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Abstract 8 
Recent advances in single cell sequencing technologies allow for greater resolution in assessing 9 
tumor clonality using chromosome copy number variations (CNVs), which can be inferred from 10 
single cell RNA-seq (scRNA-seq) data using applications such as inferCNV. Inferences regarding 11 
tumor clonality are frequently visualized using phylogenetic plots, which previously required time-12 
consuming and tedious manual analysis.  Here, we present UPhyloplot2, a python script that 13 
generates phylogenetic plots directly from inferCNV output files. The tool is publicly available at 14 
https://github.com/harbourlab/UPhyloplot2/. 15 
 16 
Introduction 17 
Single cell RNA sequencing (scRNA-seq) 18 
has become an important new tool for 19 
studying gene expression in individual cells 20 
of heterogenous samples. While this 21 
technology is still maturing, it is already 22 
providing powerful new insights into normal 23 
and diseased tissue types [1, 2]. In 24 
particular, single cell technology has 25 
resulted in great strides in cancer research.  26 
A hallmark of cancer is aneuploidy – an 27 
abnormal number of chromosomes or 28 
chromosomal segments  – which often 29 
correlates with tumor aggressiveness [3-6]. 30 
Further, aneuploidy can be used to identify 31 
subclones of tumor cells and to infer tumor 32 
evolution, which can have important clinical 33 
implications [7]. Single cell sequencing can 34 
be used to analyze subclonal tumor 35 
architecture at unprecedented resolution [1, 8].  While single cell DNA sequencing (scDNA-seq) 36 
is an emerging technique for this type of analysis, it is very expensive and yet to be optimized.  37 
Alternatively, CNVs can be inferred from scRNA-seq using applications such as inferCNV [9],  38 
HoneyBadger [10], and CaSpER [11], using gene expression patterns to infer CNVs and to cluster 39 
cells into putative subclones. This approach for studying tumor clonality has been used 40 
successfully by our group and others [8, 12]. Tumor clonality is commonly used to visualize 41 
phylogenetic plots, where the length of tree branches is proportional to the number of cells in each 42 
subclone. Until now, such visualization required time-consuming and error-prone manual 43 
curation. Here we describe a new tool that we have created called UPhyloplot2, which is an 44 

Figure 1: Generating phylogenetic tress with UPhyloplot2. 
The “cell_groupings” file is generated by inferCNV run with 
HMM, and used as inputs for UPhyloplot2. Unique CNVs 
for subclones can be inferred manually from the “.dat” file.  
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enhanced version of UPhyloplot [13].  This application directly takes inferCNV output files and 45 
generates evolutionary phylogenetic plots. 46 
 47 
Results 48 
UPhyloplot2 works directly with the output files 49 
of inferCNV, plotting evolutionary trees with the 50 
length of each branch correlating with the 51 
number of cells in the respective subclone. 52 
UPhyloplot2 was written in Python 3, making it 53 
easy to run on any platform (Figure 1).  54 
Uphyloplot2 uses the 55 
“HMM_CNV_predictions.*.cell_groupings” file 56 
generated by inferCNV (with HMM) to plot. 57 
Multiple “cell_groupings” files can be processed 58 
at once, to generate one output figure 59 
containing one tree per file. Subsequently, 60 
unique CNVs can be inferred using the 61 
“.HMM_CNV_predictions.*.pred_cnv_regions.dat” file.  Four “cell_groupings” file being used as 62 
inputs (Figure 2). Output files are true SVG files, allowing for easy editing (colors, lines, branch 63 
rotation) in programs like Adobe Illustrator or any other SVG editor. 64 
 65 
Discussion 66 
The python script presented here allows phylogenetic trees of tumor subclones to be plotted from 67 
inferCNV output files. The script and further documentation are publicly available at 68 
https://github.com/harbourlab/UPhyloplot2/. In contrast to algorithms that estimate molecular time 69 
from whole-genome sequencing data using the number of mutations [14],  the use of CNVs to 70 
infer clonality and tumor evolution is more complex because some chromosomal segments are 71 
selectively altered while others occur through massive genome reorganization such as 72 
chromothripsis [15, 16], chromoplexy [17] and anaphase catastrophe [18]. It is important to note 73 
that our methodology for plotting phylogenetic trees with branch lengths being proportional to the 74 
number of cells does not attempt to depict molecular time, but rather, the proportional size of each 75 
subclone. New methodologies are also being developed for analyzing single cell CNV and single 76 
cell mutation data [19].  In summary, we present an automated tool for generating phylogenetic 77 
trees from scRNA-seq data that allows the visualization of tumor subclones and heterogeneity. 78 
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Figure 2. Example plots generated from four cell 
groupings files at once. Some branches were rotated 
to avoid overlapping. 
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