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ABSTRACT

Quantifying movement is critical for understanding animal behavior. Advances in computer vision
now enable markerless tracking from 2D video, but most animals live and move in 3D. Here, we
introduce Anipose, a Python toolkit for robust markerless 3D pose estimation. Anipose consists
of four components: (1) a 3D calibration module, (2) filters to resolve 2D tracking errors, (3) a
triangulation module that integrates temporal and spatial constraints, and (4) a pipeline to structure
processing of large numbers of videos. We evaluate Anipose on four datasets: a moving calibration
board, fruit flies walking on a treadmill, mice reaching for a pellet, and humans performing various
actions. Because Anipose is built on popular 2D tracking methods (e.g., DeepLabCut), users can
expand their existing experimental setups to incorporate robust 3D tracking. We hope this open-
source software and accompanying tutorials (anipose.org) will facilitate the analysis of 3D animal
behavior and the biology that underlies it.
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1 Introduction

Tracking body kinematics is a key challenge faced by
many scientific disciplines. For example, neuroscientists
quantify animal movement to relate it to brain dynam-
ics [1, 2], biomechanists quantify the movement of spe-
cific body structures to understand their mechanical prop-
erties [3], social scientists quantify the motion of multi-
ple individuals to understand their interactions [4, 5], and
rehabilitation scientists quantify body movement to diag-
nose and treat disorders [6, 7, 8]. In all of these disciplines,
achieving rapid and accurate quantification of animal pose
is a major bottleneck to scientific progress.

While it is possible for human observers to recognize
certain body movements, scoring behaviors by eye is la-
borious and often fails to detect differences in the rapid,
fine-scale movements that characterize many behaviors.
Methods for automated tracking of body kinematics from
video have existed for many years, but they typically rely
on the addition of markers to aid with body part identifi-
cation. However, the use of markers is often impractical,
particularly when studying natural behaviors in complex
environments or when tracking multiple small parts on an
animal. Thus, there is a great need for methods that enable
automated, markerless tracking of body kinematics.

Recent advances in computer vision and machine
learning have dramatically improved the speed and ac-
curacy of markerless tracking and body pose estimation.
There are now a number of tools that apply these meth-
ods to track animal movement from 2D videos [9, 10, 11,
12, 13, 14]. These software packages allow users to la-
bel data, train convolutional neural networks, apply them
to new data, and filter the output. Their application, par-
ticularly within the field of behavioral neuroscience, has
already made an important impact [1, 15, 16].

While tracking of animal movement from 2D video is
useful for monitoring specific body parts, full body pose
estimation and measurement of complex or subtle behav-
iors require tracking in three dimensions. 3D tracking
presents a number of new challenges. First, the addition
of multiple cameras necessitates robust calibration and ge-
ometric triangulation across different views. Second, not
all body parts are equally visible from each camera, so
new strategies are required to effectively integrate the 2D
detected points in time and space. Third, having more
than one camera increases the complexity and scale of
video acquisition and processing, motivating the develop-
ment of a scalable data-processing pipeline.

To address these challenges, we introduce Anipose (a
portmanteau of “animal” and “pose”), a new toolkit to
quantify body kinematics in three-dimensions accurately
and at scale. Anipose consists of a robust calibration mod-
ule, filters to further refine 2D tracking, and a novel tri-
angulation procedure to obtain high-quality 3D position
estimates by leveraging flexible constraints in time and
in space. Anipose uses a specific folder structure to fa-
cilitate automated processing of large numbers of video
files, such as would be collected in a typical behavioral
experiment. For users who prefer to maintain their own

data processing pipelines, we also provide the functions
for calibration and triangulation under aniposelib.

Here, we evaluate the performance of Anipose
on ground-truth measurements from four experimental
datasets acquired in different labs and with different ex-
perimental setups (Figure 1). First, to quantify the cal-
ibration and triangulation errors against known physical
lengths and angles, we track a precision manufactured
ChArUco calibration board filmed from 6 cameras. We
then demonstrate that triangulation from multiple camera
views enables 3D tracking of the mouse hand during a
reaching task filmed with 2 cameras, tethered fruit flies
on a spherical treadmill filmed with 6 cameras, and freely
moving humans filmed with 4 cameras. Finally, we ex-
amine how filtering improves 3D pose estimation for two
of these datasets: tethered fruit flies and freely moving
humans. We evaluate Anipose using 2D tracking with
DeepLabCut [17] and provide guidance on how current
DeepLabCut users can adapt their existing experimental
setups for 3D pose estimation.

The release of Anipose as free and open-source soft-
ware facilitates ease of adoption, promotes ongoing con-
tributions by community developers, and supports open
science.

2 Results
We implement 3D tracking in a series of steps: estimation
of calibration parameters from calibration videos, detec-
tion and refinement of 2D joint keypoints, triangulation
and refinement of keypoints to obtain 3D joint positions,
and computation of joint angles (Figure 2). In addition
to the processing pipeline, the key innovations of Anipose
are a robust 3D calibration module and spatiotemporal fil-
ters that refine pose estimation in both 2D and 3D. We
evaluated the calibration and triangulation modules with-
out filters by testing their ability to accurately estimate
lengths and angles of a calibration board with known di-
mensions (Figure 1A) and to track the hand of a mouse
reaching for a food pellet (Figure 1B) We then evaluate
the contributions of 2D and 3D filters to accurate track-
ing of walking flies (Figure 1C) and humans (Figure 1D).
Representative examples of tracking from each dataset are
shown in Video 1. Tutorials and further documentation for
Anipose are available at http://anipose.org .

2.1 Robust calibration of multiple camera views
An essential step in accurate 3D pose estimation is cam-
era calibration, which precisely determines the relative
location and parameters of each camera (i.e., the fo-
cal length and distortions). We implemented an auto-
mated procedure that calibrates the cameras from simul-
taneously acquired videos of a standard calibration board
(e.g., checkerboard or ChArUco board) moved by hand
through the cameras’ field of view. We recommend the
ChArUco board because its keypoints may be detected
even with partial occlusion and its rotation can be de-
termined uniquely from its pattern from multiple views.
The pipeline starts by detecting keypoints on the calibra-
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Figure 1: Four experimental datasets were used for evaluating 3D calibration and tracking with Anipose. (A) To
evaluate tracking errors, a 2×2mm precision manufactured ChArUco board was simultaneously filmed from 6 cameras
focused on the same point in space. We manually annotated and tracked 9 keypoints on the ChArUco board, a subset
of the points that can be detected automatically with OpenCV. (B) Adult mice were trained to reach for food pellets
through an opening in a clear acrylic box. After training, reach attempts were captured from 2 cameras. To quantify
reach kinematics, we labeled and tracked 3 keypoints on each hand. (C) Fruit flies were tethered and positioned on
a spherical treadmill, where they were able to walk, groom, etc. Fly behavior was filmed from 6 cameras evenly
distributed around the treadmill. We labeled and tracked 5 keypoints on each of the 6 legs, one keypoint for each of
the major leg joints. (D) As part of the Human 3.6M dataset, professional actors performing a range of actions were
filmed from 4 cameras. We tracked 17 joints on each human, covering the major joints of the human body.
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Figure 2: Overview of the Anipose 3D tracking pipeline. (A) The user collects simultaneous video of a calibration
board from multiple cameras. (B) Calibration board keypoints are detected from calibration videos and processed to
calculate intrinsic and extrinsic parameters for each camera using iterative bundle adjustment (Figure 3). (C) With
the same hardware setup as in A, the user collects behavior videos. (D) Behavior videos are processed by a neural
network (e.g., DeepLabCut) to detect 2D keypoints. (E) 2D keypoints are refined with 2D filters to obtain refined 2D
detections (Figure 6). (F) The filtered 2D keypoints are triangulated to estimate 3D poses. (G) The estimated 3D poses
are passed through an additional spatiotemporal filtering step to obtain refined 3D poses (Figure 7). (H) Joint angles
are extracted from the refined 3D poses for further analysis.
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tion board automatically using OpenCV [18] based on the
board’s geometric regularities (e.g., checkerboard grid pat-
tern, specific black and white markers).

To obtain accurate camera calibrations, we devel-
oped an iterative procedure that performs bundle adjust-
ment [19] in multiple stages, using only a random sub-
sample of detected keypoints points in each stage (see
Methods for a full description). This iterative calibration
procedure minimizes the impact of erroneous keypoint de-
tections, which would otherwise have to be manually cor-
rected. We compared our method against other common
calibration procedures on calibration videos from the fly
dataset (Figure 3). We evaluate each calibration procedure
by computing the reprojection error, a standard metric to
quantify how closely the 2D projections of a triangulated
3D point matches its corresponding 2D keypoints in ev-
ery camera view [19]. Our method produced significantly
more accurate calibration than standard calibration meth-
ods, as measured by a substantial reduction in reprojection
error (paired t-test relative to bundle adjustment with lin-
ear loss: t=-14.9, p < 0.001).

0 10 20 30 40 50 60
Reprojection error (pixels)

0

1

C
D

F

Initial estimate

Bundle adjustment with linear loss

Bundle adjustment with Huber loss
Bundle adjustment with soft L1 loss

Iterative bundle adjustment (ours)

Figure 3: Iterative bundle adjustment calibration on cali-
bration videos from the fly dataset produces more reliable
calibration estimates than other calibration procedures, as
measured by a substantial reduction in reprojection error.

2.2 Accurate reconstruction of physical lengths and
angles in 3D

An important test of any calibration method is whether it
can accurately reconstruct an object with known dimen-
sions. We evaluated the Anipose calibration and trian-
gulation toolkit by asking whether it could estimate the
lengths and angles of a precisely manufactured ChArUco
board [20], whose physical dimensions have a tolerance
of < 2 µm.

As our ground-truth dataset, we chose the known phys-
ical lengths and angles between all pairs of 9 corners on
the ChArUco board. These 9 corners were used as key-
points (Figure 4A) to compare the accuracy of manual an-
notation, neural network detections, and OpenCV detec-
tions (example detections in Figure 4B). Although manual
annotations are typically assumed to be the ground truth in
tracking animal kinematics, we started by assessing the re-
liability of manual annotations relative to high-precision,
sub-pixel resolution keypoint detection based on the ge-
ometry of the ChArUco board with OpenCV [18, 20]. Rel-
ative to the OpenCV points, the manual keypoint annota-

tions had a mean error of (0.52, -0.75) pixels and standard
deviation of (2.57, 2.39) pixels, in the (x, y) directions re-
spectively (Figure 4C). These observations provide a use-
ful baseline of manual annotation accuracy.

We evaluated the accuracy of reconstructing lengths
and angles as estimated by three methods: manual key-
point annotations, OpenCV keypoint detections, and neu-
ral network keypoint detections (see Methods for detailed
descriptions). As expected, OpenCV detections had the
lowest error in length and angle, as they leveraged prior
knowledge of the ChArUco board geometry to make high-
precision corner estimates (Figure 4D). Surprisingly, neu-
ral network (trained with DeepLabCut) predictions had a
lower error than manual annotations, despite the network
itself being trained on manual annotations. More than
90% of poses estimated by Anipose had an error of less
than 20 µm in length and 1 degree in angle, relative to
the true dimensions of the ChArUco board (Figure 4D).
These results demonstrate the efficacy of camera calibra-
tion with Anipose and serve as useful guides of expected
performance.

2.3 Animal tracking in 3D

We proceeded to evaluate triangulation of markerless
tracking on three different animal datasets (Figure 5). For
each dataset, we computed the error of estimated joint po-
sitions and angles on labeled animals withheld from the
training data. The error in estimated angle was <16◦ in
over 90% of frames, and <10◦ in over 75% of frames. Fur-
thermore, the error in the estimated joint position was <18
pixels (about 1.6mm, 0.14mm, 86mm for mouse, fly, and
human datasets respectively) in over 90% of frames and
<12 pixels (about 1mm, 0.09mm, 57mm for mouse, fly,
and human datasets respectively) in over 75% of frames.
Importantly, the position error in units of camera pixels
is roughly comparable across these three datasets, span-
ning over 3 orders-of-magnitude in spatial scale. There-
fore, we believe these errors are representative of what
can currently be expected for accuracy of 3D markerless
tracking.

Although triangulation usually resulted in accurate es-
timates of joint positions and angles, there were still some
frames where it failed due to missing keypoint detections
(as in Figure 5A). In other cases, incorrect keypoint de-
tections led to erroneous 3D joint position estimates (as
in Figure 5B). Even though these issues occurred in a
small minority of frames, tracking errors are especially
problematic for analyzing movement trajectories. For in-
stance, missing estimates complicate the estimation of
derivatives, whereas erroneous estimates bias the distribu-
tion of summary statistics. To prevent these issues, we
leveraged complementary temporal and spatial informa-
tion within each dataset to further refine tracking perfor-
mance in 3D.

We did not observe the filtering to improve tracking
significantly in the mouse dataset. This may be because
the dataset has only 2 cameras or too few keypoints la-
beled in each frame.
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Figure 4: Anipose reliably estimates edge lengths and
angles of a precision manufactured ChArUco calibration
board. (A) We identified 9 corners as keypoints on the
ChArUco board in 200 frames from each of 6 cameras.
(B) For comparison, we used manual annotation of the
same ChArUco board dataset to train a neural network.
We then compared tracking errors of the manual annota-
tions, the neural network, and OpenCV. (C) Error in manu-
ally annotated keypoints relative to the sub-pixel precision
of OpenCV detections. Manually annotated keypoints had
a mean error of (0.52, -0.75) pixels and standard devia-
tion of (2.57, 2.39) pixels. (D) Lengths between all possi-
ble pairs of keypoints were computed and compared to
the physical lengths. Similarly, all possible angles be-
tween triplets of keypoints were computed and compared
to known physical angles. OpenCV keypoints provided
the most reliable estimates, followed by neural network
predictions, then manual annotations. Note that OpenCV
generally detected only a small fraction of the keypoints
detected by the neural network or through manual annota-
tion (Figure 10).

2.4 Anipose filters for robust animal tracking
Naturally behaving animals present unique challenges for
3D pose estimation. Animals can contort their bodies into
many different configurations, which means that each be-
havioral session may include unique poses that have not
been previously encountered, even across multiple ani-
mals. These issues are exacerbated by manual annotations
used for training neural networks, which are already noisy
(Figure 4C). Our approach to resolving these limitations
is to leverage prior knowledge that animal movements are
usually smooth and continuous, and that rigid limbs do
not change in length over short timescales. In particu-
lar, we developed and implemented a set of 2D and 3D
filters that refine keypoints, remove errors in keypoint de-
tections, and constrain the set of reconstructed kinematic
trajectories. We demonstrate that both sets of filters work
together to significantly improve pose estimation in flies
and humans.

2.4.1 Refining keypoints in 2D
We implemented three distinct algorithms to remove or
correct errors in keypoint detection: a median filter, a
Viterbi filter, and an autoencoder filter. The median and
Viterbi filters operate on each tracked joint across frames,
and the autoencoder filter then further refines keypoints
using learned correlates among all joints. The median
filter removes any point that deviates from a median fil-
tered trajectory of user-specified length, then interpolates
the missing data. The Viterbi filter finds the most likely
path of keypoint detections for each joint across frames
from a set of top (e.g., 20) detections per frame, given
the expected standard deviation of joint movement in pix-
els as a prior. Finally, the autoencoder filter corrects the
estimated score of each joint based on the scores of the
other joints, with no parameters set by the user. Where
errors in tracking cannot be corrected by filtering, the key-
point is removed altogether, since the missing joint can
be inferred from other camera angles, but an erroneous
keypoint can produce large discrepancies in triangulation.
We found that the parameters for each filter may be set
to reasonable defaults that work across a range of differ-
ent datasets. Thus, the figures we present are all produced
with these default parameters.

The addition of each filtering step noticeably im-
proved the tracking of one example fly leg joint (Fig-
ure 6A). The median and Viterbi filters both reduced spu-
rious jumps in keypoint position, which may occur if the
neural network detects a similar keypoint on a different
limb or at another location in the frame. The Viterbi filter
is able to remove small erroneous jumps in detected key-
point trajectories while also preserving high frequency dy-
namics, whereas the median filter may mistakenly identify
fast movements as an error and remove them.

For each of the 2D filters, we quantified the perfor-
mance improvement in estimating the joint position and
angle on manually annotated validation datasets. The
2D median filter significantly reduced error in joint po-
sition and angle estimation on the human dataset (t =
−14.8, p < 0.001 for position , t = −7.7, p < 0.001)
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Figure 5: Anipose can consistently estimate positions and angles of joints across three different datasets, although
there are outlier or missing keypoint detections prior to filters. In each dataset, the position error is below 12 pixels
for 75% of the frames, and below 18 pixels for 90% of the frames. (A) On the left, we plotted an example trace of
the tracked 3D position of the base of the mouse hand, projected onto the direction of the reach. On the right, we
quantified the distribution of errors when estimating all joint positions and angles, relative to manual annotations. For
the mouse dataset, 1 pixel corresponds to approximately 0.09 mm. (B) Same layout as in (A). Here, we plotted an
example trace of the tracked 3D position of the fly hind-leg tibia-tarsus joint, projected onto the longitudinal axis of
the fruit fly. For the fly dataset, 1 pixel ≈.0075 mm. (C) Same layout as in (A). Here, we plotted an example trace
of the tracked 3D position of a human wrist, projected onto an arbitrary axis. Note that the human (and his wrist) is
moving throughout the room. For the human dataset, 1 pixel ≈4.8 mm.

but not on the fly dataset (t = −1.2, p = 0.2 for posi-
tion, t = −0.98, p = 0.3). The Viterbi filter reduced error
on both fly and human datasets (t = −4.4 and t = −4.1
for fly position and angle, t = −10.9 and t = −8.7 for
human position, with p < 0.001 for all). The autoen-
coder filter also reduced error in joint positions and an-
gles on the fly dataset (t = −5.4, p < 0.001 for positions,
t = −2.16, p = 0.03 for angles). We did not apply the
autoencoder filter to human tracking, since all occluded
points are annotated in the training dataset. In summary,
we found the addition of these three filters improved the
ability of Anipose to accurately estimate 2D joint posi-
tions and angles.

2.4.2 Refining poses and trajectories in 3D
To further refine joint position and angle estimates in 3D,
we developed a novel triangulation optimization that takes
advantage of the spatiotemporal structure of animal pose
and behavior. Specifically, we constrain the estimated
pose to be smooth in time (temporal constraints) and for
certain limbs to have constant length (spatial constraints).
The relative strengths of these constraints may be bal-
anced and tuned independently. As with the 2D filters, we
found empirically that we can specify default strengths
to work across a variety of datasets. A full description
of each filter, along with all the parameters, is detailed
in the Methods. For illustration, we compared the per-
formance of these filters (Figure 7A) to other commonly

used methods from the literature (Random sample consen-
sus, or RANSAC, triangulation and 3D median filter) on
the walking fly dataset. Spatiotemporal constraints sub-
stantially improved pose estimation, even after applying
2D filters, and provided a more stable estimate of limb
length (Figure 7B).

For each of the 3D filters, we evaluated the improve-
ment in position and angle error relative to tracking
with 2D filters alone (Figure 7C and D). We found that
RANSAC triangulation did not improve position and an-
gle error. The 3D median filter significantly reduced posi-
tion and angle errors relative to only 2D filters for the hu-
man dataset (t = −11.8 for position, t = −7.3 for angle,
p < 0.001 for both), but not for the fly dataset. Spatiotem-
poral constraints applied together provided the largest re-
duction in tracking error (t = −18.7 and t = −6.1 for
human positions and angles, t = −10.8 and t = 5.8
for fly positions and angles, p < 0.001 for all). Over-
all, we find that the 3D filters implemented in Anipose
significantly improve pose estimation compared to other
methods. These improvements are also obvious in exam-
ple videos of reconstructed pose before and after filtering
(Video 2).

2.5 Structured processing of videos
Animal behavior experiments are often high-throughput,
meaning that large numbers of videos are recorded over
many repeated sessions of different experimental condi-
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mm. (C) Comparison of angle estimates before and after filtering. The mean difference is plotted as in B. Viterbi and
autoencoder filters significantly improved the estimation of angles in flies and humans (p < 0.001). The results in (B)
and (C) are evaluated on a validation dataset withheld from the training (1200 frames for the fly, 8608 frames for the
humans).

tions. To make the process of 3D tracking scalable to
large datasets, we designed a specific file structure (Fig-
ure 9) to organize and process behavior videos, configu-
ration files, and calibration data. This file structure also
facilitates scalable analysis of body kinematics across in-
dividual animals and experimental conditions. For exam-
ple, the command “anipose analyze” detects keypoints for
each video in the project folder, and “anipose calibrate”
obtains calibration parameters for all the cameras in all
calibration folders. Each command operates on all videos
in the project, circumventing the need to process each
video individually. In addition, this design allows the user
to easily re-analyze the same dataset using different filter-
ing parameters or with different 2D tracking libraries. For
the users that prefer to set up their own pipelines, we also

package the calibration, triangulation, and filtering func-
tions in the aniposelib library.

3 Discussion
In this paper, we introduce Anipose, a new open-source
Python toolkit to accurately track animal movement in
3D. Anipose is designed to augment existing neural
network-based methods for 2D markerless tracking, such
as DeepLabCut [9]. Because 3D tracking presents new
challenges, the key contributions of Anipose are sub-
stantial improvements in optimization for robust calibra-
tion, triangulation, and filtering. We validated each new
method and the full pipeline against ground truth data
from four different experimental datasets and three organ-
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Figure 7: Spatiotemporal filters further improve 3D pose estimation. (A) An example trace of the tracked 3D position
of the fly tibia-tarsus joint, before and after filtering. To plot a single illustrative position value, the 3D x-y-z coordinate
is projected onto the longitudinal axis of the fly. Also included are comparisons with standard 3D filtering algorithms
RANSAC and a 3D median filter. Filtering leads to reduction of sudden jumps and keypoint jitters, even compared to
2D filters alone. (B) Estimation of tibia length over time, before and after filtering. Adding spatial constraints leads
to a more stable estimate of the tibia length across frames. (C) Comparison of error in joint position before and after
filtering. The mean difference in error for the same tracked points is plotted, along with the 95% confidence interval.
Spatiotemporal constraints improve the estimation of joint position significantly above 2D filters in both datasets (p <
0.001, paired t-test). The 3D median filter improves pose estimation on the human dataset (p < 0.001) but not on the
fly dataset. RANSAC triangulation does not improve pose estimation for either dataset. For the fly dataset, 1 pixel
corresponds to 0.0075 mm. For the human dataset, 1 pixel corresponds to 4.8 mm. (D) Comparison of angle estimates
before and after filtering. The mean difference and confidence intervals are plotted as in C. Spatial and temporal
constraints improve angle estimation above 2D filters on both datasets (p < 0.001, paired t-test). The 3D median filter
improves angle estimation on the human dataset (p < 0.001) but not on the fly dataset (p > 0.8). RANSAC triangulation
does not improve angle estimation for either dataset.
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isms, and we achieve accurate reconstruction of 3D joint
positions and angles. Individual aniposelib functions can
be used for testing on small datasets, and the full Anipose
pipeline is designed to streamline structured processing of
videos recorded in high-throughput experiments. To help
new users get started, we provide tutorials for both the
Anipose pipeline and aniposelib at anipose.org .

Relationship to existing markerless tracking tools
Deep learning has led to dramatic improvements in hu-
man pose tracking, with toolboxes like OpenPose [12], Al-
phaPose [21], and DeeperCut [22] allowing researchers to
track human pose reliably from 2D video. These methods
have also been adapted for markerless tracking in other an-
imals [1]. Current deep-learning based tools for 2D mark-
erless tracking include DeepLabCut [9], LEAP Estimates
Animal Pose [11], and DeepPoseKit [10]. DeepFly3D
[23] is capable of accurate 3D pose estimation, but it is
primarily designed for tracking the limbs of tethered fruit
flies and not readily adapted for use in different behav-
ioral setups. Anipose is unique in that it builds upon ex-
isting 2D tracking methods to achieve accurate and high-
throughput 3D pose estimation. This design provides flex-
ibility for users who want to try out 3D tracking in their
existing behavioral setups. Although we designed Ani-
pose to leverage 2D tracking with DeepLabCut [9], it can
be compatible with other 2D markerless tracking methods,
including SLEAP [11] and DeepPoseKit [10].

3.1 Impact of robust markerless 3D tracking

Many key insights in behavioral neuroscience have been
gained through carefully controlled behavioral paradigms.
In particular, experiments are often designed to accom-
modate the practical limitations of movement tracking,
recording neural activity, and perturbing the animal in real
time (e.g., [24, 25, 26, 27, 28]). Recent advances in ex-
perimental technologies (e.g., high-density extracellular
recording probes [29], optical imaging of fluorescent re-
porters [30, 31], and optogenetics [32]) have made it feasi-
ble to record and perturb neural activity in freely behaving
animals in three dimensions. Complementing these tech-
nologies, a comprehensive toolbox for high-throughput
3D tracking will not only enable deeper analysis of cur-
rent experiments, but also make it possible to study more
natural behaviors.

A robust 3D markerless tracking solution could also
greatly expand the accessibility of quantitative movement
analysis in humans. Many neurological disorders, even
those commonly thought of as cognitive disorders, affect
walking gait [33, 34] and upper limb coordination [35, 36].
Many clinicians and basic researchers currently rely on
qualitative evaluations or expensive clinical systems to
diagnose motor disorders and assess recovery after treat-
ment. While clinical approaches are commercially avail-
able [37], they are costly, require proprietary hardware,
rely on the addition of markers to the patient, and cannot
assess walking gait in natural contexts such as a patient’s
home. Anipose could be used as a tool in the diagnosis,

assessment, and rehabilitative treatment of movement and
neurodegenerative disorders.

3.2 Impact of novel filters
When analyzing the results of raw (unfiltered) marker-
less tracking, we found that outlier keypoint detections
had a large impact on overall accuracy. Anipose re-
moves these outliers through filtering and interpolation
from other camera views. The resulting improvements in
tracking smoothness make it easier to analyze and model
kinematic data. Specifically, interpolated data enables the
user to obtain better estimates of behavior statistics, such
as mean and variance, and to run dimensionality reduction
techniques, such as principal components analysis . Ad-
ditionally, temporal smoothing reduces noise in the first
derivative and thus enables the user to obtain more pre-
cise estimates of movement speed.

3.3 Limitations and practical recommendations
There are several scenarios under which Anipose fails to
produce accurate 3D tracking. Below, we enumerate some
of the scenarios we have encountered in applying Ani-
pose on different datasets and suggest strategies for trou-
bleshooting.

As is the case for any tracking system, the ability of
Anipose to track and estimate body pose is fundamen-
tally limited by the quality of the underlying data. High
quality videos are well illuminated, contain minimal mo-
tion blur, and provide coverage of each keypoint from dif-
ferent views. A common failure mode we encountered
was when the neural network misplaced 2D keypoints in
some frames. If the errors are uncorrelated across cam-
era views, then the Anipose filters can compensate and
still produce accurate tracking in 3D. But in some cases,
multiple views have correlated errors or these errors per-
sist in time. These type of errors most commonly arise
when the neural network has not been trained on a subset
of rare behaviors, so that the animal adopts poses unseen
by the trained network. One solution to reducing the fre-
quency of such errors involves systematically identifying
outlier frames, manually relabeling them, then retraining
the network. Anipose supports this functionality, as do
many other tracking toolboxes [9, 11, 10, 23].

Poor multi-camera calibration also results in tracking
errors. A good calibration should have an average repro-
jection error of the calibration points of less than 3 pixels,
and ideally less than 1 pixel. To obtain a quality calibra-
tion, the calibration videos should be recorded so that the
board is clearly visible from multiple angles and locations
on each camera. If it is not possible to achieve this, we
suggest exploring a preliminary calibration module in Ani-
pose that operates on detected points on the animal itself.
This module was inspired by DeepFly3D [23] but uses our
iterative calibration procedure.

We recommend users start with no filters to first eval-
uate the quality of the tracking. If outliers or missing data
impede data analysis, then we recommend enabling the
default filter parameters in Anipose, which we have found
to produce good results for multiple datasets. In some
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cases, some additional tuning of parameters may be re-
quired, especially on datasets with unique constraints or
when studying behaviors with unusual dynamics.

3.4 Outlook
3D markerless tracking and pose estimation are rapidly
emerging technologies. We expect this task is well poised
to leverage future innovations in machine learning and
computer vision. Current machine-learning based tools
for animal pose estimation operate on single frames of
video and ignore temporal and spatial information. These
tools could be improved by learning temporal priors, or
taking advantage of end-to-end neural networks that fit
models in 3D directly from multi-view images using spa-
tial priors [38, 39]. Beyond tracking single animals, tool-
boxes like SLEAP [11] and OpenPose [12] have some
support for multi-animal pose estimation in 2D. To disam-
biguate animals in 3D, it may be possible to extend asso-
ciative embeddings [40] to multiple views, though an en-
tirely new approach may be needed. Further, the availabil-
ity of large kinematics datasets presents new challenges
for user interfaces, data visualization, and analysis. In-
novations may involve building on VIA [41, 42] or Na-
pari [43] to enable visualization of animal behavior in con-
cert with synchronized kinematics. In addition to our own
ongoing efforts to improve its functionality, we welcome
community contributions to improving and extending the
Anipose toolkit.

4 Methods
4.1 Video collection and annotation
ChArUco dataset. To evaluate the performance of Ani-
pose compared to physical ground truth, we collected
videos of a precision-manufactured ChArUco board [20].
The ChArUco board was manufactured by Applied Image
Inc (Rochester, NY) with a tolerance of 2 µm in length and
2◦ in angle. It is a 2 mm× 2 mm etching of opal and blue
chrome, on a 5 mm × 5 mm board. The ChArUco pattern
itself has 6 × 6 squares, with 4 bit markers and a dictio-
nary size of 50 markers. With these parameters, the size
of each marker is 0.375 mm and the size of each square
is 0.5 mm. We filmed the ChArUco board from 6 cam-
eras (Basler acA800-510µm) evenly distributed around
the board (Figure 1A), at 30Hz and with a resolution
of 832 x 632 pixels, for 2-3 minutes each day over 2
separate days. While filming, we manually rotated the
ChArUco board within the field of view of the cameras.
These videos were used as calibration videos for both the
ChArUco dataset and the fly dataset detailed below.

We chose 9 of the corners as keypoints for manual an-
notation and detection (Figures 1A and 4A). We extracted
and manually annotated 200 frames from each camera
from day 1, and an additional 200 cameras per camera
from day 2 (1200 frames per day, 2400 frames total). We
used the frames for day 1 for training the neural network
and the frames from day 2 for evaluation of all methods.

Mouse dataset. Reaching data were obtained from four
adult C57BL/6 mice (∼8-12 weeks old, two male and two

female) trained on a goal-directed reaching task. Proce-
dures performed in this study were conducted according
to US National Institutes of Health guidelines for animal
research and were approved by the Institutional Animal
Care and Use Committee of The Salk Institute for Biolog-
ical Studies. The reaching task is as previously described
[44]. Briefly, the training protocol consisted of placing the
mouse in a 20 cm tall× 8.5 cm wide× 19.5 cm long clear
acrylic box with an opening in the front of the box mea-
suring 0.9 cm wide and 9 cm tall. A 3D-printed, 1.8 cm
tall pedestal designed to hold a food pellet (20 mg, 3 mm
diameter; Bio-Serv) was placed 1 cm away from the front
of the box opening and displaced to the right by 0.5 cm
(to encourage mice to use their left forelimbs), and food
pellets were placed on top as the reaching target (Fig. 1B).
Mice were food deprived to ∼85% of their original body
weight and trained to reach for food pellets for either 20
minutes or until 20 successful reaches (defined as pellet
retrieval) were accomplished. Mice were trained in this
setup for 14 consecutive days before reaches were cap-
tured with 2 cameras (Sentech STC-MBS241U3V with
Tamron M112FM16 16mm lens) placed in front and to
the side of the mouse (∼ 85◦ apart). Videos were acquired
at a frame rate of 200 Hz at a resolution of 1024 × 768
pixels.

We chose 6 points on the mouse hands as keypoints
(Figure 1B). On each mouse hand, we labeled 3 points:
the dorsal wrist, the base of digit 5, and the proximal
end of digit 3. In total, we manually labeled 2200 frames
(1100 frames per camera) for training the neural network
from 2 mice. For test data to evaluate the post estimation
performance, we labeled an additional 400 frames (200
frames per camera) taken from videos of 2 mice that were
not in the training set.

Fly dataset. Male and female Berlin wild type
Drosophila melanogaster 4 days post-eclosion were used
for all experiments. Flies were reared on standard corn-
meal agar food on a 14 hr/10 hr light-dark cycle at 25 ◦C
in 70% relative humidity. The flies’ wings were clipped
24–48 hours prior to the experiment in order to increase
walking and prevent visual obstruction of the legs and tho-
rax. For all experiments, a tungsten wire was tethered
to the dorsal thorax of a cold-anesthetized fly with UV
cured glue. Flies were starved with access to water for
2-5 hours before they were tethered. After 20 minutes of
recovery, tethered flies were positioned on a frictionless
spherical treadmill [45, 46] (hand-milled foam ball, den-
sity: 7.3 mg/mm3, diameter: 9.46 mm) suspended on a
stream of compressed air (5 L/min). Six cameras (imaging
at 300 Hz, Basler acA800-510ţm with Computar zoom
lens MLM3X-MP) were evenly distributed around the fly,
providing full video coverage of all six legs (Figure 1C).
Fly behavior was recorded in 2 second trials every 25 sec-
onds for 30 minutes, capturing a range of behaviors such
as walking, turning, grooming, and pushing against the
ball. The recording region of each video was cropped
slightly so that the fly filled the frame and the camera was
able to acquire at 300Hz.

11

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 29, 2020. ; https://doi.org/10.1101/2020.05.26.117325doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.26.117325
http://creativecommons.org/licenses/by-nc-nd/4.0/


ANIPOSE

We chose 30 points on the fly body as keypoints (Fig-
ure 1C). On each leg, we labeled 5 points: the body-coxa,
coxa-femur, femur-tibia, and tibia-tarsus joints, as well as
the tip of the tarsus. In total, we manually labeled 6632
frames (about 1105 frames per camera) for training the
neural network. For test data to evaluate the post estima-
tion performance, we labeled an additional 1200 frames
(200 frames per camera) taken from videos of 5 flies that
were not in the training set.

Human dataset. To compare our tracking method to
existing computer vision methods, we evaluated the ac-
curacy of Anipose on the Human 3.6M dataset [47, 48].
In this dataset, Ionescu et al. [48] filmed 11 professional
actors performing a range of actions, including greeting,
posing, sitting, and smoking. The actors were filmed in a
4m× 3m space with 4 video cameras (Basler piA1000) at
a resolution of 1000 × 1000 pixels at 50Hz (Figure 1D).
To gather ground-truth pose data, the actors were also
outfitted with reflective body markers and tracked with a
separate motion capture system, using 10 Vicon cameras
at 200 Hz. Leveraging these recordings, the authors de-
rived the precise 3D positions of 32 body joints and their
2D projections onto the videos. For camera calibration,
we used the camera parameters from the Human 3.6M
dataset, converted by Martinez et al. [49].

To compare the performance of Anipose against previ-
ous methods, we used a protocol from the literature [38].
Specifically, we used 17 of the 32 provided joints as key-
points (Figure 1D). The Human 3.6M dataset contains
data from 5 subjects as a training dataset (2 female and 3
male), 2 subjects as a validation dataset, and 4 subjects as
a testing dataset (2 female and 2 male). We used frames
from the training dataset to train the network and evalu-
ated the predictions on the validation dataset. We also re-
moved frames from the training dataset in which the sub-
ject did not move relative to the previous frame (< 40mm
movement of all joints from the previous frame). We
evaluated the tracked human dataset on every 64th frame.
Iskakov et al. [38] showed that some scenes from the S9
validation actor (parts of the Greeting, SittingDown, and
Waiting actions) have ground-truth shifted in global co-
ordinates compared to the actual position [38], so we ex-
clude these scenes from the evaluation set. Furthermore,
for subject S11, one of the videos is corrupted (part of the
"Directions" action), so we exclude this from the dataset
as well. In total, we obtained 636,724 frames (159,181 per
camera) for training the neural network, and 8608 frames
(2152 per camera) frames for evaluation.

Manual annotation of datasets. To produce neural net-
work training data, we annotated the fly dataset using
a mixture of Fiji [50] and the VGG Image Annotator
(VIA) [41, 42]. All the images in the fly test set were
annotated with VIA. We annotated all the images in the
ChArUco dataset and mouse dataset with VIA.

4.2 Neural network keypoint detections
Detection of keypoints in each of the datasets was per-
formed with DeepLabCut 2.1.4 [17]. Briefly, to produce

training data, we used k-means clustering to pick out
unique frames from each of the views, then manually an-
notated the keypoints in each frame. We trained a single
Resnet-50 [51] network for all camera views for the fly,
mouse, and ChArUco datasets, starting from a network
pretrained on Imagenet. For the human dataset, we started
with a Resnet-101 network pretrained on the MPII human
pose dataset [22]. During training, we augmented the
training dataset with cropping, rotation, brightness, blur,
and scaling augmentations using Tensorpack [52]. We
then used the Anipose pipeline to run the network on each
video. For each keypoint, the network produced a list
of predicted positions, each associated with a confidence
score (between 0 and 1). We saved the top-n most likely
predictions of each joint location for each frame for use
in Viterbi filtering of likely keypoints in 2D, as described
below.

4.3 Filtering of 2D keypoint detections

The raw keypoint detections obtained with DeepLabCut
were often noisy or erroneous (Figure 6). Thus, filter-
ing the detections from each camera was necessary before
triangulating the points. Anipose contains 3 main algo-
rithms to filter keypoint detections; we elaborate on each
algorithm below. Example applications of these filters and
results are compared in Figure 6.

Median filter. The first algorithm identifies outlier key-
point detections by comparing the raw detected trajecto-
ries to median filtered trajectories for each joint. We
started by computing a median filter on the detected tra-
jectory for each joint’s x and y positions, which smooths
the trajectory estimate. We then compared the offset of
each point in the raw trajectory to the median filtered tra-
jectory. If a point deviated by some threshold number of
pixels, then we denoted this point as an outlier and remove
it from the data. The missing points are then interpolated
by fitting a cubic spline to the neighboring points. The
median filter is simple and intuitive, but it cannot correct
errors spanning multiple frames.

Viterbi filter. To correct for errors that persist over mul-
tiple frames, we implemented the Viterbi algorithm to ob-
tain a single most consistent path in time from the top-n
predicted keypoints in each frame for each joint. To be
specific, we expressed this problem as a hidden Markov
model for each joint, wherein the possible values at each
frame are the multiple possible detections of this keypoint.
To obtain a cleaner model, we removed duplicate detec-
tions (within 7 pixels of each other) within each frame.
To compensate for missed detected keypoints over many
frames, we augmented the possible values at each frame
with all detections up to F previous frames, weighted in
time elapsed by multiplying their probability 2−F . We
then identified the best path through the hidden Markov
model using the Viterbi algorithm [53]. This procedure
estimates a consistent path, even with missed detections
of up to F frames.
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Autoencoder filter. We found that the network would
often try to predict a joint location even when the joint
was occluded in some view. This type of error is particu-
larly problematic when used in subsequent 3D triangula-
tion. Frustratingly, the confidence scores associated with
these predictions can be very high, making them difficult
to distinguish from correct, high-confidence predictions.
To remove these errors, inspired by [54], we implemented
a neural network that takes in a set of confidence scores
from all keypoints in one frame, and outputs a corrected
set of confidence scores. To generate a training set, we
made use of the fact that human annotators do not label
occluded joints but label all of the visible joints in each
frame. Thus, we generated artificial scores from biased
distributions to mimic what the neural network might pre-
dict for each frame, with visible joints given a higher prob-
ability on average. The task of the network is to predict a
high score for each joint that is truly visible in that frame
and a low score for any occluded joint. We train a mul-
tilayer perceptron network with a single hidden layer to
perform this task, using the scikit-learn library [55].

4.4 Calibration of multiple cameras.
Camera model. A camera captures 2D images of light
reflecting from 3D objects; thus, we can think of each
camera as a projection, transforming 3D vectors to 2D
vectors. To establish our notation, for a point p =
(x, y, z)T or u = (x, y)T , we use a tilde to denote that
point in homogeneous coordinates (with a 1 at the end),
so that p̃ = (x, y, z, 1)T or ũ = (x, y, 1)T .

A camera model specifies a transformation from a 3D
point p̃ to a 2D point ũ. We use the camera model de-
scribed by Zhang [56], which consists of a product of an
intrinsics matrix A, an extrinsics matrix P, and a distor-
tion function D.

The extrinsics matrix P ∈ R4×3 describes how the
camera is positioned relative to the world. We represent P
as the product of a rotation matrix and a translation matrix.
Both rotations and translations may be fully specified with
3 parameters each, for 6 parameters total in P.

The intrinsics matrix A ∈ R3×3 describes the internal
coordinate system of the camera. It is often modeled using
5 parameters: focal length terms fx and fy , offset terms
cx and cy , and a skew parameter s:

A =

[
fx s cx
0 fy cy
0 0 0

]
.

In practice, we found that we obtain a more robust cal-
ibration by reducing the number of parameters, setting
f = fx = fy , s = 0, and (cx, cy) to be at the center
of the image, so that we need to estimate only the focal
length parameter f for the intrinsics matrix.

The distortion function models nonlinear distortions
in the camera pixel grid. This distortion is typically mod-
eled with 3 parameters as
D([x, y]) =[
x+ x

(
k1(x

2 + y2) + k2(x
2 + y2)2 + k3(x

2 + y2)4
)

y + y
(
k1(x

2 + y2) + k2(x
2 + y2)2 + k3(x

2 + y2)4
)] .

In practice, we found that the higher-order distortion
terms k2 and k3 are often small for modern cameras, so
we assume k2 = k3 = 0 and only estimate a single pa-
rameter k1.

Thus, the full mapping may be written as

ũ = D(APp̃).

In total, the camera model involves estimating 8 parame-
ters per camera: 6 for extrinsics, 1 for intrinsics, and 1 for
distortion.

For the camera calibration and triangulation methods
described below, we define the projection T from p̃ to ũ
as

T (p̃,θc) = ũ = D(APp̃),

where θc are the 8 parameters for the camera model of
camera c.

Initial estimate of camera parameters. In order to cal-
ibrate the cameras and estimate parameters of the camera
models, we start by obtaining an initial estimate of the
camera parameters. We detected calibration board key-
points in videos simultaneously captured from all cameras.
We then initialized intrinsics based on these detections fol-
lowing the algorithm from Zhang [56]. We initialized the
distortion coefficients to zero.

We developed the following method to initialize cam-
era extrinsics from arbitrary locations. For each pair of
cameras, the number of frames in which the board is seen
simultaneously is counted and used to build a graph of
cameras. To be specific, each node is a camera, and edges
represent pairs of cameras whose relation we will use to
seed the initialization.

The greedy graph construction algorithm is as follows.
Start with the pair of cameras for which the number of
frames the board is simultaneously detected is the largest,
connect the two camera nodes with an edge. Next, pro-
ceed with iterations in decreasing order of the number of
boards simultaneously detected. At each iteration, if the
two nodes (cameras) are not already connected through
some path, connect them with an edge. Processing itera-
tively through all pairs of cameras in this manner, a graph
of camera connectivity is produced. Full 3D calibration is
possible if and only if the graph is fully connected.

To initialize the extrinsics using this graph, we start
with any camera and set its rotation and translation to zero.
Then, we initialize its neighbors from the estimated rela-
tive pose of the calibration board between them using the
initial intrinsics. This procedure is continued recursively
until all cameras are initialized. A diagram of the camera
initialization for an example dataset is provided in Figure
8.

Bundle adjustment. To refine the camera parameters
from initial estimates, we performed a bundle adjustment
by implementing a nonlinear least-squares optimization to
minimize the reprojection error [19]. Given all ũc,j,t, the
detected jth keypoints from the calibration board at cam-
eras c in frames t, we solve for the best camera parameters
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Figure 8: Illustration of the camera parameter initialization procedure. (A) The calibration board is detected simulta-
neously in some number of frames for each pair of cameras. Based on these simultaneous detections, we build a graph
with edge weights being the number of frames. (B) We build a new fully connected but minimal graph (a tree) using a
greedy approach.

θc and 3D points p̃j,t such that the reprojection loss L is
minimized:

L =
∑
c

∑
j

∑
t

E (ũc,j,t − T (p̃j,t,θc)) .

Here, E(·) denotes the norm using which the error is com-
puted. This norm may be the least squares norm, but in
practice, we used a robust norm, such as the Huber or soft
ℓ1 norm, to minimize the influence of outliers.

This optimization is nonlinear because of the camera
projection function T . We recognized that it is a nonlin-
ear least-squares problem with a sparse Jacobian and thus
solved it efficiently using the Trust Region Reflective al-
gorithm [57, 58], as implemented in SciPy [59].

Iterative bundle adjustment. When calibrating cam-
eras, we found that outliers have an outsized impact on
calibration results, even when using robust losses such as
the Huber loss or soft ℓ1 loss. Thus, we designed an it-
erative calibration algorithm, inspired by the fast global
registration algorithm from Zhou et al. [60], which solves
a minimization with a robust loss efficiently through an
alternating optimization scheme.

We approximate this alternating optimization in the
camera calibration setting through an iterative threshold
scheme. In our algorithm, at each iteration, a reprojec-
tion error threshold is defined and the subset of points
uc,i with reprojection error below this threshold is cho-
sen. Bundle adjustment is then performed on these points
alone. The threshold decreases exponentially with each
iteration, to refine the points to be calibrated. The pseu-
docode for the algorithm is listed in Algorithm 1.

4.5 Triangulation and 3D filtering
The 3D triangulation task seeks 3D points pj,t for joint j
at frame t, given a set of detected 2D points uc,j,t from
cameras c with camera parameters θc. There are sev-
eral common methods for solving this triangulation task.
Below, we describe 3 of these methods, then describe
our method for spatiotemporally constrained triangulation.

Algorithm 1 Iterative bundle adjustment
Input:
Initial camera parameters θ
Keypoint detections u from multiple cameras
Starting and ending thresholds µstart and µend

1: for i← 1 to Niter do
2: ueval ← sample(u)
3: errorseval ← reprojection_errors(ueval,θ)
4: low← percentile(errorseval, 15%)
5: high← percentile(errorseval, 75%)

6: µi ←
(

µend
µstart

)i/Niter

7: µi ← max(low,min(µi,high))
8: µpicked ← points from ueval for which reprojec-

tion error is below µi

9: θ ← bundle_adjust(θ, upicked)
10: end for
11: return θ

For illustration, a comparison of the performance of these
methods is shown on an example dataset in Figure 7.

Linear least-squares triangulation. The first method
triangulates 3D points by using linear least-squares [61].
Linear least-squares is the fastest method for multi-
camera triangulation, but it may lead to poor results when
the 2D inputs contain noisy or inaccurate keypoint detec-
tions. To be specific, we start with a camera model with
parameters estimated from the calibration procedure de-
scribed above, so that the extrinsics matrix Pc, intrinsics
matrix Ac, and distortion function Dc are known for each
camera c. By rearranging the camera model, we may write
the following relationship:

D−1
c (ũc,j,t) = AcPcp̃j,t.
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We solved this linear system of equations using the singu-
lar value decomposition (SVD) of the product AcPc to
approximate the solutions for the unknown p̃j,t [61].

Median-filtered least-squares triangulation. As a sim-
ple extension to least-square triangulation to correct some
of the noisy detections, we applied a median filter to the
resulting 3D points tracked across frames. This filtering
improves the tracking, but at the cost of losing high fre-
quency dynamics. Furthermore, a median filter does not
improve triangulation if the original tracking is consis-
tently poor.

RANSAC triangulation. Random sample consensus
(RANSAC) triangulation aims to reduce the influence
of outlier 2D keypoint detections on the triangulated
3D point, by finding the subset of keypoint detections
that minimizes the reprojection error. We implemented
RANSAC triangulation by triangulating all possible pairs
of keypoints detected from multiple views and picking the
resulting 3D point with the smallest reprojection error.

Formally, let p̃a,b
j,t be the triangulated 3D point for key-

point j at frame t computed using the 2D keypoint detec-
tions from cameras a and b, then our algorithm finds p̃jt

using the following relation:

p̃j,t = argmin
p̃a,b
j,t

∥∥∥T (
p̃a,b
j,t ,θa

)
− ũa,j,t

∥∥∥
2
+

∥∥∥T (
p̃a,b
j,t ,θb

)
− ũb,j,t

∥∥∥
2
.

Spatiotemporally constrained triangulation. We de-
veloped spatiotemporally constrained triangulation and
formulated triangulation as an optimization problem,
which allows us to specify soft constraints on the trian-
gulated points. We propose that the points must satisfy
three major constraints: (1) the projection of the 3D points
onto each camera should be close to the tracked 2D points,
(2) the 3D points should be smooth in time, and (3) the
lengths of specified limbs in 3D should not vary too much.
Each of these constraints may be formulated as a partial
loss in the full objective function.

First, the reprojection loss is written as

Lproj =
∑
c

∑
j

∑
t

E (T (p̃j,t,θc)− ũc,j,t) .

Here, E(·) is a robust norm function such as the Huber or
soft-ℓ1 norm, to minimize the influence of outlier detec-
tions.

Second, the temporal loss may be formulated as a to-
tal variation norm to minimize the first finite-difference
derivative of the 3D trajectory:

Ltime =
∑
j

∑
t

∥∥p̃j,t − p̃j,(t−1)

∥∥
2
.

This penalty may be extended to minimize higher-order
(e.g. 2nd or 3rd) finite-difference derivatives, which pro-
duces smoother trajectories but has less impact on impor-
tant high frequency dynamics.

Third, the limb loss may be formulated by adding an
additional parameter dl for each limb l, defined to consist
of joints j1 and j2:

Llimb =
∑

l,j1,j2∈limbs

∑
t

(
∥p̃j1,t − p̃j2,t∥2 − dl

dl

)2

.

The limb error is normalized relative to the limb length so
that each limb contributes equally to the error.

Given each of the losses above, the overall objective
function to minimize may be written as:

L = Lproj + αtimeLtime + αlimbLlimb.

We solve this sparse nonlinear least-squares problem ef-
ficiently using the Trust Region Reflective algorithm [57,
58], as implemented in SciPy [59], similarly to the bundle
adjustment optimization. To initialize the optimization,
we use linear least-squares triangulation.

The parameters αtime and αlimb may be tuned to ad-
just the strength of the temporal or limb loss, respectively.
Note, however, that the temporal loss is in units of dis-
tance, which may be in an arbitrary scale. Thus, to stan-
dardize these parameters across datasets, we break down
the parameter αtime in terms of a user-tunable parameter
βtime and an automatically computed scale γ such that

αtime = βtimeγ.

We compute the scale γ as

γ =
N∑

j

∑
t

∥∥p̃j,t − p̃j,(t−1)

∥∥
2

,

where p̃j,t is an initial estimate obtained from linear
least-squares triangulation. We found that the parame-
ters βtime = 2 and αlimb = 2 work well across a vari-
ety of datasets and produced all the results across all four
datasets with these parameters.

Estimating joint angles. We estimated joint angles
from the tracked 3D positions. To compute the joint an-
gle defined by the three 3D points surrounding the joint
(pi,pj ,pk), where point pj lies at the joint, the angle ϕj

is
ϕj = arccos ((pi − pj) · (pk − pj)) .

4.6 Evaluation
Evaluation against physical ground truth. To evalu-
ate the calibration and triangulation, we compared the ac-
curacy of manual keypoint annotations, neural network
keypoint detections, and OpenCV keypoint detections
(Figure 4). The ground truth was considered to be known
physical length and angles of the ChArUco board. The
physical lengths were calculated between all pairs of key-
points by taking the length between the known position
of corners. Similarly, the physical angles were estimated
between all triplets of non-collinear keypoints. The sub-
pixel OpenCV detections were done using the Aruco mod-
ule [20]. The manual annotation and neural network meth-
ods are detailed above. Given the keypoint detections
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from each method, we used linear least-squares triangu-
lation to obtain 3D points and computed angles using the
dot product method detailed above. If a keypoint was de-
tected in fewer than 2 cameras at any time, we could not
triangulate it and therefore did not estimate the error at
that frame.

Evaluation of 3D tracking error for different filters.
To evaluate the contribution of different 2D and 3D fil-
ters, we applied each filter and measured the reduction
in error. For the 2D filters, we applied each of the filters
(2D median filter, Viterbi filter, and autoencoder filter) and
computed the 3D position using linear least-squares trian-
gulation. We could not train the autoencoder filter on the
human dataset, as the filter relies on occluded keypoints
not being present in the annotated dataset, but due to the
nature of the dataset all keypoints are annotated from ev-
ery view at every frame. We measured the error in joint
positions and angles relative to those computed from man-
ual annotations, using the ℓ2 norm. To evaluate the effect
of the filter addition, as there was a lot of variance in er-
ror across points, we computed the difference in error for
each point tracked. We treated points with reprojection
error above 20 pixels as missing. The procedure for evalu-
ating the 3D filters was similar, except that we compared
the error in joint position and angle relative to the error
from 3D points obtained with a Viterbi filter and autoen-
coder filter with linear least-squares triangulation.
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Figure 9: An example of the Anipose file structure. (A) The input file structure consists of folders nested to arbitrary
depths (e.g. “experiment/2019-03-03/trial 1”) with a folder for raw videos at each leaf of the directory tree. The
calibration folder may be placed anywhere and will apply recursively to all folders adjacent to it. (B) When the
user runs Anipose, it will create a folder for each step of processing. New folders created include “pose-2d” and
“videos-labeled” which contain the unfiltered keypoint detections and visualizations of those, “pose-2d-filtered” and
“videos-labeled-filtered” which contain the filtered keypoint detections and visualizations, “pose-3d” and “videos-3d”
which contain the triangulated 3D keypoint detections and visualizations of these, and finally “angles” which contains
angles computed based on the 3D keypoint detections.
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Figure 10: For the ChArUco evaluation dataset, OpenCV detected only a small fraction of the keypoints detected by
the neural network or through manual annotation.
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Figure 11: Full cumulative distribution functions of the position and angle error with and without filters for each of
the datasets.
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ChArUco Mouse Fly Human

Training frames 1200 2200 6632 636724
Test frames 1200 400 1200 159181
Num cameras 6 2 6 4
Pixel scale (mm) 0.0075 0.0897 0.0075 4.79

2D filter
score threshold 0.05 0.05
n_back 3 3
medfilt 13 13
offset_threshold 15 30
spline true true

3D filter
score_threshold 0.3 0.3 0.3 0.3
reproj_error_threshold 5 5
scale_length 3 1.5
scale_length_weak 0.5 0.5
scale_smooth 2 4
n_deriv_smooth 3 2

Table 1: Anipose configuration parameters used in this paper
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