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ABSTRACT 28 
The grapevine trunk diseases (GTDs) Botryosphaeria dieback and esca threaten the 29 
sustainability of the grapevine industry worldwide. This study aimed to evaluate and compare 30 
the efficacy of various liquid (pyraclostrobin + boscalid and thiophanate methyl) and paste 31 
(paste + tebuconazole) formulation fungicide treatments, and biological control agents 32 
(Trichoderma atroviride SC1 and T. atroviride I-1237), for their potential to prevent infection 33 
of grapevine pruning wounds by Diplodia seriata and Phaeomoniella chlamydospora in two 34 
field trials over two growing seasons. Treatments were applied to freshly pruned wounds 35 
following their label dosages recommendations. After 24 hours, wounds were artificially 36 
inoculated with 400 spores of D. seriata or 800 spores of P. chlamydospora. Isolations were 37 
made from the treated pruning wounds after 12 months to evaluate the efficacy of the 38 
treatments. Fungicide formulations were superior to Trichoderma-based treatments for the 39 
control of both pathogens during both growing seasons, with mean percent disease control of 40 
44 to 95% for D. seriata and 46 to 67% for P. chlamydospora. Pyraclostrobin + boscalid was 41 
the most effective treatment. Trichoderma atroviride-based treatments did not reduce infection 42 
by D. seriata or P. chlamydospora compared to the untreated inoculated control in both 43 
vineyards and seasons. This study represents the first vineyard assessment of several chemical 44 
and biological treatments to protect pruning wounds against GTDs fungi in Europe and provides 45 
growers with tangible preventative control practices to minimize yield losses due to GTDs. 46 
 47 
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1. Introduction 49 
Botryosphaeria dieback and esca are two of the most harmful grapevine trunk diseases 50 

(GTDs) affecting vineyards in all major grape-producing areas worldwide. They currently are 51 
among the main biotic threats to the economic sustainability of viticulture reducing yields, 52 
productivity and longevity of vines and vineyards (Gramaje et al., 2018). Yield losses of 30-53 
50% have been reported by Botryosphaeria dieback in highly infected vineyards of North 54 
America (Milholland, 1991). The economic impact of Botryosphaeria dieback along with 55 
another GTD such as Eutypa dieback in California was estimated to be $USD260 million per 56 
year (Siebert, 2001). Esca incidence has reached up to 80% in several vineyards of Southern 57 
Italy (Romanazzi et al., 2009), and 12% of vineyards in France are currently no longer 58 
economically viable, due mainly to esca, with an annual estimated loss of €1 billion (Lorch, 59 
2014). 60 

Botryosphaeria dieback is currently associated with 26 botryosphaeriaceaous taxa in the 61 
genera Botryosphaeria, Diplodia, Dothiorella, Lasiodiplodia, Neofusicoccum, Neoscytalidium, 62 
Phaeobotryosphaeria, and Spencermartinsia (Úrbez-Torres, 2011; Pitt et al., 2013a, 2013b, 63 
2015; Rolshausen et al., 2013; Yang et al., 2017) with the species Diplodia seriata being one 64 
of the most frequently isolated fungi from diseased vines in several grape growing regions such 65 
as Australia (Savocchia et al., 2007), California (Úrbez-Torres et al., 2010), Chile (Auger et al., 66 
2004), China (Yan et al., 2013), France (Larignon et al., 2001), Mexico (Úrbez-Torres et al., 67 
2008), Portugal (Phillips, 2002), South Africa (van Niekerk et al., 2004) and Spain (Luque et 68 
al., 2014). Botryosphaeria dieback frequently shows as complete absence of spring growth from 69 
affected spurs due to necrosis formation in wood vascular tissues with bud-break failure, and 70 
shoot and trunk dieback (Úrbez-Torres, 2011). Wood symptoms are characterized by wedge-71 
shaped perennial cankers and dark streaking in spurs, cordons and trunks vascular tissues 72 
usually beginning in pruning wounds (Úrbez-Torres et al., 2010). 73 

Esca is mainly caused by the fungus Phaeomoniella chlamydospora along with 74 
Phaeoacremonium minimum and other Phaeoacremonium spp. (Gramaje et al., 2015), some 75 
Cadophora spp. (Travadon et al., 2015), and several basidiomycetous taxa belonging to genera 76 
Inocutis, Inonotus, Fomitiporella, Fomitiporia, Phellinus, and Stereum (Cloete et al., 2015). 77 
The most characteristic external symptoms of the chronic esca comprise multiple banding 78 
discolourations on leaves known as ‘tiger-stripe’ pattern (Surico, 2009; Gubler et al., 2015). 79 
Internal wood symptoms involve black spots in the xylem vessels, longitudinal brown to black 80 
vascular streaking, and white to light yellow soft rot that frequently develops in wood of older 81 
vines (Fischer, 2002; Lecomte et al., 2012). Apoplectic esca form is characterized by a sudden 82 
and unexpected wilting of the whole vine or one/several arms or shoots (Lecomte et al., 2012).  83 

Infection of grapevines by GTD fungal pathogens primarily occurs through annual pruning 84 
wounds made during the dormant season (Gramaje et al., 2018). Pycnidia of 85 
Botryosphaeriaceae spp. and P. chlamydospora develop from dead/cankered wood, old pruning 86 
wounds, grapevine canes, crevices, cracks and on the bark of infected grapevines (Úrbez-Torres 87 
and Gubler, 2011; Baloyi et al., 2016), and in the case of P. chlamydospora, mycelium on 88 
infected wood can also be a source of conidia (Edwards and Pascoe, 2001; Edwards et al., 2001; 89 
Baloyi et al., 2016). Fruiting bodies of these fungi can also be found in pruning debris left in 90 
the vineyard, thus becoming a potential inoculum source for new infections (van Niekerk et al. 91 
2010; Úrbez-Torres, 2011; Elena and Luque, 2016b). 92 

Conidia release of Botryosphaeriaceae spp. and P. chlamydospora has been shown to be 93 
primarily correlated with rain events (Larignon and Dubos, 2000; Eskalen and Gubler, 2001; 94 
Kuntzmann et al., 2009; van Niekerk et al., 2010; Úrbez-Torres et al., 2010; Valencia et al., 95 
2015). The dynamics of P. chlamydospora dispersal in Spain were recently described by an 96 
epidemiological equation that integrated the effects of both rain and temperature (González-97 
Domínguez et al., 2020). Conidia of Botryosphaeriaceae spp. has been shown to be primarily 98 
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dispersed by rain splash (Úrbez-Torres et al., 2010), while inoculum of P. chlamydospora is 99 
predominantly aerially dispersed (Larignon and Dubos, 2000; Eskalen and Gubler, 2001; 100 
Gubler et al., 2015; Quaglia et al., 2009). Infection occurs when conidia land on exposed and 101 
susceptible pruning wounds, germinate in xylem vessels and colonize the vine spur, cordon and 102 
trunk (Mostert et al., 2006; Epstein et al., 2008; Gubler et al., 2013; Moyo et al., 2014). 103 

Susceptibility of pruning wounds to GTD pathogens is mainly dependent on the time of 104 
pruning, and the period between pruning and possible infection case. Several studies using 105 
artificial spore inoculations showed that susceptibility of grapevine pruning wounds is high 106 
when fungal infection occurs at the moment of pruning but decreases as the period between 107 
pruning and infection increases up to several weeks or months (Petzold et al., 1981; Munkvold 108 
and Marois, 1995; Eskalen et al., 2007; Serra et al., 2008; Úrbez-Torres and Gubler, 2011), with 109 
seasonal variation reported between grape regions caused primarily by climatic differences 110 
(Gramaje et al., 2018).  111 

Protection of pruning wounds is essential for the management of Botryosphaeria dieback 112 
and esca in grapevine, especially if adopted early in the vineyard lifespan (Kaplan et al., 2016; 113 
Sosnowski and McCarthy, 2017). The efficacy of fungicide wound treatments against 114 
Botryosphaeriaceae spp. and P. chlamydospora has been demonstrated in Australia (Pitt et al., 115 
2012), California (Rolshausen et al., 2010), Chile (Díaz and Latorre, 2013), New Zealand 116 
(Amponsah et al., 2012; Sosnowski and Mundi, 2019) and South Africa (Mutawila et al., 2015). 117 
The use of physical barriers such as paints and pastes formulated with or without fungicides 118 
have also shown to be effective to control infections caused by Botryosphariaceae fungi and P. 119 
chlamydospora (Epstein et al., 2008; Rolshausen et al., 2010; Pitt et al., 2012; Díaz and Latorre, 120 
2013).  121 

The high restrictions that most effective chemical active ingredients are currently facing in 122 
Europe because of environmental and human health risks (Larignon et al., 2008; Spinosi et al., 123 
2009), make indispensable address new alternatives for controlling GTDs. Over the last years, 124 
research on biological control of GTD fungi with antagonistic microorganisms has shown 125 
promising results primarily under controlled conditions (Alfonzo et al., 2009; Mutawila et al., 126 
2011a; Haidar et al., 2016; Rezgui et al., 2016; Álvarez-Pérez et al., 2017; Daraignes et al., 127 
2018; Mondello et al., 2018; Andreolli et al., 2019; Del Frari et al., 2019; Mondello et al., 2019; 128 
Trotel-Aziz et al., 2019; Niem et al., 2020). Field trials with biological control agents (BCAs) 129 
have shown variable results for preventing infection by Botryosphaeriaceae and esca fungi 130 
(Kotze et al., 2011; Mutawila et al., 2011b, 2015, 2016; Mounier et al., 2014; Reis et al., 2017; 131 
Martínez-Diz et al., 2020a).  132 

To our knowledge, no comparative studies to evaluate the efficacy of chemical and BCA 133 
products as pruning wound protectants against GTD fungi have been performed in Europe so 134 
far. Four pruning wound treatments are currently registered in Spain for the control of GTD 135 
fungi: three Trichoderma-based biological products, namely Esquive, Blindar and Vintec, and 136 
Tessior, a liquid polymer containing boscalid and pyraclostrobin (MAPA, 2020). In addition, 137 
thiophanate methyl is registered in Spain against fungal trunk pathogens in almond (MAPA, 138 
2020). The aim of this study was to evaluate and compare the efficacy of various liquid and 139 
paste formulation fungicide treatments, and BCAs, for their potential to prevent infection of 140 
grapevine pruning wounds by D. seriata and P. chlamydospora in field trials. The products 141 
assessed were those registered in Spain for control of fungal trunk pathogens or other diseases 142 
on grapevine and/or other hosts.   143 
 144 
2. Materials and methods 145 
2.1 Location and characteristics of the experimental vineyards 146 
 147 
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The assays were carried out at two commercial vineyards located in O Barco de Valdeorras, 148 
Galicia region (Spain), in 2018 and 2019. The vineyards were planted on 1981 (37-years-old) 149 
and 1989 (29-years-old) with ‘Godello’ cultivar grafted onto 110 Richter rootstock. Vines were 150 
spaced 120 cm from center to center, and with an interrow spacing of 225 cm, trained as bilateral 151 
cordons in a trellis system with a spur-pruning (Royat).  152 

Vineyards were less than 500 m apart and had very similar climates. Standard cultural 153 
practices were used in both vineyards during the growing season, and the management of 154 
powdery and downy mildews was performed using only wettable sulphur and copper 155 
compounds applied at label dosages and following Integrated Pest Management (IPM) 156 
guidelines, respectively, when required. At the beginning of the study (2018), about 8% and 157 
12% of vines had shown GTDs symptoms in each vineyard, respectively. The presence and 158 
evolution of GTDs symptoms have been inspected biannually from 2014 to present in plots of 159 
1,500 vines at both vineyards. GTDs symptoms detected during inspection were associated 160 
mainly with esca such as tiger-pattern foliar necrosis, and shoots, arm and/or cordon death.  161 

Both vineyards were located less than 4 km to an automatic weather station owned by 162 
MeteoGalicia (Weather Service of Galician Regional Government, Xunta de Galicia) and its 163 
climatic data was considered to be representative.  164 
 165 
2.2 Fungal isolates and inoculum preparation 166 
 167 

Diplodia seriata isolate CJL-398 and Phaeomoniella chlamydospora isolate BV-130 were 168 
used. P. chlamydospora BV-130 was selected due to its high virulence on grapevine in previous 169 
assays (Martínez-Diz et al., 2019). This strain was isolated from a 43-year-old esca diseased 170 
vine cultivar ‘Tempranillo’ grafted onto ‘41 Berlandieri’ rootstock in 2015. D. seriata JL-398 171 
was the most virulent isolate among 14 in a detached grapevine cane assay (Elena et al., 2015a). 172 
This strain was isolated from cankers and wood necrosis of grapevine.  173 

Conidial suspensions of each pathogen were used for artificial inoculations in the field and 174 
inoculum was obtained using methods similar to those described by Elena and Luque (2016a). 175 
In the case of D. seriata, a mycelial plug previously plated on Potato Dextrose Agar (PDA, 176 
Conda Laboratories, Spain) at 25°C for 7 days was cultured upside down over the center of a 177 
water agar (WA, Conda Laboratories, Spain) plate. Maritime pine (Pinus pinaster L.) needles 178 
were cut to 1 cm long fragments and then sterilized in an autoclave following the standard 179 
protocol of 121ºC for 20 min. Then, approximately 20 sterile needles fragments were placed on 180 
the WA media surface surrounding the D. seriata mycelial plug at about 1 to 1.5 cm and plates 181 
were incubated under warm white fluorescent and near ultraviolet light for a 12-h photoperiod 182 
regime at 25°C for 4 weeks until pycnidia formation. The day before inoculation, pine needles 183 
fragments (about n=40) with D. seriata pycnidia were placed along with 30 ml of sterile 184 
distilled water (SDW) in a beaker. The solution was kept overnight (about 16 h) at 4°C in 185 
permanent agitation with the aid of a magnetic stirrer to induce conidia release from the 186 
pycnidia and prevent conidia germination. The inoculation day, the resulting solution was 187 
vacuum-filtered through a 60-mm Steriflip filter (Millipore Corporation, Billerica, MA) to get 188 
a cleaner suspension. Then, conidial suspension was adjusted to 2x104 conidia mL-1 using a 189 
hemocytometer (Brand™ Blaubrand™ Neubauer Counting Chamber, Thermo Fisher Scientific 190 
Inc., MA, USA).  191 

Phaeomoniella chlamydospora strain was grown on PDA plates at 25°C for 3 weeks. Same 192 
day of inoculation, conidia were released from cultures by adding 10 ml of SDW and gently 193 
scraping with a sterile stick and the collected suspension adjusted to a concentration of 4x104 194 
conidia mL-1 based on counts from the hemocytometer. Both conidial suspensions were stored 195 
at 4°C until inoculation time to avoid early conidia germination.  196 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 27, 2020. ; https://doi.org/10.1101/2020.05.26.117374doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.26.117374
http://creativecommons.org/licenses/by-nc-nd/4.0/


5 

 

Spore germination was assessed for both fungal trunk pathogens by placing four drops of 197 
the spore suspension on a PDA plate, which was then incubated at 25°C under fluorescent light 198 
for a 12-h photoperiod. After approximately 24 h, a glass cover slip was placed over each drop 199 
area on the PDA. The number of non-germinated spores over a total of 100 in each drop was 200 
counted using an optical microscope (Nikon Eclipse E400) at 100x magnification. The mean 201 
percentage of germinated spores was determined. 202 
 203 
2.3 Pruning wound protection treatments 204 

 205 
Wound protection treatments tested in the present assay are listed in Table 1. We evaluated 206 

the efficacy of two chemical and two BCA formulated products, and also a paste mixed with a 207 
fungicide. In general, the chemical and biological products assessed were those commercially 208 
formulated and currently registered and available in Spain for control of fungal trunk pathogens, 209 
except tebuconazole (Song), which is registered to control botrytis bunch rot (Botrytis cinerea) 210 
and powdery mildew (Erysiphe necator) in grapevine. Applications rates were selected based 211 
on the registered label dosages recommendations. Liquid formulations were prepared by the 212 
suspension of the products in tap water, which is the procedure normally used for spraying 213 
vineyard treatments in Galicia region. Pyraclostrobin + boscalid (Tessior) treatment contains a 214 
liquid polymer and it is already formulated to be directly sprayed to pruning wounds without 215 
any previous mixing. Paste treatment was prepared by mixing a liter of the paste formulation 216 
(Master) with 80 ml of tebuconazole (Song).  217 

Regarding BCA treatments, the conidia viability of both Trichoderma atroviride strains 218 
(SC1 and I-1237) in the commercial products was tested to be at a minimum of 85% before the 219 
assay was set up (Pertot et al., 2016). A serial dilution of the conidia suspension was plated on 220 
PDA and the colony-forming units were counted after 24-48 h incubation at room temperature. 221 

 222 
2.4 Field assay and experimental design 223 
  224 

On 19 February 2018, 1-year-old canes of all vines to be treated were spur-pruned to three 225 
buds using secateurs in both vineyards, coinciding with the common pruning time in this region 226 
of Spain. Wounds treatments were applied by hand until runoff within 2 h after pruning to three 227 
wounds per vine. Liquid formulations were applied using a 500 ml hand-held spray bottle with 228 
a plastic shield on the nozzle to minimise spray drift and the paste formulation were applied 229 
with the aid of a paintbrush. Untreated controls, positive (artificially inoculated, IC) and 230 
negative (non-artificially inoculated, NC) were mock treated with sterile distilled water (SDW).  231 

On the following day, wounds were moistened by spraying with SDW immediately prior to 232 
inoculation with the fungal trunk pathogens and a drop of Tween 20 (Sigma-Aldrich, San Luis, 233 
MO, USA) was added to each conidial suspension as a surfactant to assist spreading the spores 234 
over the pruning wound surface (Sosnowski and Mundi, 2019). Approximately 400 and 800 235 
conidia of D. seriata and P. chlamydospora, respectively, suspended in a drop of 20 µl of SDW 236 
were then applied per wound using a micropipette. All pruning wounds were inoculated with 237 
the pathogen inoculum except NC controls, which were mock inoculated with a drop of 20 µl 238 
of SDW alone instead and being exposed to natural infection. Inoculum drops placed onto the 239 
pruning wounds were left to air dry (from some minutes to 1 h) before being wrapped with 240 
Parafilm M (Pechiney Plastic Packaging, Chicago, IL, USA) to avoid fast dehydration and 241 
favour fungal spores’ penetration into xylem vessels. Due care was taken to avoid the rain for 242 
the entire duration of the trials set up, namely pruning, wound treatments application and 243 
artificial fungal inoculation (2 days). 244 

The experiment was set up as a randomized block design with three replicates of ten plants 245 
(thirty canes) per wound protectant treatment and pathogen in each vineyard. Three replicates 246 
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of ten plants per pathogen were also used for IC in each vineyard. Additionally, three replicates 247 
of ten plants were used as NC in each vineyard. The experiment was repeated the following 248 
season (2019–20), with pruning and wound treatments applied on 12 February 2019, and 249 
artificial fungal inoculations on 13 February 2019.  250 
  251 
2.5 Fungal recovery and identification 252 
 253 

Canes were harvested from vines above the second bud (about 10 cm long pieces) 254 
approximately 12 months after artificial inoculation and stored in a 4ºC cool room prior to 255 
laboratory assessment. Bark was first removed using a sharp knife from each cane. Then, canes 256 
were surface sterilised for 1 min in 33% sodium hypochlorite (commercial 40 g Cl/l) and rinsed 257 
twice for 1 min each in SDW. After air drying on sterile filter paper to remove moisture excess, 258 
each cane was cut into small pieces (about 12 mm2) taken from the margin between discoloured 259 
or dead and live or apparently healthy wood tissue using sterilised secateurs. Five wood 260 
fragments were plated onto each of two plates of Malt Extract Agar (MEA) amended with 0.35 261 
g l−1 of streptomycin sulphate (Sigma-Aldrich, St. Louis, MO, USA) (MEAS) giving a total of 262 
ten wood pieces per cane. Cultures were incubated at 25ºC under warm fluorescent light for a 263 
12-h photoperiod and inspected daily for 15 days. All growing fungal colonies were transferred 264 
to PDA plates and then assessed for the presence or absence fungal mycelial growth resembling 265 
D. seriata, P. chlamydospora or Trichoderma spp. 266 

Identification of GTD fungal cultures was then assessed under a stereoscopic (Olympus 267 
SZX9, Olympus Corporation, Tokyo, Japan) and optical microscopes (Nikon Eclipse E400, 268 
Nikon Corporation, Tokyo, Japan) based on cultural and morphological features previously 269 
described including colony growth pattern, colour, mycelial and other characteristics such as 270 
conidial shape, size and colour (Crous and Gams, 2000; Phillips et al., 2007). Identity of GTD 271 
fungal isolates and Trichoderma spp. was confirmed by molecular methods. Fungal DNA was 272 
extracted from fresh mycelium after 3 weeks of incubation in PDA using the E.Z.N.A. Plant 273 
Miniprep Kit (Omega Bio-Tek, Doraville, GA, USA) following manufacturer’s instructions. D. 274 
seriata was confirmed by sequencing part of the translation elongation factor 1- using the 275 
primer pairs EF1F-EF2R (Jacobs et al., 2004). P. chlamydospora was detected by PCR using 276 
the primers Pch1-Pch2 (Tegli et al., 2000). Identity of Trichoderma spp. was confirmed at 277 
species level by sequencing the ITS region using the universal primers ITS1F/ITS4 (Gardes 278 
and Bruns, 1993). All PCR products were visualized in 1% agarose gels (agarose D-1 Low 279 
EEO, Conda Laboratories) and sequenced in both direction by Eurofins GATC Biotech 280 
(Cologne, Germany).  281 

 282 
2.6 Data analysis 283 

 284 
Efficacy of each wound treatment was calculated as mean percentage recovery (MPR) of 285 

D. seriata and P. chlamydospora from each cane per treatment (Sosnowski et al., 2008, 2013). 286 
Data were checked for normality and homogeneity of variances prior to statistical analyses and 287 
transformed when required into the arcsine of the square root of the proportion (MPR/100)1/2. 288 
The statistical analysis of the experimental results was carried out in a two-way ANOVA with 289 
blocks and treatments as independent variables, and MPR (%) as dependent variable. Mean 290 
percentage disease control (MPDC) was also determined as the reduction in MPR (%) as a 291 
proportion of the artificially inoculated control (IC) (MPDC=100 × [1 – (MPR treatment/MPR 292 
IC)]) (Sosnowski et al., 2008, 2013). Means were compared with ICs by the Student’s t least 293 
significant difference (LSD) at P < 0.05. Data from all experiments were analysed using the 294 
Statistix 10 software (Analytical Software). 295 

 296 
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3. Results 297 
3.1 Wound treatment evaluation against Diplodia seriata 298 

 299 
During 2018-19 and 2019-20 seasons, D. seriata spore germination on PDA was 94% and 300 

98.5%, respectively, and it was recovered from 58 and 68% of IC wounds, respectively (Table 301 
2). D. seriata was recovered from 1% of NCs wounds at both seasons. Analysis of variance 302 
showed that there were significant differences in the relative recovery data from the different 303 
treatments between seasons (P<0.05). No significant differences were found in the recovery 304 
data between vineyards in each season (2018-19, P=0.904; 2019-20, P=0.593), so data from 305 
each vineyard were combined and the analysis was performed separately for each season (Table 306 
2).  307 

Treatment with pyraclostrobin + boscalid, thiophanate methyl, and the paste + tebuconaloze 308 
significantly reduced the MPR of D. seriata from pruning wounds with respect to the IC at both 309 
seasons (P<0.05) (Table 2). During 2018-19 season, pyraclostrobin + boscalid, thiophanate 310 
methyl, and the paste + tebuconaloze provided MPDC of 95, 90 and 76%, respectively, whereas 311 
these products provided MPDC of 69, 54 and 44%, respectively, during 2019-20 season. During 312 
both seasons, there was not a significant treatment effect with Trichoderma-based wound 313 
protectants (P>0.05). During 2018-19 season, T. atroviride SC1 and T. atroviride I-1237 314 
provided MPDC of 10, and 26%, respectively, while these products provided MPDC of 22 and 315 
32%, respectively, during 2019-20 season. 316 

 317 
3.2 Wound treatment evaluation against Phaeomoniella chlamydospora 318 

 319 
During 2018-19 and 2019-20 seasons, P. chlamydospora spore germination on PDA was 320 

89% and 93%, respectively, and it was recovered from 27 and 42% of IC wounds, respectively 321 
(Table 3). P. chlamydospora was recovered from 0% and 3% of NCs wounds during 2018-19 322 
and 2019-20 seasons, respectively. There were no significant differences in the relative 323 
recovery data from the different treatments between vineyards (P=0.500) and seasons 324 
(P=0.080), so data were combined for analysis.  325 

There was a significant treatment effect (P<0.05) with the paste + tebuconaloze and 326 
pyraclostrobin + boscalid treatments reducing MPR of P. chlamydospora to 12 and 18% 327 
compared with 36% from the IC wounds (MPDC of 67 and 51%; Table 3). There was not a 328 
significant treatment effect with thiophanate methyl and Trichoderma-based wound protectants 329 
(P>0.05). Thiophanate methyl provided MPDC of 46%, whereas T. atroviride SC1 and T. 330 
atroviride I-1237 provided MPDC of 0 and 17%, respectively.  331 

 332 
3.3 Trichoderma-based treatments colonization 333 
 334 

The conidia viability was on average of 97% and 95% for T. atroviride SC1 during 2018-335 
19 and 2019-20 seasons, respectively. Regarding T. atroviride I-1237, the conidia viability was 336 
94% during 2018-19 season and 96% during 2019-20 season. Trichoderma spp. were 337 
exclusively recovered from pruning wounds treated with Trichoderma-based formulations at 338 
varying levels. There were no significant differences in the relative recovery data between 339 
vineyards (P=0.180) and seasons (P=0.075). During 2018-19, recovery percentages were 5 and 340 
10% for T. atroviride SC1 and T. atroviride I-1237, respectively. During 2019-20, recovery 341 
percentages were 9% and 14% for T. atroviride SC1 and T. atroviride I-1237, respectively. 342 

 343 
3.4 Weather data 344 
  345 
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During 2018-19 season, the average of the daily mean temperature and relative humidity in 346 
the week from the day of pruning and wound treatments application (from 19 to 25 February 347 
2018) was 6.5°C and 67.5%, respectively, with no rain events in that period. The average of 348 
daily mean temperature, daily mean relative humidity and accumulated rainfall for the whole 349 
month of February 2018 was 5.8°C, 76.6% and 84.2 mm, respectively, with nine rain events 350 
(of >1 mm) in total.  351 

During 2019-20 season, the week from the day of pruning and application of wound 352 
treatments (from 12 to 18 February 2019) registered an average of the daily mean temperature 353 
of 8.2°C and a 71.1% on average of daily relative humidity. For the same period, there was only 354 
one rain event (18 February 2019) with a total rainfall of 10.6 mm. Regarding the whole 355 
February 2019 month, the average of the daily temperature was 8.2°C and of the daily relative 356 
humidity 73.3%. The total rainfall in the same month was 37 mm received in a total of four rain 357 
events.  358 
 359 
4. Discussion 360 

The present study represents the first vineyard comparison of the efficacy of paste and 361 
liquid fungicides, and BCA treatments to protect pruning wounds against GTDs fungi in 362 
Europe. Considering the high incidence of GTDs, particularly esca, and the restrictions on the 363 
use of chemicals in Europe (Mondello et al., 2018), this study provides growers with tangible 364 
preventative control practices to minimize yield losses due to GTDs. By focussing on products 365 
already registered for control of trunk diseases in almond or foliar diseases of grapevines in 366 
Spain, the lower cost of label extension compared to new product registration will increase the 367 
likelihood and success of registration for GTDs. D. seriata was chosen to represent 368 
Botryosphaeria dieback, because it is one the most common cited Botryosphaeriaceae species 369 
occurring on grapevines worldwide and is reported to be a virulent species in Spain (Luque et 370 
al., 2009; Elena et al., 2015b). P. chlamydospora was chosen to represent esca, because it is the 371 
most frequently isolated species from affected vines in most grape growing regions worldwide 372 
(Berstch et al., 2013; Gubler et al., 2015).  373 

Our results demonstrate that paste and liquid fungicide formulations were superior to 374 
Trichoderma-based treatments for the control of D. seriata and P. chlamydospora. All paste 375 
and liquid fungicide treatments tested reduced recovery of both pathogens from inoculated 376 
wounds compared with the untreated inoculated control, with the exception of thiophanate 377 
methyl for P. chlamydospora. Similar results were observed in other studies where several 378 
fungicides and BCA treatments were compared as pruning wound protectants in the same field 379 
trial. In Australian vineyards, liquid and paste fungicide formulations were more effective than 380 
Trichoderma- and Bacillus subtilis-based formulations against D. seriata and Diplodia mutila 381 
(Pitt et al., 2012), and Eutypa lata (Ayres et al., 2017) infections, respectively. Halleen et al. 382 
(2010) also reported that fungicides were more effective than Trichoderma spp. against E. lata 383 
infection in field trials carried out in South Africa, in spite of the efficacy of Trichoderma 384 
treatments in reducing GTD fungal infection.   385 

Application of pyraclostrobin + boscalid to pruning wounds provided high mean 386 
percentage of disease control (MPDC) for both pathogens. To date, only preliminary studies 387 
have been carried out in field trials in Germany (Kühn et al., 2017; Lengyel et al., 2019), Greece 388 
(Kühn et al., 2017; Samaras et al., 2019) and Spain (Kühn et al., 2017), where pyraclostrobin 389 
and boscalid (Tessior) was effective as pruning wound protectant reducing the grapevine wood 390 
infection caused by Diplodia spp. and P. chlamydospora. The application of a similar 391 
commercial product based on pyraclostrobin and boscalid without the liquid polymer 392 
(BASF516, BASF Australia Ltd, Sidney, New South Wales, Australia) showed a low efficacy 393 
against E. lata artificial pruning wound inoculations in Australian vineyards (Sosnowski et al., 394 
2008). Wound applications of pyraclostrobin alone were effective for the control of D. seriata 395 
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and P. chlamydospora in Chile (Díaz and Latorre, 2013) and California (Rolshausen et al., 396 
2010) vineyards. Moreover, this active ingredient significantly reduced infections caused by 397 
fungi associated with Botryosphaeria dieback (Rolshausen et al., 2010), Eutypa dieback 398 
(Sosnowski et al., 2008, 2013; Rolshausen et al., 2010; Ayres et al., 2017), and esca 399 
(Rolshausen et al., 2010), under field conditions. 400 

The only treatment to provide a similar level of control than pyraclostrobin + boscalid for 401 
both pathogens was the paste with tebuconazole. Accordingly, applications of paste and liquid 402 
formulations containing tebuconazole on pruning wounds of ‘Cabernet Sauvignon’ vines 403 
significantly reduced the mean vascular discolouration length and the reisolation percentage of 404 
D. seriata and P. chlamydospora in Chilean vineyards (Díaz and Latorre, 2013). In Australia, 405 
a gel and a paint with tebuconazole applied by paintbrush to freshly pruned canes reduced E. 406 
lata infections to 100% and 94%, respectively (Sosnowski et al., 2013). Pitt et al. (2012) also 407 
demonstrated that a tebuconazole paste formulation provided a 38% control of D. mutila in a 408 
trial performed in Australia. Other physical barriers containing a paste with fungicides have 409 
resulted effective at reducing pruning wound infections by other GTD fungi (Rolshausen and 410 
Gubler, 2005; Sosnowski et al., 2008; Rolshausen et al., 2010; Pitt et al., 2012). Liquid spray 411 
applications of tebuconazole were also significantly effective reducing the recovery of D. 412 
seriata in Australia (Pitt et al., 2012).  413 

Thiophanate methyl was effective in reducing infection by D. seriata, while no significant 414 
effect was observed against P. chlamydospora. Similar findings were reported by Rolshausen 415 
et al. (2010) in California, where pruning wounds applications of thiophanate methyl reached a 416 
disease control of 80% for D. seriata infections but did not perform as well against P. 417 
chlamydospora with only a 52% of disease control. In Chile, Díaz and Latorre (2013) reported 418 
the efficacy of both liquid and paste formulations of thiophanate methyl to control D. seriata 419 
and P. chlamydospora infections in pruning wounds. This chemical compound was also 420 
effective in reducing the pruning wound infections caused by P. chlamydospora and 421 
Neofusicoccum luteum in field trials carried out in South Africa (Mutawila et al., 2015) and 422 
New Zealand (Amponsah et al., 2012), respectively. 423 

Pastes and paints are considered the most reliable protectants of pruning wounds against 424 
GTD fungi, especially when they are mixed with fungicides (Moller et al., 1977; Rolshausen 425 
and Gubler, 2005; Rolshausen et al., 2010; Sosnowski et al., 2008, 2013; Díaz and Latorre, 426 
2013). They provide a physical barrier to protect pruning wounds from GTD fungal infection 427 
while the fungicide can also act on the pathogens if the physical barrier is compromised by rain, 428 
sap flow, or cracking when drying (Sosnowski et al., 2008). However, some other studies 429 
reported no differences in effectiveness between application of acrylic paint with or without 430 
fungicides (Sosnowski et al., 2008; Mayet and Lecomte, 2014). Pastes and paints are usually 431 
applied by hand with a paint brush, unless the product contains a liquid polymer to act as a 432 
physical barrier, which is the case of Tessior commercial product. It should be noted that 433 
application by hand is more time-consuming and can be at least two to four times the application 434 
cost with a tractor mounted sprayer (Sosnowski and McCarthy, 2017). Further research is 435 
therefore required to determine the protective mechanisms of each component and if their 436 
efficacy is also influenced by other factors such as wound size, application time, and weather 437 
variables. 438 

Species of the fungal genus Trichoderma have been the most investigated BCA to act as 439 
pruning wound protectant against GTDs pathogens (John et al., 2005; Halleen et al., 2010; 440 
Kotze et al., 2011; Mutawila et al., 2015, 2016; Reis et al., 2017). Our results shown that 441 
Trichoderma atroviride-based treatments did not reduce infection by D. seriata or P. 442 
chlamydospora compared to the untreated inoculated control in both vineyards and seasons. 443 
This is the first report to assess the efficacy of T. atroviride SC1 in protecting grapevine pruning 444 
wounds from infection by GTD fungi in mature vineyards. In recent research, Berbegal et al. 445 
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(2020) applied T. atroviride SC1 to pruning wounds of 3-year-old vines but its efficacy as 446 
wound protectant against GTD pathogens was not tested in this specific plant part. In nurseries, 447 
Trichoderma atroviride SC1 showed high efficacy to reduce artificial (Pertot et al., 2016) or 448 
natural (Berbegal et al., 2020) P. chlamydospora infection when applied at different 449 
propagation stages. Preliminary results showed the efficacy of T. atroviride I-1237 to reduce 450 
the disease incidence and severity of P. chlamydospora and N. parvum on pruning wounds in 451 
Portuguese vineyards (Reis et al., 2017). Similarly, Mounier et al. (2014) demonstrated that 452 
spraying pruning wounds with T. atroviride I-1237 over two years significantly reduced the 453 
esca, and Botryosphaeria and Eutypa diebacks foliar symptoms expression, and the plant 454 
mortality rate due to GTDs in French vineyards. Dipping young grapevine plants in T. 455 
atroviride I-1237 during the nursery propagation process decreased D. seriata and P. 456 
chlamydospora DNA and necrotic lesion length compared to the untreated plants (Mounier et 457 
al., 2014). Other Trichoderma strains or Trichoderma-based commercial products have shown 458 
high efficacy in reducing the recovery of GTDs fungal pathogens from artificially inoculated 459 
pruning wounds under field conditions (John et al., 2005; Halleen et al., 2010; Kotze et al., 460 
2011; Pitt et al., 2012; Mutawila et al., 2015).  461 

These inconsistences found in the Trichoderma products performance among our study 462 
and previous reports could be due to different reasons. Although Trichoderma spp. have the 463 
ability to provide long-term protection to pruning wounds and thus preventing fungal trunk 464 
pathogens infections, they firstly need to establish itself, grow and colonize wounds instead of 465 
a simply temporal establishment (Munkvold and Marois, 1993; Mutawila et al., 2011a, 2011b). 466 
In this study, pruning wound colonization by both strains of T. atroviride was very low at both 467 
vineyards and seasons ranging from 5 to 14%. Environmental conditions such as the 468 
temperature at the time of application might have a negative influence in the persistence and 469 
implementation of Trichoderma spp. (Elmer and Reglinski, 2006; Pertot et al., 2017). 470 
According to the label recommendations of each product, T. atroviride SC1 formulation should 471 
be applied when environmental temperature is equal or higher than 10ºC for a minimum of five 472 
hours on the day of application in the field, while T. atroviride I-1237 formulation is supposed 473 
to be biologically active at temperatures above 5ºC. The average of the daily mean temperature 474 
experienced in the week of the trials set up was 6.5ºC and 8.2ºC during 2018-19 and 2019-20 475 
seasons, respectively, a fact that could explain the low colonization performed by Trichoderma-476 
based formulations. In addition, a slightly higher Trichoderma recovery was registered during 477 
2019-20 season (9.4 to 13.5%) than 2018-19 (4.8 to 9.8%) probably also explained by the 478 
warmer temperatures registered in this season.  479 

Timing of pruning within the dormant season should be adjusted to periods with mild and 480 
favourable temperature values that might lead to a better implantation and development of the 481 
BCA on pruning wounds and thus increasing its effectiveness against GTD pathogens. 482 
Trichoderma spp. application after pruning in late winter or early spring would likely provide 483 
higher disease control than normal pruning in winter. However, late pruning is not feasible in 484 
all vineyards. In those vineyards with limited labour force, growers need to begin pruning early 485 
in the winter to ensure completion of the activity before bud break. An alternative would be to 486 
prune in late autumn or early winter. Recent research carried out in the same grape-growing 487 
region of the present study reported low abundances of GTDs pathogens infecting naturally 488 
pruning wounds after an early pruning made in November (Martínez-Diz et al., 2020b). The 489 
age and physiological state of the vine as well as the dose and product formulation have also 490 
been suggested as factors that could have an influence on effective colonization by Trichoderma 491 
spp. (Schubert et al., 2008; Halleen et al., 2010; Mutawila et al., 2016). However, further 492 
research is required to confirm these hypotheses. 493 

Label instructions of most fungicide and BCA commercial formulations to protect pruning 494 
wounds recommend their application shortly after pruning to minimize the chances of GTDs 495 
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infection. In our study, we followed the official method of European countries to evaluate 496 
pruning wounds protection products against E. lata, which suggests carrying out fungal 497 
inoculations 24 hours after the application of preventive treatments (EPPO, 2017). Accordingly, 498 
in most of the previous pruning wound protection trials, the time elapsed between pruning 499 
wound protection and GTD fungal inoculation was 24 hours (John et al., 2005; Sosnowski et 500 
al., 2008, 2013; Halleen et al., 2010; Rolshausen et al., 2010; Kotze et al., 2011; Amponsah et 501 
al., 2012; Pitt et al., 2012; Díaz and Latorre, 2013; Ayres et al., 2017; Sosnowski and Mundi, 502 
2019). This short time between BCA treatments application and artificial fungal inoculations 503 
could also have explained the poor performance exhibited by Trichoderma-based commercial 504 
formulations in our study. Previous research reported a greater biocontrol efficacy when 505 
artificial GTD pathogen infection was delayed 7 (Kotze et al., 2011; Mutawila et al., 2015) and 506 
14 (Munkvold and Marois, 1993; John et al., 2005) days after application of Trichoderma spp. 507 
on pruning wounds. These findings suggest BCAs might need a period to colonise the pruning 508 
wound surface and grapevine wood to be effective, as reported by John et al. (2005). 509 

The use of pathogen artificial inoculations is very common in the assessment of the efficacy 510 
of pruning wound protectants against GTDs to guarantee a substantial establishment of 511 
infection in untreated inoculated controls for statistical analysis (Halleen et al., 2010; 512 
Rolshausen et al., 2010; Sosnowski et al., 2008, 2013; Amponsah et al., 2012; Pitt et al., 2012; 513 
Ayres et al., 2017; Sosnowski and Mundi, 2019). In the present study, artificial inoculations 514 
with 400 (D. seriata) and 800 (P. chlamydospora) conidia were applied per wound to obtain 515 
optimal recovery percentages for robust evaluation of treatments according to doses 516 
recommendations made by Elena et al. (2015b). This fact represents a significantly higher 517 
‘disease pressure’ than that which might be expected to occur under natural conditions. Wounds 518 
were infected naturally up to 1% by D. seriata and 3% by P. chlamydospora, in contrast with 519 
the artificially inoculated controls recovery with up to 68% and 42%, respectively. This 520 
indicates that wound protectants that showed lower efficacy rates in this study, such as BCA 521 
formulations, will most likely provide better control of both D. seriata and P. chlamydospora 522 
under ‘natural disease pressure’ in the vineyard. The efficacy of pruning wound protectants 523 
under lower artificial GTD inoculum levels or natural infections in the vineyard should be tested 524 
in future studies. Different affinities of T. atroviride strains for specific grapevine cultivars has 525 
been previously reported in South Africa (Mutawila et al., 2011b), and this should not be 526 
discarded as a possible cause of the low Trichoderma colonization rates obtained in this study.  527 

To conclude, this study highlighted the efficacy of several fungicides with or without a 528 
physical barrier to protect grapevine pruning wounds against D. seriata and P. chlamydospora 529 
infections under field conditions. In particular pyraclostrobin + boscalid (Tessior), a registered 530 
product against GTD fungi in several countries in Europe, is recommended as pruning wound 531 
protectant to prevent infection by the most prevalent pathogens associated with Botryosphaeria 532 
dieback and esca. Trichoderma-based treatments showed lower efficacy against GTD fungi 533 
than that provided by fungicides and their performance seems to be related to environmental 534 
conditions and wound colonisation prior to infection by the pathogens. Good pruning practices 535 
along with strict sanitation procedures and pruning wound protection by the application of 536 
authorized products can significantly reduce the impact of GTD pathogens infections and thus 537 
increasing the lifespan of vineyards.  538 
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Table 1. Pruning wound treatments evaluated for control of Diplodia seriata and Phaeomoniella chlamydospora under field conditions. 
 

 
a According to Fungicide Resistance Action Committee (FRAC) Code List© (2020): Fungal control agents sorted by cross resistance pattern and mode of action 
(https://www.frac.info/docs/default-source/publications/frac-code-list/frac-code-list-2020-final.pdf?sfvrsn=8301499a_2)  
b MBC, Methyl Benzimidazole Carbamates 
c QoI, Quinone outside Inhibitors 
d SDHI, Succinate-dehydrogenase Inhibitors 
e DMI, Demethylation Inhibitors 
f BCA, Biological Control Agent 
* n/a, not applicable 
 
 
 
 
 
 
 
 

Trade name Nature Chemical/Biological groupa Active ingredient Application rate  Supplier 

Enovit Metil Chemical MBCb / Thiophanates Thiophanate methyl 70%  1 g L-1 Sipcam Inagra S.L. 

Tessior Chemical 
QoIc / methoxy-carbamates + 

SDHId / pyridine-
carboxamides 

Pyraclostrobin 0.5% + boscalid 
1% n/a* BASF Española S.L.U. 

Master + Song Paste + 
chemical DMIe / Triazoles 

Paste (resin 55% + vegetal oil 
and healing substances 45%) + 

tebuconazole 25%  
n/a Sipcam Jardin S.L.+ 

Sipcam Iberia S.L. 

Vintec BCAf Microbial (fungi) Trichoderma atroviride SC1  
(2 x 1010 CFU g-1) 2 g L-1 Belchim Crop 

Protection España S.A. 

Esquive BCA Microbial (fungi) T. atroviride I-1237  
(1 x 108 CFU g-1) 100 g L-1 Idai Nature S.L. 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 27, 2020. ; https://doi.org/10.1101/2020.05.26.117374doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.26.117374
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
 
 
 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 27, 2020. ; https://doi.org/10.1101/2020.05.26.117374doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.26.117374
http://creativecommons.org/licenses/by-nc-nd/4.0/


Table 2. Efficacy of wound treatments when applied 24 h before inoculation with Diplodia 
seriata in two growing seasons. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a Efficacy was based on the mean percent recovery (MPR) of Diplodia seriata from the treated canes by traditional 
isolation. 
b Mean percent disease control (MPDC) of treatments was calculated as the reduction in MPR as a proportion of the 
inoculated control. 
 
 
 
 
 
 
 
 

  Growing season 
   2018/2019  2019/2020 

Trade name Active ingredient MPRa MPDCb  MPR MPDC 
 Inoculated control (IC) 58 a -  68 a - 

Vintec T. atroviride SC1 52 a 10  53 ab 22 

Esquive T. atroviride I-1237 43 a 26  46 ab 32 

Master + Song 
Paste (resin 55% + vegetal oil and 
healing substances 45%) + 
tebuconazole 25% 

14 b 76  38 bc 44 

Enovit Metil Thiophanate methyl 70 % 6 b 90  31 bc 54 

Tessior Pyraclostrobin 0.5% + boscalid 1% 3 b 95  21 c 69 
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Table 3. Efficacy of wound treatments when applied 24 h before inoculation with 
Phaeomoniella chlamydospora.  
 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a Efficacy was based on the mean percent recovery (MPR) of Phaeomoniella chlamydospora from the treated 
canes by traditional isolation. 
b Mean percent disease control (MPDC) of treatments was calculated as the reduction in MPR as a proportion 
of the inoculated control. 
 
 

Trade name Active ingredient MPRa MPDCb 

 Inoculated control (IC) 36 ab - 

Vintec T. atroviride SC1 45 a 0 

Esquive T. atroviride I-1237 30 ab 17 

Enovit Metil Thiophanate methyl 70% 19 bc 46 

Tessior Pyraclostrobin 0.5% + boscalid 1% 18 c 51 

Master + Song Paste (resin 55% + vegetal oil and healing 
substances 45%) + tebuconazole 25% 12 c 67 
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