proband’s father showing 491 

the microduplication at 1q42.3q43. B. Developmental profile of the proband’s father 492 

according to the verbal component of the WAIS-III (for comparison, the figure includes 493 

the profile of the healthy, non-carrier mother). C. Reading abilities of the proband’s 494 

father according to the PROLEC-SE test (for comparison, the figure includes the profile 495 

of the healthy, non-carrier mother). 496 

 497 

In order to delve into the molecular causes of the speech and language problems 498 

exhibited by the proband, we conducted several in silico analyses. First, we surveyed 499 

the available literature searching for clinical cases linked or associated to the mutation, 500 

dysfunction, or dysregulation of the genes duplicated in our proband. We found that a 501 

duplication affecting EDARADD has been identified in a patient with autism spectrum 502 
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disorder (ASD) (Prasad et al., 2013). GPR137B has been associated to neurocognitive 503 

improvement of schizophrenic patients after antipsychotics intake (McClay et al., 504 

2011). LYST, which is interrupted by the duplication event, is a candidate for Chediak-505 

Higashi syndrome (OMIM # 214500), a rare autosomal recessive disorder which entails 506 

diverse neurologic problems, including cognitive decline and parkinsonism (Kaplan et 507 

al., 2008; Introne et al., 2017). Finally, two polymorphism of MTR, which is also 508 

interrupted by the duplication event, have been associated with bipolar disorder (BD) 509 

and schizophrenia (SZ) (Kempisty et al., 2007). 510 

 511 

Additionally, we surveyed DECIPHER (https://decipher.sanger.ac.uk/) looking for 512 

similar duplication events in other individuals, but also for duplications smaller than 513 

the region duplicated in the proband, that might help stablish more robust genotype-to-514 

phenotype links regarding her language disabilities. We found that duplications 515 

encompassing HEATR1, ACTN2, and MTR usually entail delayed motor development, 516 

but no language problems (patient 333241). By contrast, duplications encompassing 517 

LGALS8 and affecting EDARADD and HEATR1 normally result in language delay 518 

mostly impacting on the expressive domain (patient 248308) (Figure 4). 519 

 520 
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 521 

Figure 4. DECIPHER patients of interest bearing chromosomal duplications at 522 

1q42.3q43 with similar or smaller sizes than the one found in the proband. The patients’ 523 

phenotype is summarized at the bottom of the figure.  524 

 525 

Finally, we used String 10.5 (www.string-db.org) for uncovering potential functional 526 

links between the genes duplicated in our proband and genes related to language 527 

function, specifically, candidate genes for i) prevalent language disorders 528 

(developmental dyslexia (DD) and specific language impairment (SLI), as listed by 529 

Paracchini et al. 2016, Pettigrew et al. 2016, and Chen et al. 2017); and ii) language 530 

evolution, as discussed by Boeckx and Benítez-Burraco (2014a,b) and Benítez-Burraco 531 

and Boeckx (2015) (many of the genes belonging to this second group are also 532 

candidates for language dysfunction in broader cognitive disorders, particularly, ASD 533 

and SZ, as discussed in detail in Benítez-Burraco and Murphy, 2016, Murphy and 534 
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Benítez-Burraco, 2016 and Murphy and Benítez-Burraco, 2017). The whole set of 535 

genes considered in this analysis is listed in the Supplemental file 3. String 10.5 predicts 536 

physical and functional associations between proteins relying on different sources 537 

(genomic context, high-throughput experiments, conserved coexpression, and text 538 

mining) (Szklarczyk et al. 2015). Several proteins (GRIN2A, GRIN2B, HRAS, 539 

PVALB, and ITGB4) were predicted to be direct interactors of the product of one of 540 

the genes located within the duplicated fragment, namely, ACTN2 (Figure 5). Co-541 

expression data and experimental/biochemical data further pointed out to a functional 542 

link between HEATR1 and NOP9, as well as between LYST and GABARAP. 543 

 544 

 545 
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Figure 5. Interaction network of the proteins encoded by the genes duplicated in the 546 

proband. The network was drawn with String (version 10.5; Szklarczyk et al. 2015) 547 

license-free software (http://string-db.org/), using the molecular action visualization. It 548 

includes the products of the protein-coding genes duplicated in the subject, their 549 

potential interactors according to String, and the products of 15 strong candidates for 550 

language development and/or evolution discussed in the text. Colored nodes symbolize 551 

gene/proteins included in the query (small nodes are for proteins with unknown 3D 552 

structure, while large nodes are for those with known structures). The color of the edges 553 

represents different kind of known protein-protein associations. Green: activation, red: 554 

inhibition, dark blue: binding, light blue: phenotype, dark purple: catalysis, light purple: 555 

post-translational modification, black: reaction, yellow: transcriptional regulation. 556 

Edges ending in an arrow symbolize positive effects, edges ending in a bar symbolize 557 

negative effects, whereas edges ending in a circle symbolize unspecified effects. Grey 558 

edges symbolize predicted links based on literature search (co-mentioned in PubMed 559 

abstracts). Stronger associations between proteins are represented by thicker lines. The 560 

medium confidence value was .0400 (a 40% probability that a predicted link exists 561 

between two enzymes in the same metabolic map in the KEGG database: 562 

http://www.genome.jp/kegg/pathway.html). The diagram only represents the potential 563 

connectivity between the involved proteins, which has to be mapped onto particular 564 

biochemical networks, signaling pathways, cellular properties, aspects of neuronal 565 

function, or cell-types of interest.  566 

 567 

Besides these in silico analyses, we also conducted in vitro analyses. Specifically, we 568 

performed microarray analyses of blood samples from the proband to determine 569 

whether she exhibited altered patterns of gene expression that may account for the 570 
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observed symptoms. We used her healthy parents as a control. The results of the 571 

microarrays are listed in the Supplemental file 4. First, we checked whether the genes 572 

highlighted above were differentially expressed in the proband compared to her 573 

unaffected parents (Figure 6). Genes showing an opposite expression pattern in the 574 

proband and in both healthy parents were of particular interest to us. Among the protein-575 

coding genes located within the duplicated fragment, we found that EDARADD is 576 

downregulated in our proband, whereas LYST is upregulated. Also ACT2 is slightly 577 

upregulated. With regards to the predicted functional partners of the duplicated genes 578 

with a known role in language development, language impairment and/or language 579 

evolution, we found that neither of them was significantly dysregulated in the girl (i.e. 580 

with FC > 2 compared to both healthy parents). Only HRAS and CMIP could be 581 

regarded as slightly upregulated in our subject.  582 

 583 

 584 

Figure 6. Variation in the expression levels of genes of interest in the proband’s blood 585 

compared to her healthy parents (I). The graphic shows the results of the microarray 586 
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analyses for selected genes within the duplicated fragment and for their predicted 587 

functional partners according to String 10.5, as discussed in the text. 588 

 589 

Lastly, we searched for additional candidates for the proband’s language deficits, 590 

looking for genes exhibiting strong fold changes in our subject (i.e. with FC > 5 591 

compared to both healthy parents). We found several strongly downregulated genes 592 

(IL5RA, MYOM2, DDIT4 and SLC29A1), as well as several strongly upregulated genes 593 

(CNTNAP3, WLS, and LGALSL) (Figure 7). 594 

 595 

 596 

Figure 7. Variation in the expression levels of genes of interest in the proband’s blood 597 

compared to her healthy parents (II). The graphic shows the results of the microarray 598 

analyses for genes exhibiting fold changes > 5 compared to both healthy parents. 599 

 600 
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EDARADD is expressed at similar levels in all brain areas, whereas LYST is expressed 601 

at higher levels in the cerebellum, and ACT2 is mostly expressed in the striatum. 602 

Regarding the putative functional partners of the genes located within the duplicated 603 

fragment in our proband, HRAS is more expressed in the striatum, whereas CMIP is 604 

similarly expressed in most brain areas. Finally, with regards to the genes that are 605 

strongly downregulated in our proband, we found that MYOM2 and SLC29A1 are most 606 

expressed in the cortex, whereas DDIT4 is expressed at high levels in the cerebellum 607 

and the thalamus, and IL5RA is preferentially expressed in the hippocampus. No data 608 

were available regarding the three genes that are strongly upregulated in our proband. 609 

Figure 8. Expression pattern in the blood and the brain of genes of interest. These genes 610 

include candidate genes within the duplicated fragment, predicted functional partners, 611 

and genes found strongly down- or upregulated in the proband, as discussed in the text. 612 

Expression levels of the genes were retrieved from the Genotype-Tissue Expression 613 

(GTEx) project (GTEx Consortium, 2013) (https://www.gtexportal.org/home/). 614 

Statistical analysis and data interpretation were performed by The GTEx Consortium 615 

Analysis Working Group using the . Legend: TPM, transcripts per million.  616 

DISCUSSION 617 

Next generation sequencing facilities, and particularly, comparative genomic 618 

hybridization arrays, have increased exponentially the number of genes and 619 

chromosomal regions associated to clinical conditions entailing cognitive and language 620 

deficits. However, in most cases, no robust genotype-to-phenotype links have been 621 

posited. In this paper, we have characterized the cognitive profile of a girl with a 622 

microduplication in 1q42.3q43, with a focus on her problems with language. The girl 623 

exhibits some of the cognitive, behavioral, and physical features commonly found in 624 

people with duplications of the distal 1q (Table 1). She bears one of the smallest 625 
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duplications of this terminal region of chromosome 1 described to date. Around 20% 626 

of DECIPHER patients with a duplication within, overlapping, or encompassing the 627 

region duplicated in our proband (N=35) are reported to suffer from language problems. 628 

Nonetheless, the duplicated fragments usually encompass more genes than in our 629 

proband and/or patients bear other chromosomal rearrangements. Importantly too, 630 

assessment of patients usually involves standardized cognitive tests only. Overall, to 631 

the best of our knowledge, this is the first detailed report on the language disabilities of 632 

a subject bearing only a short distal duplication of the 1 chromosome. For achieving 633 

this, we examined the proband’s language strengths and deficits using a battery of 634 

specific diagnostic tools, but also conducted fine-grained analyses of language use in 635 

natural settings, with a focus on both structural and functional aspects.  636 

 637 

In the expressive domain, the proband’s speech is characterized by generalized 638 

simplification processes (sound assimilation, consonant cluster reduction, weak 639 

syllable deletion), which are typically found in younger children. Because our proband 640 

exhibits a noteworthy motor delay, we hypothesize that she suffers from some form of 641 

dysarthria. Nonetheless, the results of the RFI test point as well to a phonological 642 

impairment, which seemingly contributes to her speech problems. This possibility is 643 

reinforced by the low scores obtained by our proband in the ITPA categories for verbal 644 

auditory comprehension and association, as well as for sequential auditory memory. 645 

These low scores might be pointing to a verbal auditory memory deficit, which is 646 

expected to affect the normal acquisition of phonology and ultimately, explain her 647 

speech problems, including her tendency to reduce syllabic complexity. 648 

 649 
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Regarding word morphology and sentence syntax, both are seriously impaired. The 650 

MLUw in spontaneous speech is within the range of much younger typically-651 

developing children. Problems are also observed in the receptive domain. Accordingly, 652 

her receptive vocabulary is much poorer than expected by age. Since the acquisition of 653 

phonology is the scaffold for the acquisition of other components of language, and since 654 

comprehension usually goes ahead of expressive abilities during development (Owens, 655 

1984), we contend that the proband’s phonological deficit can be indirectly causing 656 

most of her language problems, in both the receptive and the expressive domains. 657 

 658 

This remarkable delay in the acquisition of core structural components of language 659 

dramatically hinders the child from expressing her needs and feelings, and to a lesser 660 

extent, understanding what is happening in her social environment, thus impeding a 661 

successful communication with her family and peers. Overall, we hypothesize that this 662 

severe language impairment would underlie her learning disabilities and her cognitive 663 

deficits. The fact that the proband shows personal living skills that are typical of her 664 

chronological age and that enable her to take care of herself supports this view. 665 

Moreover, contrary to what has been reported in other developmental disorders 666 

resulting in primary intellectual disability, she behaves adequately with strangers, 667 

without exhibiting excessive signs of affection. This might also explain the preservation 668 

of her pragmatic skills, as she shows metapragmatic awareness and follows the rules 669 

governing conversational exchanges, being able to understand and generate 670 

conversational implicatures despite her limited expressive resources. 671 

 672 

Regarding the molecular causes of the attested problems with language, in silico 673 

analyses uncovered several potential candidates for language deficits among the genes 674 
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located within the duplicated fragment, as well as functional links of interest between 675 

some of the genes within the 1q42.3q43 region and robust candidates for language 676 

development and/or evolution. Although we have not found evidence of a strong 677 

dysregulation of any of these genes, microarray analyses suggest that some of them 678 

might be (slightly) up- or downregulated in the blood of our proband. Pretty obviously, 679 

pathological changes in  680 

Among the genes located within the duplicated region, one promising candidate is 681 

EDARADD, which is found significantly downregulated in our proband. This gene 682 

encodes an interactor of EDAR, involved in the development of hair, teeth and other 683 

ectodermal derivatives. Mutations in EDARADD usually result in ectodermal dysplasia 684 

(OMIM# 614940; OMIM# 614941) (Headon et al., 2001; Bal et al., 2007; Cluzeau et 685 

al., 2019). The gene has been recently associated to a biomarker of ageing, namely, 686 

‘epigenetic age acceleration’, which is predictive of morbidity and mortality (Gibson et 687 

al., 2019). It is not known whether the gene plays any significant role at the brain level, 688 

where it is expressed at very low levels.  689 

 690 

A second promising candidate is ACTN2, which is found slightly upregulated in the 691 

proband. This gene encodes a bundling protein that anchors actin to different 692 

intracellular structures and which contributes to regulate spine morphology and the 693 

assembly of the post-synaptic density in neurons (Hodges et al. 2014), as well as the 694 

assembly and function of N-methyl-D-aspartate (NMDA) glutamate receptors, 695 

particularly in the striatum (Dunah et al., 2000; Bouhamdan et al., 2006). ACTN2 is 696 

predicted to interact with robust candidates for language development, language 697 

deficits and/or language evolution, particularly, GRIN2A, GRIN2B, HRAS, PVALB, and 698 

ITGB4. GRIN2A and GRIN2B encode two components of the subunit NR2 of the 699 
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NMDA receptor channel, important for long-term potentiation, and ultimately, for 700 

memory and learning, and both are candidates for SLI, SZ, and ASD (Murphy and 701 

Benítez-Burraco, 2018). Additionally, mutations in GRIN2A give rise to epilepsy-702 

aphasia spectrum disorders, including rolandic epilepsies, Landau-Kleffner syndrome, 703 

and continuous spike and waves during slow-wave sleep syndrome (CSWSS), which 704 

entail speech impairment and language regression (Carvill et al., 2013; Lesca et al., 705 

2013). Speech problems associated to mutations in the gene include imprecise 706 

articulation, alteration of pitch and prosody, and dysarthria or dyspraxia (Turner et al., 707 

2015), which recall many of the speech problems observed in our proband. Likewise, 708 

mutations in GRIN2B have been also found in individuals with cognitive dysfunction 709 

and EEG anomalies (Freunscht et al., 2013; Hu et al., 2016). HRAS encodes a GTPase 710 

important for neural growth and differentiation, long-term potentiation, and synaptic 711 

plasticity; the gene is a candidate for Costello syndrome (OMIM# # 218040,) a 712 

condition entailing developmental delay and mild to moderate intellectual impairment, 713 

with relatively impaired language, particularly in the expressive domain (Axelrad et al., 714 

2011; Schwartz et al. 2013). PVALB encodes parvalbumin, a high affinity calcium ion-715 

binding protein with an important role in brain function. Inhibition of parvalbumin-716 

expressing interneurons results in complex behavioral changes, including altered 717 

sensorimotor gating, reduced fear extinction, and increased novelty-seeking (Brown et 718 

al., 2015). Additionally, the parvalbumin system might represent a convergent 719 

downstream endpoint for some forms of ASD, with reduced paravalbumin-expressing 720 

neurons resulting in shifting the excitation/inhibition balance towards enhanced 721 

inhibition (Filice et al., 2016). Finally, it should be mentioned that inactivating 722 

parvalbumin-positive (Pvalb+) interneurons in the auditory cortex alters normal 723 

response to sounds (specifically, it strengthens forward suppression and alters its 724 
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frequency dependence) (Phillips et al., 2017). This is interesting in view of the auditory 725 

impairment reported in some patients with similar duplications to the one found in our 726 

proband (e.g. DECIPHER patient 279513), but particularly, in view of the verbal 727 

auditory memory deficit exhibited by our proband. Lastly, ITGB4 interacts with FLNA 728 

(Travis et al, 2004), an actin-binding protein involved in actin cytoskeleton remodeling 729 

and neuronal migration (Fox et al., 1998), which in turn binds regarding predictions 730 

based on co-expression data and experimental/biochemical data, the links between 731 

HEATR1 and NOP9, and particularly, between LYST and GABARAP are also worth 732 

considering. NOP9 is a candidate for language impairment (Pettigrew et al., 2016). 733 

LYST, which is found slightly upregulated in our proband, has been associated to 734 

cognitive decline (Kaplan et al., 2008; Introne et al., 2017). Lastly, GABARAP is a 735 

candidate for DD and encodes a GABAA receptor-associated protein, which 736 

contributes to the clustering of neurotransmitter receptors and to inhibitory neural 737 

transmission (Veerappa et al., 2013).  738 

 739 

To finish, it is worth considering the biological roles played by the genes that are found 740 

more strongly dysregulated in the blood of our proband compared to her healthy 741 

parents. Among the genes found strongly downregulated, IL5RA is of interest 742 

considering the psychomotor problems exhibited by the girl. This gene encodes a 743 

subunit of a cytokine receptor and it has been associated to physical activity levels 744 

(Letsinger et al., 2019). More interestingly, DDIT4 encodes a stress-response protein 745 

that functions as negative regulator of mTOR, a kinase that regulates cell growth and 746 

proliferation, and autophagy, as well as synaptic plasticity. Increased DDIT4 levels are 747 

involved in aspects of neuronal damage, whereas knockdown of DDIT4 seems to inhibit 748 

neuronal apoptosis (Su et al., 2019). More specifically, in rats, overexpression of the 749 
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gene in the prefrontal cortex results in anxiety- and depressive-like behaviors and 750 

neuronal atrophy, whereas mutant mice with a deletion of DDIT4 are resilient to the 751 

behavioral and neuronal consequences of chronic stress (Ota et al., 2014). Abnormally 752 

high levels of the gene have been found in the prefrontal cortex of patients with major 753 

depressive disorder (MDD) (Ota et al., 2014). The molecular mechanism underlying 754 

depressant response in the prefrontal cortex also involves CACNA1C. In mice, 755 

knockout of CACNA1C in this brain region results in antidepressant-like behaviors, 756 

whereas overexpression of DDIT4 reverses this effect (Kabier et al., 2017). CACNA1C 757 

is a candidate for multiple neuropsychiatric disorders including SZ, BD, and MDD 758 

(Ferreira et al., 2008; Green et al., 2010; Curtis et al., 2011; Cross-Disorder Group of 759 

the Psychiatric Genomics Consortium, 2013; Kabir et al., 2016). Variants of CACNA1C 760 

have been associated to deficits in reversal learning (Sykes et al., 2019), whereas some 761 

polymorphisms have been associated to decreased semantic verbal fluency in healthy 762 

subjects (Krug et al., 2010), as well as to decreased executive function in people with 763 

BD (Soeiro‐de‐Souza et al., 2013). CACNA1C expression has been found modulated 764 

during associative learning (Sykes et al., 2018). In mice, deletion of CACNA1C in 765 

glutamatergic neurons gives rise to reduced synaptic plasticity, sociability, and 766 

cognition (Dedic et al., 2018). Specifically, haploinsufficiency in the gene results in 767 

deficits in prosocial ultrasonic vocalization (Kisko et al., 2018; Redecker et al., 2019). 768 

In humans, haploinsufficiency in CACNA1C has been related to learning difficulties, 769 

expressive language impairment, and motor-skills delay (Mio et al., 2020). By contrast, 770 

in humans, CACNA1C gain-of-function mutations cause Timothy syndrome (OMIM# 771 

601005), which is featured by syndactyly, autism-like behavior, and language and 772 

social delays among other features (Splawski et al., 2004; Napolitano et al., 2015). 773 

Several of these features have been attested in our proband. Finally, SLC29A1 encodes 774 
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a nucleoside transporter that localizes to the plasma and mitochondrial membranes, and 775 

that is involved in both nucleotide synthesis and cytotoxic nucleoside uptake. The gene 776 

contributes to basal synaptic transmission, long-term potentiation, neuronal plasticity, 777 

and spatial memory (Lee et al., 2018). More specifically, it is involved in glutamatergic 778 

neurotransmission (Xu et al., 2015) and the acquisition of goal-directed behavior (Nam 779 

et al., 2013). In mice, overexpression of the gene results in changes in dependent 780 

behavior, including a greater response to ethanol and a reduced response to caffeine 781 

(Kost et al., 2011).  782 

 783 

Among the genes found strongly upregulated in our proband compared to her healthy 784 

parents, two of them are of particular interest considering her pathological features. 785 

WLS contributes to regulate the secretion of Wnt signaling molecules, which are 786 

involved in different developmental and homeostatic processes (Petko et al., 2019). 787 

Considering the motor problems exhibited by our proband, it is of particular interest 788 

that WLS is specifically involved in the assembly of the neuromuscular junction 789 

between motoneurons and skeletal muscles to control motor behaviour, with mutations 790 

in the gene resulting in muscle weakness and neurotransmission impairment (Shen et 791 

al., 2018). Interestingly too, WLS is also involved in the embryonic development of the 792 

cerebellum (Yeung and Goldowitz, 2017). A second promising candidate is CNTNAP3, 793 

which encodes a type of neurexin involved in cell recognition within the nervous 794 

system. This gene is found upregulated in the leukocytes of patients with SZ (Okita et 795 

al., 2017). The gene is expressed abundantly in many subcortical regions of the mouse 796 

brain, including the striatum, the globus pallidus and the subthalamic nucleus, which 797 

are crucially involved in speech and language processing, but also in many other 798 

cognitive and emotional functions (Booth et al., 2007; Kotz et al., 2009; Viñas-Guasch 799 
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and Wu, 2017). In mice, the knockout of CNTNAP3 results in a delay in motor learning 800 

(Hirata et al., 2016), as well as repetitive behaviors, deficits in social interaction, and 801 

problems for spatial learning, which recapitulate many ASD-features (Tong et al., 802 

2019). Interestingly too, CNTNAP3 interacts with the synaptic adhesion protein 803 

NRLG1, which is also a candidate for ASD and whose mutation results as well in 804 

repetitive behaviors and abnormal corticostriatal synapses (Blundell et al., 2010).  805 

Finally, we wish to highlight that most of the genes reviewed above are highly 806 

expressed in the cerebellum, which is a brain area crucially involved in motor planning, 807 

but also in language processing (Vias and Dick, 2017; Mariën and Borgatti, 2018). 808 

 809 

CONCLUSIONS 810 

In conclusion,  although the exact molecular causes of language problems (and other 811 

cognitive, behavioral and even motor deficits) observed in our proband remain to be 812 

fully elucidated, we hypothesize that her distinctive features can result from the altered 813 

expression of specific genes within the duplicated 1q42.3q43, with a potential impact 814 

on selected functional interactors with a contrasted role in language development and/or 815 

evolution. Nonetheless, some other genes outside the duplicated region, that are found 816 

strongly dysregulated in the proband, can contribute to the attested impairment in the 817 

language domain.  818 

 819 

We hope these findings contribute to a better understanding of the behavioral and 820 

cognitive phenotype resulting from CNVs of the distal region of the long arm of 821 

chromosome 1. A better understanding of the neurobiological foundations of the 822 

symptoms found in patients is needed for implementing more efficient pedagogical 823 

approaches and intervention strategies aimed to ameliorate their deficits and reinforce 824 
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their strengths. This is particularly true of low-prevalent conditions, such as this type 825 

of CNVs, which are generally understudied and for which good management strategies 826 

and intervention tools are not commonly available.  827 

 828 

  829 
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silico analysis with String 10.5. 1319 

 1320 

Supplemental file 4. Data resulting from the microarray analyses comparing gene 1321 

expression levels in the blood of the proband and her healthy parents. 1322 

 1323 

Supplemental file 5. Developmental expression profiles of genes of interest. These 1324 

genes include candidate genes within the duplicated fragment, predicted functional 1325 

partners, and genes found strongly down- or upregulated in the proband, as discussed 1326 

in the paper. The expression data are from the Human Brain Transcriptome Database 1327 

(http://hbatlas.org/). Six different brain regions are considered: the cerebellar cortex 1328 

(CBC), the mediodorsal nucleus of the thalamus (MD), the striatum (STR), the 1329 

amygdala (AMY), the hippocampus (HIP) and 11 areas of neocortex (NCX).  1330 
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