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Abstract 
 
The number of reports on mathematical modeling related to oncology is 
increasing with advances in oncology. Even though the field of oncology 
has developed significantly over the years, oncology-related experiments 
remain limited in their ability to examine cancer. To overcome this 
limitation, in this study, a stochastic process was incorporated into 
conventional cancer growth properties to obtain a generalized 
mathematical model of cancer growth. Further, an expression for the 
violation of symmetry by cancer clones that leads to cancer heterogeneity 
was derived by solving a stochastic differential equation. Monte Carlo 
simulations of the solution to the derived equation validate the theories 
formulated in this study. These findings are expected to provide a deeper 
understanding of the mechanisms of cancer growth, with Monte Carlo 
simulation having the potential of being a useful tool for oncologists. 
  

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted May 28, 2020. ; https://doi.org/10.1101/2020.05.25.115725doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.25.115725


 

 2 

Introduction 
 
Experimental oncology has significantly progressed over the last two decades 

(1,2). In particular, the discovery of cancer stem cells and the accumulation of 
knowledge on intratumor heterogeneity represent milestones in these 
progressions (3,4). Cancer stem cells appear to have common properties 
among different cancers (1), such as leukemia (3,5), brain cancer (6,7), and 
colorectal cancer (8,9), as does intratumor heterogeneity (2).  
 The number of studies related to mathematical cancer modeling is currently 

increasing at a rate that is proportional to the rate of advancement in 
experimental oncology. However, to date, the mathematical models constructed 
in studies vary according to the type of cancer. For example, Sottoriva et al. 
proposed the “Big Bang model” for colon cancer (9), whereas Vermeulen et al. 
proposed a different model for colon cancer (10). Michor et al. established a 
model for imatinib therapy resistant cells in chronic myelogenous leukemia (11). 
Tomasetti and Vogelstein investigated the oncogenesis model in the context of 
stem cell divisions (12).  

There are numerous reasons as to why different mathematical cancer 
models have been constructed. They include differences among different 
cancers, different experimental methods, and different methods of data 
analysis. Thus, there are still limitations in experimental oncology. 

One method of overcoming these limitations is to establish a generalized 
mathematical model that can be applied to any type of cancer. Williams et al. 
successfully established such a model (13). This study approached model 
development from the perspective of a mathematician in order to establish a 
more generalized mathematical cancer model that can be applied to all types of 
cancer, thereby significantly enhancing the utility of mathematical cancer 
modeling and making it more useful to experimental oncologists.  
 To establish a fully generalized mathematical model of cancer, general cancer 
properties were mathematically interpreted before analysis of the data obtained 
from the experiments of a specific type of cancer. Then, actual data analyses 
were conducted to test whether the theory obtained in this work is valid. It was 
found that cancer growth follows the Yule process, and that a violation of the 
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symmetry about the growth leads to tumor heterogeneity. Furthermore, Monte 
Carlo simulation was found to be an informative tool to analyze cancer growth. 
 
Methods 
 
Software used in this study 
 The R software was used to analyze data and simulate cancer cell growth. In 
addition, R was used to create all graphs except Fig. 2(a) and Fig. 3(a), which 
were drawn using Python, matplotlib. 
 
Data analysis 
I re-analyzed the raw data published in (14) using unpublished data. 
 
Test of the distribution 
As discussed in detail in the results section, the initial number of cancer cells, 
𝑛", and the growth rate of cancer cells, 𝜆, are important parameters in theories. 
These parameters were calculated from Eqs. (7) and (8) using the raw data 
obtained above. Then, the distributions of 𝑛" were indicated. To test if these 
distributions were Poisson distributions, the χ% test and Fisher’s exact test 
were conducted with the null hypothesis that “the distribution of 𝑛", which is 
calculated by Eq. (7), is equal to the Poisson distribution with 𝜆, which is 
calculated by Eq. (8).” If 𝑝 < 0.05, then this null hypothesis was set to be 
rejected. 
 
Design of the numerical solution and Monte Carlo simulation 
This section describes the outline of the numerical solution and simulation 

conducted in this study. The detailed programs written for these calculations are 
available in the Supplementary Method section. 
The numerical solution of 𝑑𝑁(𝑡) = 𝜆𝑁(𝑡)𝑑𝑡 + 𝜎𝑑𝐵𝑡 is obtained by employing 

the Euler–Maruyama method: 𝑛 partitions of the interval (0, 𝑡] are defined 
as	(𝑡789, 𝑡7], (𝑖 = 1, 2, … , 𝑛), where	∆𝑡7: = 𝑡7@9 − 𝑡7. Then,  

∆𝑁7: = 𝑁7@9(𝑡) −	𝑁7(𝑡) = 𝜆∆𝑡7 + 𝜎∆𝐵𝑡7, 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted May 28, 2020. ; https://doi.org/10.1101/2020.05.25.115725doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.25.115725


 

 4 

where ∆𝐵𝑡7 is a random number that follows a normal distribution with 𝑚𝑒𝑎𝑛 =
0	and	𝑠𝑑 = I∆𝑡7. By solving the above equation, the numerical solution for 𝑁(𝑡) 
is obtained: 𝑁(𝑡) = 𝑛" + ∑ ∆𝑁77 . This calculation is itself the Monte Carlo 
method (15). Based on the law of large numbers (15,16), repeating this 
calculation numerous times can reveal the population mean of cancer growth. 
This Monte Carlo calculation was repeated 100 times to simulate cancer 
growth; this is referred to as Monte Carlo simulations. 
  
Results 
Mathematical modeling of the growth of a cancerous tumor 
 
 First, the growth of cancer is assumed mathematically to follow the Poisson 
process with parameter 𝜆. The Poisson process satisfies the following three 
conditions (16,17): 1) the increment for events occurring within the interval 
(𝑡, 𝑡 + ℎ] is	𝜆ℎ; 2) the process is time homogeneous, which implies that the 
distributions of the increments depend only on time and not on preceding 
scenarios; 3) each increment over contiguous time intervals is independent of 
the others. 
 In oncology, the growth of cancer appears autonomous because genetic 
and/or epigenetic abnormalities occur frequently in cell cycles or cell divisions, 
and the apoptosis of cancer cells occurs rarely, except in the cases of terminal 
cancer. Therefore, it is reasonable to assume that over a short period, the 
growth of cancer cells becomes almost constant, independent of preceding 
conditions, and occurs at random, i.e., it follows the Poisson process.   
 Let	𝑁(𝑡) be the number of cancer cells at time 𝑡, and 𝑃[𝑁(𝑡) = 𝑛] 
(abbreviated as 𝑝N(𝑡)) be the probability that 𝑁(𝑡) = 𝑛 at time	𝑡. The change in 
the number of cancer cells over a short interval	(𝑡, 𝑡 + ℎ] is calculated under the 
above conditions. 
 For an interval (𝑡, 𝑡 + ℎ], probability 𝑃[𝑁(𝑡 + ℎ) = 𝑛] can be expressed as the 
sum of three states. Two of these states are as follows: 1) the probability of no 
cell division occurring in the interval	(𝑡, 𝑡 + ℎ] under the condition 𝑁(𝑡) = 𝑛 and 
2) the probability of one cell division occurring in the interval (𝑡, 𝑡 + ℎ] under 
the condition	𝑁(𝑡) = 𝑛 − 1. The remaining probabilities include one in which the 
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number of cells increases by two or more as a result of one instance of cell 
division or cell death. However, this state is rarely observed in oncology 
because of the assumption described above; thus, the other probabilities are 
close to zero.  
 As these three states are independent of one another and the increase in the 
number of cells at time interval	ℎ under the condition	𝑁(𝑡) = 𝑛 is 𝑛𝜆ℎ, the 
probabilities for the interval (𝑡, 𝑡 + ℎ] can be given by 

𝑝N(𝑡 + ℎ) = (1 − 𝑛𝜆ℎ)𝑝N(𝑡) + (𝑛 − 1)𝜆ℎ𝑝N89(𝑡) + 𝑜(ℎ). 
Rearranging this equation and taking the limit ℎ → 0 yields the following: 

QRS(T)
QT

= −𝑛𝜆𝑝N(𝑡) + (𝑛 − 1)𝜆𝑝N89(𝑡). 

Let	𝑛" ≔ 𝑁(0); then, the initial condition	can be defined as 
𝑝NV(0):= 1, 𝑝N(0):= 0	(𝑓𝑜𝑟	𝑛 ≠ 𝑛"). 

It is known that this differential equation has the following solution:  

𝑝N(𝑡) = Z N89NV89
[ 𝑒8NV\T(1 − 𝑒8\T)N8NV.                (Eq.１) 

This is a negative binomial distribution; thus, the expectation and variance are 
already known as 

expectation ∶= 𝐸[𝑁(𝑡)] = 𝑛"𝑒\T,                      (Eq. ２)  
variance ≔ 𝑉[𝑁(𝑡)] = 𝑛"𝑒\T(𝑒\T − 1).         (Eq. ３) 

 These results represent the Yule process, or the pure birth process, which is a 
model of probability that has been extensively studied in mathematics and 
applied to various other areas including physics and biology. Interested readers 
can refer to (16) for details. The negative binomial distributions of cancer cells 
are shown in Figs. 1(a) and (b). 
 
Solving the stochastic differential equation 

Eq. (2) expresses that the expected number of cancer cells at time	𝑡 is	𝑛"𝑒\T 
when the number of cancer cells at time 0 is	𝑛". This demonstrates that cancer 
is expected to grow exponentially. Differentiating Eq. (2) yields the following 
equation: 
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𝑑𝐸[𝑁(𝑡)] = 𝜆𝐸[𝑁(𝑡)]𝑑𝑡, 𝑁(0) = 𝑛"         (Eq. 2’) 

Even though I have assumed above that the growth of cancer cells is random 
and the distributions of their increments depend only on the time interval, Eq. 
(2’) indicates that the randomness of the growth is zero in the short period if we 
take the average of the number of cancer cells. Thus, I introduce the stochastic 
process, whose average is zero and whose variance depends only on time 
intervals. The Brownian motion function is introduced to the growth formula of 
cancer cells because it is well known that the average of this function is zero 
and the variance of this function depends only on the time interval (16). In brief, 
it is natural to introduce the Brownian motion function to the growth formula of 
cancer cells based on the above assumption. 
 Supposing that the randomness of the growth rate of cancer follows the 
Brownian motion function, the change in the number of cancer cells can be 
intuitively expressed as 

	𝑑𝑁(𝑡) = 𝜆𝑁(𝑡)𝑑𝑡 + 𝜎𝑑𝐵𝑡, 𝑁(0) = 𝑛",        (Eq. 4) 
where 𝐵𝑡 denotes the Brownian motion function and 𝜎 is a deterministic 
function, which is assumed to be independent of time for the sake of simplicity 
in this study. A detailed introduction to this model is provided in (17). In the 
current study, this model has been applied to the field of oncology. 
 Eq. (4) is known to have a solution (17). Using Ito calculus, the solution can be 
expressed as  

𝑁(𝑡) = 𝑛"𝑒\T + 𝜎𝑒\T ∫ 𝑒8\jT
" 𝑑𝐵𝑠.          (Eq. 5) 

This is a form of the Langevin equation and an example of the Ornstein–
Uhlenbeck process (17). The average of the integral in the second term on the 

right-hand side of Eq. (5) is zero, and its variance is k
l

%\
(𝑒%\T − 1) (17). This 

variance must be equivalent to Eq. (3); thus,  

kl

%\
m𝑒%\T − 1n = 𝑛"𝑒\T(𝑒\T − 1). 

This equation is solved for 𝜎, and 𝜎 = ±p%NV\qrs

qrs@9
≈ ±I2𝑛"𝜆. 
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For the sake of simplicity, it has been assumed above that 𝜎 is time 
independent; thus, this equation does not contradict the above assumption. 
 Therefore, Eq. (5) can be expressed as 

	𝑁(𝑡) = 𝑛"𝑒\T ± 𝑒\TI2𝑛"𝜆 ∫ 𝑒8\jT
" 𝑑𝐵𝑠.       (Eq. 6) 

For simplicity, 
𝑁(𝑡) = 𝑛"𝑒\T ± 𝛾(𝑡)𝑒\T, 
		𝑤ℎ𝑒𝑟𝑒	γ(𝑡) = I2𝑛"𝜆 ∫ 𝑒8\jT

" 𝑑𝐵𝑠,        (Eq. 6') 
where γ(𝑡) is the function following Brownian motion, 𝑛" is the initial number 
of cancer cells, and 𝜆 is the growth rate. 
 
Application of the model to the in vitro data 
 In general, if we perform appropriate experiments or the observations of 
cancer patients’ status, then we obtain the mean and variance of cancer 
growth. 𝑚x , 𝑣z, and 𝑡̂ are defined to be the actual values of mean, variance, and 
time, respectively. Note that these three symbols with the hat mark are not 
algebraic variables but the actual experimental data obtained. Then, Eqs. (2) 
and (3) can be written as  

expectation ∶= 𝐸[𝑁(𝑡̂)] = 𝑛"𝑒\T| = 𝑚x  
variance ≔ 𝑉[𝑁(𝑡̂)] = 𝑛"𝑒\T|m𝑒\T| − 1n = 𝑣z 

As these two equations are simultaneous linear equations about 𝑛" and 𝜆, 
these two variables can be solved as follows: 

𝑛" =
}xl

~z@}x
                           Eq.7  

𝜆 = 9
T|
𝑙𝑛(~z@}x

}x
)                        Eq.8 

Eqs. (7) and (8) indicate that we can calculate 𝑛" and 𝜆 from actual data if we 
perform appropriate experiments or observations. 
 Now, the theories discussed above are tested by applying them to the actual in 
vitro data obtained from cancer growth experiments. It was reported that CD24 
and CD26 are suggested as the markers of cancer stem cells in malignant 
pleural mesothelioma (14). In this report, we established the knock down cells 
of CD24 or CD26 using short hairpin RNA (they are referred to as sh-CD24 cell 
lines and sh-CD26 cell lines, and control cell lines are referred to as CV cell 
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lines). We performed the growth test of two different mesothelioma cell lines, 
i.e., JMM cell lines and H226 cell lines, and compared them with knock down of 
CD24 or CD26 (14). I re-analyzed these results using unpublished data. The re-
analysis data and the calculations of 𝑛" and 𝜆 are listed in Table 1.  
Interestingly enough, even though the growth tests were started by seeding 

105 cells in all cell lines, the calculations show that 𝑛" is at most approximately 
500 at each day and below ten in certain cases (Table 1). Additionally, the 𝑛" 
at each day decreases considerably as the day passes. These distributions are 
shown in Figs. 1(c) to (g). The Poisson distributions with parameter 𝜆, which is 
calculated by Eq. (8), are also shown in Figs. 1(c) to (g) by red lines. To test 
whether the distributions of 𝑛" at each day are Poisson distributions, χ%	tests 
were conducted with the null hypothesis that “the distribution of 𝑛", which is 
calculated by Eq. (7), is equal to the Poisson distribution with 𝜆, which is 
calculated by Eq. (8)” (16). The results of this test reveal that two H266 cell lines 
(CV cell lines and sh-CD24 cell lines) are calculated as 𝑝 = 0.22 and three 
JMM cell lines (CV cell lines, sh-CD24 cell lines, and sh-CD26 cell lines) are 
calculated as	𝑝 = 0.20. Thus, the null hypothesis cannot be rejected. However, 
as R warned that χ%	tests might be incorrect in these situations, Fisher’s exact 
tests were additionally conducted for the same samples under the same 
conditions. The results of these tests are 𝑝 = 1 in all five cell lines. The two 
tests prove that the distribution of 𝑛" is almost surely the Poisson distribution. 
Thus, it is concluded that the growths of these five cell lines follow the Poisson 
process and that the abovementioned theories can be applied to these cell 
lines. 
 Based on these results, I exploited the data of the H226 and JMM cell lines to 
solve Eq. (6) numerically. The results are plotted in Fig. 2 and Fig. 3, while the 
actual data obtained from (14) are shown in Fig. 2(a), and Fig. 3(a). Monte 
Carlo simulations reveal that the growth of sh-CD24 cell lines and sh-CD26 cell 
lines is evidently slower than that of CV cell lines, which is in agreement with 
actual data (Figs. 2 and 3). The results of the Monte Carlo simulations reinforce 
the former report and demonstrate that the theories obtained from the above 
discussion can be verified through in vitro experiments. These theories are 
suggested to be valid in the five cell lines. 
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 In conclusion, if the mean and variance of cancer growth are obtained through 
appropriate experiments, 𝑛" and 𝜆 can be calculated by Eqs. (7) and (8). The 
distribution of 𝑛" calculated by Eq. (7) is demonstrated to be almost surely the 
Poisson distribution with 𝜆 calculated by Eq. (8). Thus, 𝑁(𝑡) can be obtained 
by numerically solving Eq. (6). Monte Carlo simulations are suggested to be an 
informative tool to analyze the growth of a cancer.  
 
Violation of symmetry by cancer clones leads to cancer heterogeneity 
 
The interpretations of Eq. (1) and Eq. (6) are continued in this section. First, 

Eq. (6) apparently consists of two equations. Thus, Eq. (6) indicates that cancer 
growth follows two different formulae. 𝑁(𝑡) = 𝑛"𝑒\T + 𝛾(𝑡)𝑒\T is defined as the 
Ryu pathway and	𝑁(𝑡) = 𝑛"𝑒\T − 𝛾(𝑡)𝑒\T as the Ken pathway. Eq. (6) is 
numerically solved with 𝑛" = 1 to observe how cancer occurs from a single 
cell. Based on the former section, it is reasonable to set the growth rate as 𝜆 =
2.5.	Figs. 4(a) to (d) show the results of the simulation of Eq. (6) with 𝑛" = 1. 
These figures show that two pathways emerge from a “single” cancer cell. To 
avoid misunderstanding, in this study, symmetric clones have been defined as 
the clones with identical genetic expressions and that occur in epigenetic 
scenarios in an environment. Figs. 4(a) and (b) show that the different growth 
patterns that follow Eq. (6) exist from a single clone. Fig. 4(a) shows that the 
clones proliferate competitively. A few competitive proliferations are found in 
Fig. 2(c) and Fig. 3(c). If the clones that follow a pathway (e.g., Ryu) can 
compete with the other clones (e.g., Ken), then the majority of cancer cells 
consist of Ryu clones and Ken clones form a minor population (Fig. 4(c)). Thus, 
Eq. (6) states that a clone can produce asymmetric cell populations. 
Fig. 4(c) shows the simulation data for the case in which the number of cancer 

cells that followed the Ken pathway could not proliferate for some reason; this 
implies that Ken clones’ proliferations are quiescent. If the cancer cells that did 
not exhibit proliferation were allowed to proliferate, Eq. (6) would repeatedly 
produce asymmetric clones. Fig. 4(d) shows the results of Monte Carlo 
simulations with calculations performed 50 times. The figure shows that a few 
pathways are below zero. This suggests that cancer growth has the potential to 
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stop autonomously. The same situations can be observed to a minor extent in 
Figs. 2(c) and 3(e).  
 Let us now focus on the interpretation of Eq. (1). Considering 𝑞 = 𝑒8\T, Eq. (1) 
is rewritten as follows:  

𝑝N(𝑡) = Z N89NV89
[ 𝑞NV(1 − 𝑞)N8NV	, 𝑤ℎ𝑒𝑟𝑒	𝑞 = 𝑒8\T  (Eq.1’) 

Mathematically, Eq. (1’) is typically interpreted as follows: there is a trial with 
two potentials referred to as “success” and “failure,” where the probability of 
success is 𝑞. Then, 𝑝N(𝑡) expresses the probability of the occurrence of 𝑛" 
successes in 𝑛 trials (16). Based on this concept, I interpret Eq. (1’) as follows: 
cancer clones always select “success,” that is, to proliferate, or “failure,” that is, 
not to proliferate, every time. The probability of a clone that proliferates at time 
𝑡, which is named as a growing clone, is 𝑞 = 𝑒8\T. Then, 𝑝N(𝑡) expresses the 
probability that 𝑛" clones out of 𝑛 cancer cells “succeed” in proliferating. 
Probability 𝑞 indicates that the number of growing clones decreases 
considerably as time passes. This finding is in agreement with the distribution of 
𝑛" (Figs. 1(c) to (g)). If there exists a clone whose probability 𝑞 is nearly zero, 
then such a clone appears to be quiescent. However, such a clone has the 
potential to proliferate because 𝑞 is not exactly zero at any time.  
Let 𝑁�(𝑡) be the number of growing clones at time 𝑡. 𝑁�(𝑡) is defined as 

𝑁�(𝑡):= 𝑞 ∗ 𝑁(𝑡) = 𝑛" ± I2𝑛"𝜆 ∫ 𝑒8\jT
" 𝑑𝐵𝑠           Eq.9 

Eq. (9) suggests that 𝑁�(𝑡) ≤ 0 could be possible depending on parameters. 
𝑁�(𝑡) ≤ 0 implies that a cancer cannot grow in a short time interval. At the time 
period in which 𝑁�(𝑡) ≤ 0, cancer is globally quiescent. As the average of the 
Brownian motion function is zero,  

𝑒𝑥𝑝𝑒𝑐𝑡𝑎𝑡𝑖𝑜𝑛𝑠	𝑜𝑓	𝑁�(𝑡) ≔ 𝐸[𝑁�(𝑡)] = 𝑛" 
holds. This equation justifies that 𝑛" is a one of the parameters of cancer. 
According to Eq. (1’), cancer globally always endeavors to make 𝑛" clones 
proliferate at any time. 
 To investigate if the theories discussed in this section can be applied to actual 
data, Eq. (9) is numerically solved using JMM CV cell lines and JMM sh-CD26 
cell lines. While the 𝑛" of JMM CV is the largest among the five cell lines, the 
𝑛" of JMM sh-CD26 cell lines is the smallest (Table 1). This is the reason for 
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using the two cell lines in this numerical solution. The calculation result for JMM 
CV cell lines shows that 𝑁�(𝑡) is always approximately 150 during the time 
interval (0, 250] (Fig. 4(e)). Therefore, growing clones exist in JMM CV cell lines 
at almost every time in (0, 250]. This result suggests that it is justified that 𝑛" is 
the parameter of cancer. In contrast, in JMM sh-CD26 cell lines, a few clones 
are calculated as 𝑁�(𝑡) ≤ 0 (Figs. 4(f) to (i)). Moreover, a few growing clones 
are calculated once 𝑁�(𝑡) ≤ 0 and after considerable time, 𝑁�(𝑡) > 0 has the 
potential to re-occur (Fig. 4(f)). This result suggests that cancer clones always 
have the potential to proliferate at any time even if 𝑁�(𝑡) ≤ 0. This result 
reinforces the result shown in Fig. 4(d) and its theory. 
Considering the above results, Eq. (6) is shown to describe the violation of 

symmetry of cancer cells that leads to cancer heterogeneity. Eq. (1) also states 
that cancer heterogeneity globally includes the fact that cancer is quiescent in a 
few cases. Eq. (9) describes the number of growing clones. Considered 
together, Eq. (1), Eq. (6), and Eq. (9) are the equations that describe cancer 
heterogeneity. 
 
Discussion 
 
In this study, a mathematical model was developed by implementing a 

stochastic process based on the mathematical interpretation of generalized 
cancer properties. It was shown that cancer growth follows the Yule process. 
Thus, when there are 𝑛" cancer cells at time 0, the expectation and variance of 
cancer growth at time 𝑡 can be determined via Eqs. (2) and (3).  
First, I assumed that the growth of the cancer cells occurred at random in a 

short time period. Eq. (2’) showed that the randomness was zero when one 
calculated the mean of cancer growth. Therefore, it was reasonable to suppose 
such randomness followed a Brownian motion function, and Eqs. (4) to (8) were 
obtained. If we perform appropriate experiments or the observations of cancer 
patients’ status, then we can obtain the mean and variance of cancer growth. In 
this study, I found the formulae of 𝑛" and λ to calculate from the mean and 
variance obtained appropriate experiments (Eqs. (7) and (8)). I proved that the 
distribution of 𝑛", which was calculated by Eq. (7), was almost surely the 
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Poisson distribution with parameter λ, which was calculated by Eq. (8) using 
the experimental data. Based on this proof, Eq. (6) was solved numerically. The 
results of the numerical solution of Eq. (6) and its Monte Carlo simulations 
reinforced the former report and demonstrated that the theories obtained from 
above discussion can be verified via in vitro experiments. Further, Monte Carlo 
simulations were suggested to be an informative tool to analyze the growth of a 
cancer. As my assumption is simple and can be adapted to the all kinds of 
cancers, Eq. (6) and its Monte Carlo simulations can be adapted to all kinds of 
cancer and can provide informative results. However, more experimental 
investigations are necessary to apply the equation to all type of cancers.  
In physics, randomness is referred to as additive noise (17). It is natural to 

consider that the source of this noise (randomness) generally consists of two 
factors in oncology: an intrinsic factor and an extrinsic factor. Elowitz et al. 
stated that E.coli could yield different responses to these two factors (18). It 
would be interesting to investigate whether these results are applicable to 
cancer cells. A major intrinsic factor in a cell is the instability of a genome. 
Williams et al. considered the instability of a genome to be pink noise, which is 
common in nature (13). Nowell discussed cancer heterogeneity in the context of 
genome instability (19). In addition, Abdallah et al. recently reported that the 
distribution of cancer cells with an unstable genome is characteristic, whereas 
cells with a stable genome have a relatively normal distribution (20). Even 
though they only stated that the distribution is characteristic, I consider that the 
distribution appears to be the negative binominal distribution shown in Figs. 1(a) 
and (b). The results on intrinsic factors continue to accumulate; however, 
extrinsic factors are largely neglected. To take these facts into account, it is 
necessary to examine whether the randomness in cancer growth is influenced 
by intrinsic factors, extrinsic factors, or both.  
  It is found that Eq. (6) can produce asymmetric clones (Figs. 2(b) and (c), 
Figs. 3(b) and (c), and Fig. 4(a) to (c)). A simulation experiment shows that 
asymmetric clones can be produced by a single cancer cell, which is followed 
by Eq. (6) (Figs. 4(a) and (b)). Asymmetric clones typically appear to proliferate 
competitively (Fig. 2(b), Fig. 3(b), and Fig. 4(a) and (b)). Such a locally 
competitive asymmetric proliferation will cause cancer heterogeneity globally.  
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Eq. (1’) can be interpreted as follows: cancer clones always select “success,” 
that is, to proliferate, or “failure,” that is, not to proliferate, every time. The 
probability of a growing clone is 𝑞 = 𝑒8\T . Then, 𝑝N(𝑡) expresses the 
probability that 𝑛" clones out of 𝑛 cancer cells ”succeed” in proliferating. The 
number of growing clones, 𝑁�(𝑡), can be formulated as Eq. (9). Fig. 4 
demonstrates that the events of 𝑁�(𝑡) ≤ 0	are not rare events depending on 
two parameters.	𝑁�(𝑡) ≤ 0 implies that growing clones never exist in the 
particular time period, that is, cancer is globally quiescent at this time. The 
probability of 𝑞 is interesting because it indicates that success probability 
decreases exponentially as time passes. In accordance with this, the Poisson 
distribution expresses that 𝑛" decreases considerably as time passes. 
Considered together, the cancer clones that can proliferate are suggested to 
decrease considerably as time passes. Figs. 1(a) and (b) show that the 
numbers of cancer cells at the peak of the distribution are always below 
expectation, which is the property of negative binomial distributions (16). Thus, 
Eq. (1) implies that the majority of cancer clones, which include quiescent 
clones, grow slower than expected. One of the reasons for this might be 
asymmetric divisions because locally competitive proliferations make cancer 
growth slower. Considered together, Eqs. (1), (6), and (7) represent tumor 
heterogeneity, which is caused by the violation of symmetry. 
The Yule process was originally established by Yule to mathematically 

formulate Darwin’s evolution theory (16,21). Subsequently, this process became 
an important topic of study in mathematics and was applied in several fields of 
science (16). In recent years, McGranahan and Swanton interpreted that tumor 
evolution within a cancer patient might follow the pattern of the evolution of 
species according to Darwin’s evolution theory (22). As the cancer model 
established in this study follows the Yule process (such as Eq. (1)) and it is 
developed further into Eq. (6), in agreement with McGranahan and Swanton, it 
may be suggested that cancer evolution follows Darwin’s evolution theory. 
However, further experimental investigations are necessary to substantiate this 
hypothesis.  
 In conclusion, in this study, a generalized mathematical model of cancer was 
developed based on the general properties of cancer cells and an equation was 
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derived to represent the violation of symmetry of cancer clone cells that leads to 
cancer heterogeneity. Re-analysis of the experimental data validated the 
theories. Monte Carlo simulation was found to be an informative tool for 
analyzing cancer growths. These findings are expected to provide a deeper 
understanding of the mechanisms of cancerous tumor growth. Additionally, with 
further experimentation, the simulation of the growth of cancer cells presented 
here has the potential to reveal each cancer’s own specific features or common 
properties among the different kinds of cancers. 
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Table 1  
(a) Growth data of H226 CV cell lines. 
 DAY1 DAY4 DAY7 DAY10 DAY14 DAY17 
MEAN 
(UNIT: *105) 

1.00 3.47 9.79 29.52 146.94 299.77 

VARIANCE 
(UNIT: *105) 

0 3.56*103 4.17*105 5.27*106 1.26*108 4.47*108 

𝒏𝟎 N/A 171.01 9.68 8.02 11.46 7.27 
𝝀 N/A 2.42 3.70 4.14 3.46 4.85 

 
(b) Growth data of H226 sh-CD24 cell lines. 
 DAY1 DAY4 DAY7 DAY10 DAY14 DAY17 
MEAN (UNIT: 
*105) 

1.00 1.33 3.98 12.85 35.61 62.27 

VARIANCE 
(UNIT: *105) 

0 2.20*103 7.99*104 1.54*106 1.07*107 3.66*107 

𝒏𝟎 N/A 5.06 8.99 5.38 5.68 3.62 
𝝀 N/A 2.93 3.43 4.00 3.23 4.55 

 
(c) Growth data of JMM CV cell lines. 
 DAY1 DAY4 DAY7 DAY10 
MEAN 
(UNIT: *105) 

1.00 8.93 23.46 79.63 

VARIANCE 
(UNIT: *105) 

0 1.49*102 2.79*103 5.79*105 

𝒏𝟎 N/A 420.48 79.90 57.23 
𝝀 N/A 1.75 2.50 3.06 

 
(d) Growth data of JMM sh-CD24 cell lines. 
 DAY1 DAY4 DAY7 DAY10 
MEAN 
(UNIT: *105) 

1.00 7.37 13.47 29.18 
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VARIANCE 
(UNIT: *105) 

0 28.22 433.10 1.89*104 

𝒏𝟎 N/A 143.30 246.02 13.35 
𝝀 N/A 2.03 1.84 3.12 

 
(e) Growth data of JMM SH-CD26 cell lines. 
 DAY1 DAY4 DAY7 DAY10 
MEAN 
(UNIT: *105) 

1.00 4.40 10.45 24.04 

VARIANCE 
(UNIT: *105) 

0 500.00 3.49*103 1.39*104 

𝒏𝟎 N/A 23.10 12.23 17.73 
𝝀 N/A 2.43 2.84 2.98 

 
Table 1 Calculation data of the growth of five cell lines. 
The means and variances of the five cell lines are cited in (14) with unpublished 
data. The values of 𝑛" and 𝜆 of each cell line are calculated using Eqs. (7) 
and (8).  
 
 
Figure legend 
Fig. 1 Distribution of a cancer 
(a) Negative binominal distribution of cancer cells with 𝑛" = 10. The red point 
indicates the expected value. The number of cancer cells at the peak of this 
distribution are always below that expected, which is characteristic of negative 
binomial distribution.  
(b) Change in distribution with variable 𝑛", whose value ranges from 5 to 20. 
The dot on each graph indicates the expected value. It was found that the 
height of the peak decreases as the value of 𝑛" increases 
From (c) to (g) The distribution of 𝑛" (bar graph) and Poisson distribution with 
𝜆 (red line plot); both parameters were calculated using Eqs. (7) and (8), 
respectively. 
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(c) Graphs of H226 CV cell lines. This bar graph distribution is obviously 
different from normal distribution, but seems to be equal to the Poisson 
distribution (red line). 
(d) Graphs of H226 sh-CD24 cell lines. 
(e) Graphs of JMM CV cell lines. 
(f) Graphs of JMM sh-CD24 cell lines. 
(g) Graphs of JMM-shCD26 cell lines. 
 
Fig. 2 Comparison of cancer cell (H226) growth between actual data 
obtained from the experiment and simulation experiments  
(a) Comparison of growth between H226 CV cell lines (blue bar graph) and 
H226 sh-CD24 cell lines (red bar graph). * indicates the significant difference 
between the CV cell lines and sh-CD24 cell lines. This graph is basically equal 
to the one published in (14)  
(b) Numerical solution of the two cancer cell lines by Eq. (6). The time interval is 
set to (0,50]. The blue plots denote the solutions of the H226 CV cell lines, 
while the red plots denote the solutions of the H226 sh-CD24 cell lines. Both 
pathways are not smooth but have a zigzag pattern. This is the characteristic of 
the stochastic differential equations (17). 
(c) Monte Carlo simulation of H226 cells lines. the simulation calculations were 
performed 100 times. The time interval was set to (0,250]. The growth of sh-
CD24 cell lines is obviously slower than that of CV cell lines. The notation of the 
Y-axis value, i.e., 1e+05, means 1.0*105 (this notation is usually used in R and 
will be used later) 
(d) Magnification of （c）. The time interval was set to (0,50]. 
(e) Monte Carlo simulation of H226 cell lines. The results of performing the 
calculation 500 times are shown. This graph is similar to that of shown in (c). 
Thus, the graphs (c) and (e) suggest that performing the calculation 100 times 
is sufficient to simulate the growth of a cancer. Some pathways of red plots are 
found to be nearly zero. 
 
Fig. 3 Another comparison of cancer cell (JMM) growth between actual 
data and those of simulation experiments  
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(a) Comparison of the growth between JMM CV cell lines (blue bar graph) and 
H226 sh-CD24 cell lines (red bar graph), and JMM sh-CD26 cell lines (black bar 
graph). * indicates the significant difference between the CV cell lines and sh-
CD24 or sh-CD26 cell lines. This graph is identical to the one published in (14) 
as well. 
(b) Numerical solution of the three cancer cell lines. The blue plots denote the 
solutions of the JMM CV cell lines, the red lines denote the solution of the JMM 
sh-CD24 cell lines, and the black cell lines denote the solution of the JMM sh-
CD26 cell lines. 
(c) Monte Carlo simulations of three cell lines. The numerical solutions are 
repeated 100 times. The time interval was set to (0,250]. The growth of the sh-
CD26 cell lines is obviously slower than those of the other two lines, and the 
growth of the sh-CD24 cell lines is obviously slower than that of the CV cell 
lines. 
(d) Magnifications of (c). The time interval was set to (0,50]. 
(e) Monte Carlo simulation of H226 cell lines. The results of performing the 
calculation 500 times are shown. This graph is similar to that shown in (c). 
Thus, the graphs (c) and (e) suggest that performing the calculation 100 times 
is sufficient to simulate the growth of a cancer as well as that of H226 cell lines. 
Some pathways of black plots are found to be nearly zero. 
 
Fig. 4. Simulation experiments that show the symmetry violation of cancer 
cells 
 Equation (6) is numerically solved for	𝑛" = 1 and	𝜆 = 2.5. The black line 
indicates the Ryu pathway, and the red line indicates the Ken pathway. 
(a) Growth simulations of both the pathways. This graph shows that both the 
pathways grow competitively. 
(b) The simulation result shows that the numbers of Ryu pathways are always 
greater than those of Ken pathway.  
(c) The graph that denotes the growth of the Ken pathway is quiescent whereas 
that of the Ryu pathway grows normally. 
(d) The simulation experiments were repeated 50 times. Notice that there are 
some pathways in which the cell numbers go below zero.  
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(e) Numeric solution of the number of growing clones 𝑁�(𝑡) in the JMM CV cell 
lines. The two plots consist of the Ryu pathway and Ken pathway. These 
graphs apparently show that the mean of the growing clone is 𝑛".  
(f) Numerical solution of the number of growing clones 𝑁�(𝑡) in the JMM sh-
CD26 cell lines. The blue dashed line indicates the zero line. It can be observed 
that the red line goes below zero once and then goes above zero again. The 
red line decreases drastically during the short time it is observed at time 
[130,160] as well. 
(g) Another solution of 𝑁�(𝑡) of the JMM sh-CD26 cell lines. Both lines 
decrease globally over time, and the number of growing clones is less than zero 
halfway through the observation period. 
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