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Abstract 

 

The Illumina Infinium® MethylationEPIC BeadChip system (hereafter EPIC array) is 

considered to be the current gold standard detection method for assessing DNA 

methylation at the genome-wide level. EPIC arrays are used for hypothesis 

generation or pilot studies, the natural conclusion is to validate methylation 

candidates and expand these in a larger cohort, in a targeted manner. As such, an 

accurate smaller-scale, targeted technique, that generates data at the individual CpG 

level that is equivalent to the EPIC array, is needed. Here, we tested an alternative 

DNA methylation detection technique, known as bisulfite-based amplicon 

sequencing (BSAS), to determine its ability to validate CpG sites detected in EPIC 

array studies. BSAS was able to detect differential DNA methylation at CpG sites to 

a degree which correlates highly with the EPIC array system. However, BSAS 

correlated less well with EPIC array data when the magnitude of change via EPIC 

array was greater than 5%, suggesting that this lower specificity at larger differential 

methylation values is a consequence of PCR amplification that BSAS requires. 

However, our data suggests that BSAS does offer advantages that the EPIC array: 

BSAS amplifies a region of the genome (~500bp) around a CpG of interest, allowing 

analyses of other CpGs in the region that may not be present on the EPIC array, 

aiding discovery of novel CpG sites and differentially methylated regions of interest. 

 We conclude that BSAS offers a valid investigative tool for specific regions of the 

genome that are currently not contained on the array system. 
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Introduction 

 

Epigenetic modifications, such as DNA methylation, play a vital role in regulating 

gene expression [1] and have the potential to induce phenotypic changes [2-6].  DNA 

methylation occurs when a methyl group is covalently transferred to the C5 position 

of the cytosine ring of a DNA molecule by a methyltransferase enzyme, with the 

resulting modified cytosine then termed 5-methylcytosine (5mC) [7].  In mammals, 

most DNA methylation occurs at CpG dinucleotides. CpG sites themselves can be 

defined as a singular modified cytosine residue which reside predominantly in 

promoter regions of the genome, which are renowned for being CpG dense [8].  
 

DNA methylation is heavily influenced by the surrounding environment; factors such 

as tobacco smoking [9-12], alcohol [13, 14], nutrition [15, 16], stress [17] and aging 

[18, 19] can all impact on DNA methylation at CpG sites. Alterations to DNA 

methylation are associated with changes in phenotype and also, in some instances,  

methylation changes contribute to disease pathology [20-23].  

 

As a result of these relatively recent observations, the assessment of differential 

DNA methylation in humans, and in particular, epigenome-wide association studies 

(EWAS), is a burgeoning field.  High-throughput array technologies are a popular 

choice for EWAS, due to their robustness and accuracy [24]. The Illumina Infinium® 

MethylationEPIC array (hereafter ‘EPIC array’) quantifies methylation at 850,000 

different CpG sites [25], and although this is still a small proportion of the total 

number of CpG sites in the genome (~28 million [26]) it represents a broad 

distribution of sites that give a specific and robust measurement of methylation at 

those sites.  

 

Further, the goal of many whole-genome studies of DNA methylation is often a pilot 

or scoping study to capture a range of targets that may be associating with, e.g., a 

particular environmental exposure.  As such, once the genome has been 

investigated in a number of samples, a whole-genome approach is not always 

necessary if the user simply requires follow up and/or validation of identified loci in a 

larger cohort.  This means that accurate normalisation of raw data is imperative to 

ensuring data is robust for follow-up analysis and/or validation.  To undertake further 
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analyses and to validate methylation array-based experiments, several different 

methods exist that that rely on bisulfite treatment of DNA: bisulfite-based amplicon 

sequencing (BSAS), bisulfite pyrosequencing and methylation-specific PCR (MS-

PCR) are methods which can specifically target a predetermined area of interest in 

the genome at a low cost and higher sample throughput, compared to arrays. 

Bisulfite pyrosequencing has been found to show congruence to EPIC array analysis 

[27]. However, pyrosequencing  technology is known to have quantitative flaws due 

to the output of sequences generated through luminescent methods [28].  MS-PCR 

is a method often used in clinical settings [29], however it has a high false positive 

rate [30]. By contrast, BSAS detects cytosine methylation to base-pair scale 

resolution without reliance on light detection methods for sequencing [31]. BSAS is a 

multiplex procedure that can quantitively assess each CpG site within numerous 

target regions at the same time [32]. Thus, given the limitations of pyrosequencing 

and MS-PCR, here we examine whether BSAS is an accurate EPIC array validation, 

replication and/or expansion tool for targeted DNA methylation analyses.  

 

To answer the question, we used data from EPIC arrays conducted on individuals 

from the Christchurch Health and Development Study (CHDS) which evaluated 

differentialDNA methylation in response to regular cannabis use [12].  The CHDS is 

a longitudinal study of a birth cohort of 1265 children born in 1977 in Christchurch, 

New Zealand, who have been studied on 24 occasions from birth to the age of 40 (n 

= 904 at age 40). Of this, a total 96 individuals were selected, and arrays were 

performed in two separate batches in consecutive years (n = 48 per year).  

 

For validation analysis we selected individuals with EPIC array data, as well as new  

individuals (n=82), to serve as a validation and expansion cohort for the differential 

DNA methylation identified via EPIC array [12]. Specifically, we asked whether 

BSAS, after determination of the most appropriate normalisation method, produced 

the same average methylation values as EPIC arrays, when comparing case data to 

control data.  

Interestingly, while both EPIC array and BSAS are readily used as standalone 

experiments, direct comparison between the two technologies is not widely reported.  

Given the rising popularity of studies investigating DNA methylation, establishing the 
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reliability of a method that would allow for accurate expansion of existing studies in 

larger cohorts would be valuable to the scientific community.   

Methods and materials  

Cohort selection and DNA extraction - EPIC arrays 

EPIC array data used in this study has previously been published[12].  Briefly, in this 

study we use DNA from human participants who are partitioned into three groups: i) 

regular cannabis users, who had never used tobacco (“cannabis-only”); those who 

consumed both cannabis and tobacco (“cannabis plus tobacco”), and; iii) controls, 

who consumed neither cannabis nor tobacco.  Controls were matched as closely as 

possible for sex, ethnicity and parental socioeconomic status (data described in 

[12]).  DNA was extracted from whole blood using the KingFisher Flex System 

(Thermo Scientific, Waltham, MA USA), as per the published protocols. DNA was 

quantified via NanoDropTM (Thermo Scientific, Waltham, MA USA) and standardised 

to 100ng/μl. Equimolar amounts were shipped to the Australian Genomics Research 

Facility (AGRF, Melbourne, VIC, Australia) for processing via the Infinium® 

Methylation EPIC BeadChip (Illumina, San Diego, CA USA).   

 

Bioinformatic analysis – processing and normalisation of raw EPIC array data 

For this study, analysis was carried out using R statistical software (Version 

3.5.2)[33]. Quality control was first performed on the raw data; sex chromosomes 

and 150 failed probes (detection P value greater than 0.01 in at least 50% of 

samples) were excluded from analysis. Furthermore, potentially problematic CpGs 

with adjacent single nucleotide polymorphisms (SNPs), or that did not map to a 

unique location in the genome [34] were also excluded. The raw data were then 

normalised using four different pipelines, Illumina, SWAN [35], Funnorm [36] and 

Noob [37] in the minfi package [38]. Normalisation was then checked by observing 

density plots as well as multidimensional scaling plots of the 5000 most variable CpG 

sites. 

 

Cohort selection and DNA extraction – BSAS experiments 
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BSAS analysis was carried out on two groups: cannabis plus tobacco users (n=44) 

and controls (n=38), who had never used cannabis – in contrast to the EPIC array 

analysis, no cannabis-only participants were used in BSAS.  This is a consequence 

of the small number of individuals who use cannabis but who do not also use 

tobacco.  Cannabis users were all selected on the basis that they either met DSM-IV 

diagnostic criteria [39] for cannabis dependence or had reported using cannabis 

consumption on a daily basis for a minimum of three years prior to age 28. 

Participants were matched as closely as possible for sex, ethnicity, and parental 

socioeconomic status (Supplementary Table 1). Because this was a birth cohort 

collected across a four month period, they are all of a similar age. Collection and 

analysis of DNA in the Christchurch Health and Development Study was approved 

by Southern Health and Disability Ethics Committee (CTB/04/11/234/AM10).  DNA 

was extracted from whole blood samples using a Kingfisher Flex System (Thermo 

Scientific, Waltham, MA USA). DNA was quantified via nanodrop (Thermo Scientific, 

Waltham, MA USA) and standardised to 100 ng/µl. Bisulfite treatment was carried 

out using the EZ DNA Methylation-Gold kit (Zymo Research, USA) as per the 

manufacturer’s instructions. DNA samples were then diluted to a final concentration 

of 100 ng/µl.  

 

CpG site selection, primer design and amplification - BSAS 

A total of 15 CpG sites, representing 15 individual probes from the Illumina EPIC 

array were chosen based on their differential methylation status in cannabis plus 

tobacco users compared to controls (Table 1).  A range of probes at differing levels 

of significance (not significant, nominally significant, significant after P-value 

adjustment) were chosen to reflect the range of data provided by the EPIC arrays.  

Primers to amplify bisulfite-treated DNA were designed using the online tool 

BiSearch [40] to amplify a ~250 base pair region which spanned the CpG site 

(Supplementary Table 2). At the 5’ end of each primer sequence, an Illumina 

overhang (33 base pair sequence) was included to ensure the ability to pool the 

amplicons and barcode them for high-throughput sequencing. 

Bisulfite-converted DNA was amplified via PCR, using KAPA Taq HotStart DNA 

Polymerase (Sigma, Aldrich) under the following conditions: 95 °C for 10 min, 
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followed by 40 cycles of 95 °C for 30 sec, 59 °C for 20 sec, 72 °C for 7 min, and 

finally held at 4 C° using the Mastercycler Nexus (Eppendorf, Australia). PCR 

products were then purified with the Zymo DNA Clean & Concentrator Kit™ (Zymo 

Research, USA).   

Following the PCR, DNA was cleaned up with Agencourt® AMPure® XP beads 

(Beckman Coulter) and washed with 80% ethanol and allowed to air-dry. DNA was 

then eluted with 52.5 µl of 10 mM Tris pH 8.5 before being placed back into the 

magnetic stand. Once the supernatant had cleared, 50 µl of supernatant was taken 

up and aliquotted into a fresh 96-well plate. DNA samples were quantified using the 

Quant-iT™ PicoGreen™ dsDNA Assay kit (Thermo Fisher) using the FLUROstar® 

Omega (BMG Labtech). Sequence libraries were prepared using the Illumina 

MiSeq™ 500 cycle Kit V2, and sequenced on an Illumina MiSeq™ system at Massey 

Genome Services (Palmerston North, New Zealand). 

Bioinformatic and statistical analysis – BSAS data 

Illumina MiSeq™ sequences were trimmed using SolexQA++ software and aligned 

to FASTA bisulfite converted reference sequences using the package Bowtie2 

(version 2.3.4.3). Each individual read was then aligned to all reference sequences 

using the methylation-specific package Bismark [41]. Bismark produced aligned 

mapped reads with counts for methylated and unmethylated cytosines at each CpG 

site, thus BSAS returns additional CpG sites to the intended validation target, as 

each sequencing read contains multiple CpG sites. Cytosine proportion is calculated 

based upon the number of cytosines divided by the number of cytosines with the 

additions of the number of thymines present��/���� � ��. This gave the average 

methylation β values for each individual at each given CpG site. These β values 

could be anywhere between 0 -1, with a β equal to 1 indicating 100% methylation at 

that CpG site across all sequencing reads. These data were imported into R Studio 

(RStudio version 3.3.0) and the edgeR package [42] was used to assess differential 

DNA methylation between cannabis users and controls; coverage level was set to 

greater or equal to “8” across unmethylated and methylated counts. This was also 

set at 50 and 100 reads and no differences were seen between the results at any of 

these thresholds, so “8” was used for the continuation of BSAS calling under the 
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recommendations of [42]. A negative binomial generalised model is used to fit the 

counts (methylated and unmethylated reads) in regards to the two variable groups.  

A scatter plot including a linear regression line with adjusted R2 values was 

generated in R Studio to quantify the correlation between β values produced with 

EPIC array and BSAS. Adjusted R2 values were calculated for: i) BSAS cases 

versus EPIC cases, and; ii) BSAS controls versus EPIC controls. A Bland Altman 

analysis [43] was used to compare the agreement of the two techniques. Means 

were log transformed and lower and upper levels of agreement with 95% confidence 

intervals were calculated. Summary tables compiled of the CpG sites of interest with 

nominal P value significance and post multiple testing using false discovery rate 

(FDR) of less than 0.05 were considered to be statistically significant. All graphs 

were constructed using the R package ggplot2 [44].  
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Results 

Validation and replication of EPIC array data using BSAS: 

 

The differences between β values of cannabis plus tobacco users (cases) and 

controls were calculated for each method (EPIC array and BSAS, Table 1). All sites 

except for cg05575921 in AHRR2 demonstrated DNA methylation level differences 

between analysis platforms of less than 6%.   

 

Correlations were plotted individually for cases and controls for the two detection 

methods. BSAS versus EPIC cases resulted in an adjusted R2 of 0.8878 and BSAS 

versus EPIC controls gave an adjusted R2 of 0.8683 (Fig 1). 

 

 

Do these two methods of DNA methylation detection correlate? 

 

A Bland Altman analysis was carried out on the loci investigated by BSAS and 

compared to data for the same loci produced using the Illumina EPIC array. Fig 2A 

shows cannabis users (cases) measured using BSAS and the EPIC array on the X 

axis, while the Y axis represents the differences between the measurements. The 

observed differences between loci in cannabis cases (EPIC and BSAS) fall within the 

lines of agreement. Fig 2B shows the control group differences plotted for the same 

loci for BSAS and the EPIC array methods. Similar to above, all data points fall 

within the lower and upper lines of agreement.  
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Discussion 

 

High throughput array technologies have facilitated the next step in assessing 

associations between DNA methylation changes in response to a known 

environmental exposure at a genome-wide level. The EPIC array (as well as the 

predecessor 27k and 450k arrays) is one such platform that allows for the 

characterisation of these DNA methylation changes. Through these approaches, 

various studies have furthered our understanding of how DNA methylation can play a 

role in response to different environmental exposures.  

 

We selected the orthogonal method BSAS to determine its applicability as a 

validation, replication and/or expansion tool for EPIC array.  BSAS is often used as a 

standalone method for assessing differential DNA methylation at specific CpG sites, 

usually because it is more cost-effective than EPIC arrays, and allows analysis of 

many samples at once, in multiplex.  It returns data for all CpGs within a targeted  

region of interest (~250 base pairs) with results providing base pair-level specificity 

[31].  In this study, BSAS estimation of differential DNA methylation correlated with 

differential methylation determined via EPIC array.  However, although the data 

correlates between the methods (adjusted R2 cases, 0.8878 and adjusted R2 

controls, 0.8683), we urge caution when interpreting this correlation as proof that 

BSAS will be a suitable independent validation of EPIC array data in every 

experiment. This is because while the data presented here correlated between 

BSAS and EPIC array as a whole dataset, some sites showed larger differences 

between average methylation estimated using BSAS vs. EPIC array.  In particular, 

where the differential methylation on EPIC array was greater than 5% between 

cases and controls, BSAS was unable to detect this differential DNA methylation to 

the same magnitude as EPIC array.  For instance, AHRR2 exhibited a 4% difference 

in methylation between cases and controls when assessed using BSAS (the highest 
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value detected in using BSAS in this study), compared to 23% using EPIC array.  

Thus, while a strong correlation between EPIC array data and BSAS data was found 

across the 15 CpG sites investigated, which itself implies an association between the 

average methylation at each CpG for the two techniques, further work on CpG sites 

with higher magnitude changes is needed to determine whether BSAS is limited by 

the magnitude of differential methylation it is able to detect.  However, it is worth 

noting that most studies of differential methylation report modest (<5%) significant 

differential methylation observations, suggesting that BSAS may prove useful, given 

inclusion of rigorous controls of known differential methylation to ensure accuracy of 

results.        

Due to the sequence-based nature of BSAS data (compared to the probe-based 

nature of EPIC arrays) BSAS, as a standalone method, offers some advantages that 

are not applicable to EPIC arrays. For instance, BSAS has the potential to determine 

novel differentially methylated CpGs which may be near (in the same targeted 

region) but not the initial pre-determined CpG site of interest.  This is possible 

because all CpGs within an e.g. 500 base pair region are returned using BSAS data, 

only one of which may be on an EPIC array.  Further, via this targeted sequencing 

process, BSAS may reveal novel differentially methylated regions (DMRs). DMRs 

are described as areas which exhibit multiple successive methylated CpG sites 

which may have biological impact within the genome.  For example, they have been 

implicated in the development and progression of disease [45]. Therefore targeting 

more than a single CpG site may provide further insight into genes and regions of 

interest. Consequently, while here we have used BSAS technology to 

replicate/validate differential methylation identified via EPIC array, given that BSAS 

outputs largely correlate with EPIC data, equally, BSAS could be as a “discovery-

based tool”; if significantly differentially methylated CpGs are identified via BSAS, 

this would serve to justify further investigation using a robust and more expensive 

high throughout method. 

The EPIC array still remains the most reproducible way to measure DNA methylation 

[46]. This is because the probe-based nature of the method frequently produces 

comparable results across research groups and arrays. For example, detection of 

differential methylation using the EPIC array found a difference of 23% in cannabis 

plus tobacco users, compared to controls, at AHRR2 (cg05575921, Table 1), a result 
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that is supported by other studies in tobacco smokers using EPIC array [9, 47-50].  

AHRR2 has an important role in controlling a range of different physiological 

functions; it contributes to regulation of cell growth, regulation of apoptosis and 

contributes to vascular and immune responses [51-54].  

BSAS and EPIC array rely upon different chemistries and methods to detect DNA 

methylation. This may account for the majority of the variation found between the two 

methods. BSAS relies upon PCR amplification of DNA that is treated with sodium 

bisulfite. When DNA is treated, unmethylated cytosine residues are converted into 

uracils via hydrolytic deamination. Amplification of these uracil nucleotides during 

this process are replaced by thymines during replication and the 5-methylcytosines 

are left unreactive throughout the deamination process and then are amplified as 

cytosines. It then becomes possible to ‘read’ values of methylation for each cytosine 

in an amplicon via DNA sequencing [55]. The ability to treat DNA with sodium 

bisulfite has led to the expansion of research undertaken within this field [56]. 

However, it is important that we ensure the validity of the results are not limited by 

the manner in which the data was produced. Ensuring that we limit these 

discrepancies between technologies will allow for better validation of data.   There is 

potential for errors to occur at this step, because incomplete bisulfite conversion 

cannot be distinguished from 5-methylcytosine, this can possibly introduce false 

positive methylation calls at this point [57] [58]. Although both techniques rely upon 

bisulfite treatment, it is this source of error followed by the PCR amplification that 

might explain the differences in results we have observed. Refining these sources of 

error may provide much more comparable results between the two methods. 

In conclusion, we chose to validate EPIC array data by using the alternative method, 

BSAS, to detect differential methylation at CpG sites. However, it is possible that 

BSAS may be unable to reproduce the magnitude of changes that are shown in the 

EPIC array system, which may be a consequence of lack of specificity and addition 

error rate through PCR amplification. It does however, have the ability to assess 

differentially methylated regions, rather than individual CpG sites. As some regions 

of the genome are more susceptible to methylation change than others, BSAS could 

detect swathes of correlated differential methylation at neighbouring CpG sites in 

certain areas of the genome. From the results shown here, BSAS has the potential 

to be able to detect methylation marks such as metastable epialleles, which maybe 
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hallmarks for disease later on in life. Finally, although BSAS does not generate the 

same significance level as the EPIC array in some instances, we demonstrate that 

BSAS can be used as an investigative tool for specific regions of the genome. 

 

 

Acknowledgments 

University of Otago Research Grant to M.A.K., The Carney Centre for 

Pharmacogenomics. CHDS was funded by the Health Research Council of New 

Zealand (Programme Grant 16/600) and the Canterbury Medical Research 

Foundation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 28, 2020. ; https://doi.org/10.1101/2020.05.25.115428doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.25.115428
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

 

 

 

References 

 

1. Hackett, J.A. and M.A. Surani, DNA methylation dynamics during the mammalian life cycle. 

Philosophical Transactions of the Royal Society B: Biological Sciences, 2013. 368(1609): p. 

20110328. 

2. Dolinoy, D.C., D. Huang, and R.L. Jirtle, Maternal nutrient supplementation counteracts 

bisphenol A-induced DNA hypomethylation in early development. Proceedings of the 

National Academy of Sciences, 2007. 104(32): p. 13056-13061. 

3. Sinclair, K.D., et al., DNA methylation, insulin resistance, and blood pressure in offspring 

determined by maternal periconceptional B vitamin and methionine status. Proceedings of 

the National Academy of Sciences, 2007. 104(49): p. 19351-19356. 

4. Kucharski, R., et al., Nutritional control of reproductive status in honeybees via DNA 

methylation. Science, 2008. 319(5871): p. 1827-1830. 

5. Gertz, J., et al., Genistein and bisphenol A exposure cause estrogen receptor 1 to bind 

thousands of sites in a cell type-specific manner. Genome research, 2012. 22(11): p. 2153-

2162. 

6. Wang, H., et al., Widespread plasticity in CTCF occupancy linked to DNA methylation. 

Genome research, 2012. 22(9): p. 1680-1688. 

7. Mitchell, C., L.M. Schneper, and D.A. Notterman, DNA methylation, early life environment, 

and health outcomes. Pediatr Res, 2016. 79(1-2): p. 212-9. 

8. Takai, D. and P.A. Jones, Comprehensive analysis of CpG islands in human chromosomes 21 

and 22. Proceedings of the National Academy of Sciences, 2002. 99(6): p. 3740-3745. 

9. Zeilinger, S., et al., Tobacco Smoking Leads to Extensive Genome-Wide Changes in DNA 

Methylation. PLOS ONE, 2013. 8(5): p. e63812. 

10. Breton, C.V., et al., Prenatal tobacco smoke exposure affects global and gene-specific DNA 

methylation. American journal of respiratory and critical care medicine, 2009. 180(5): p. 462-

467. 

11. Ambatipudi, S., et al., Tobacco smoking-associated genome-wide DNA methylation changes 

in the EPIC study. Epigenomics, 2016. 8(5): p. 599-618. 

12. Osborne, A.J., et al., Genome-wide DNA methylation analysis of heavy cannabis exposure in a 

New Zealand longitudinal cohort. Translational Psychiatry, 2020. 10(1): p. 114. 

13. Philibert, R.A., et al., The impact of recent alcohol use on genome wide DNA methylation 

signatures. Frontiers in genetics, 2012. 3: p. 54-54. 

14. Liu, C., et al., A DNA methylation biomarker of alcohol consumption. Molecular Psychiatry, 

2016. 23: p. 422. 

15. Delgado-Cruzata, L., et al., Dietary modifications, weight loss, and changes in metabolic 

markers affect global DNA methylation in Hispanic, African American, and Afro-Caribbean 

breast cancer survivors. J Nutr, 2015. 145(4): p. 783-90. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 28, 2020. ; https://doi.org/10.1101/2020.05.25.115428doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.25.115428
http://creativecommons.org/licenses/by-nc-nd/4.0/


16. Rampersaud, G.C., et al., Genomic DNA methylation decreases in response to moderate 

folate depletion in elderly women. The American Journal of Clinical Nutrition, 2000. 72(4): p. 

998-1003. 

17. Murgatroyd, C., et al., Dynamic DNA methylation programs persistent adverse effects of 

early-life stress. Nature Neuroscience, 2009. 12: p. 1559. 

18. Horvath, S., et al., Aging effects on DNA methylation modules in human brain and blood 

tissue. Genome Biology, 2012. 13(10): p. R97. 

19. Marioni, R.E., et al., DNA methylation age of blood predicts all-cause mortality in later life. 

Genome Biology, 2015. 16(1): p. 25. 

20. Kim, M., et al., DNA Methylation as a Biomarker for Cardiovascular Disease Risk. PLOS ONE, 

2010. 5(3): p. e9692. 

21. Mastroeni, D., et al., Epigenetic changes in Alzheimer's disease: Decrements in DNA 

methylation. Neurobiology of Aging, 2010. 31(12): p. 2025-2037. 

22. De Jager, P.L., et al., Alzheimer's disease: early alterations in brain DNA methylation at ANK1, 

BIN1, RHBDF2 and other loci. Nature Neuroscience, 2014. 17(9): p. 1156-1163. 

23. Rakyan, V.K., et al., Identification of Type 1 Diabetes–Associated DNA Methylation Variable 

Positions That Precede Disease Diagnosis. PLOS Genetics, 2011. 7(9): p. e1002300. 

24. Pidsley, R., et al., Critical evaluation of the Illumina MethylationEPIC BeadChip microarray for 

whole-genome DNA methylation profiling. Genome biology, 2016. 17(1): p. 208-208. 

25. Zhou, W., P.W. Laird, and H. Shen, Comprehensive characterization, annotation and 

innovative use of Infinium DNA methylation BeadChip probes. Nucleic acids research, 2017. 

45(4): p. e22-e22. 

26. Lövkvist, C., et al., DNA methylation in human epigenomes depends on local topology of CpG 

sites. Nucleic Acids Research, 2016. 44(11): p. 5123-5132. 

27. Roessler, J., et al., Quantitative cross-validation and content analysis of the 450k DNA 

methylation array from Illumina, Inc. BMC Research Notes, 2012. 5(1): p. 210. 

28. França, L.T., E. Carrilho, and T.B. Kist, A review of DNA sequencing techniques. Quarterly 

reviews of biophysics, 2002. 35(2): p. 169-200. 

29. Herman, J.G., et al., Methylation-specific PCR: a novel PCR assay for methylation status of 

CpG islands. Proc Natl Acad Sci U S A, 1996. 93(18): p. 9821-6. 

30. Claus, R., et al., A systematic comparison of quantitative high-resolution DNA methylation 

analysis and methylation-specific PCR. Epigenetics, 2012. 7(7): p. 772-780. 

31. Masser, D.R., D.R. Stanford, and W.M. Freeman, Targeted DNA methylation analysis by next-

generation sequencing. Journal of visualized experiments : JoVE, 2015(96): p. 52488. 

32. Masser, D.R., A.S. Berg, and W.M. Freeman, Focused, high accuracy 5-methylcytosine 

quantitation with base resolution by benchtop next-generation sequencing. Epigenetics & 

Chromatin, 2013. 6(1): p. 33. 

33. Team, R.C., R: A language and environment for statistical computing, in R Foundation for 

Statistical Computing. 2013: Vienna, Austria. 

34. Pidsley, R., et al., Critical evaluation of the Illumina MethylationEPIC BeadChip microarray for 

whole-genome DNA methylation profiling. Genome Biology, 2016. 17(1): p. 208. 

35. Maksimovic, J., L. Gordon, and A. Oshlack, SWAN: Subset-quantile within array normalization 

for illumina infinium HumanMethylation450 BeadChips. Genome biology, 2012. 13(6): p. 

R44-R44. 

36. Fortin, J.-P., et al., Functional normalization of 450k methylation array data improves 

replication in large cancer studies. Genome Biology, 2014. 15(11): p. 503. 

37. Fortin, J.-P., T.J. Triche, Jr., and K.D. Hansen, Preprocessing, normalization and integration of 

the Illumina HumanMethylationEPIC array with minfi. Bioinformatics (Oxford, England), 

2017. 33(4): p. 558-560. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 28, 2020. ; https://doi.org/10.1101/2020.05.25.115428doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.25.115428
http://creativecommons.org/licenses/by-nc-nd/4.0/


38. Aryee, M.J., et al., Minfi: a flexible and comprehensive Bioconductor package for the analysis 

of Infinium DNA methylation microarrays. Bioinformatics (Oxford, England), 2014. 30(10): p. 

1363-1369. 

39. Association, A.P., Diagnostic criteria from dsM-iV-tr. 2000: American Psychiatric Pub. 

40. Arányi, T., et al., The BiSearch web server. BMC Bioinformatics, 2006. 7(1): p. 431. 

41. Krueger, F. and S.R. Andrews, Bismark: a flexible aligner and methylation caller for Bisulfite-

Seq applications. Bioinformatics, 2011. 27(11): p. 1571-1572. 

42. Chen, Y., et al., Differential methylation analysis of reduced representation bisulfite 

sequencing experiments using edgeR. F1000Research, 2017. 6: p. 2055-2055. 

43. Martin Bland, J. and D. Altman, STATISTICAL METHODS FOR ASSESSING AGREEMENT 

BETWEEN TWO METHODS OF CLINICAL MEASUREMENT. The Lancet, 1986. 327(8476): p. 

307-310. 

44. Wickham, H., ggplot2: Elegant Graphics for Data Analysis. 2016: Springer-Verlag New York. 

45. Hotta, K., et al., Identification of differentially methylated region (DMR) networks associated 

with progression of nonalcoholic fatty liver disease. Scientific Reports, 2018. 8(1): p. 13567. 

46. Bibikova, M., et al., Genome-wide DNA methylation profiling using Infinium® assay. 

Epigenomics, 2009. 1(1): p. 177-200. 

47. Li, S., et al., Causal effect of smoking on DNA methylation in peripheral blood: a twin and 

family study. Clinical epigenetics, 2018. 10: p. 18-18. 

48. Ambatipudi, S., et al., Tobacco smoking-associated genome-wide DNA methylation changes 

in the EPIC study. Epigenomics, 2016. 8(5): p. 599-618. 

49. Su, D., et al., Distinct Epigenetic Effects of Tobacco Smoking in Whole Blood and among 

Leukocyte Subtypes. PLOS ONE, 2016. 11(12): p. e0166486. 

50. Guida, F., et al., Dynamics of smoking-induced genome-wide methylation changes with time 

since smoking cessation. Human Molecular Genetics, 2015. 24(8): p. 2349-2359. 

51. Lahvis, G.P., et al., The aryl hydrocarbon receptor is required for developmental closure of the 

ductus venosus in the neonatal mouse. Mol Pharmacol, 2005. 67(3): p. 714-20. 

52. Allan, L.L. and D.H. Sherr, Constitutive activation and environmental chemical induction of 

the aryl hydrocarbon receptor/transcription factor in activated human B lymphocytes. Mol 

Pharmacol, 2005. 67(5): p. 1740-50. 

53. Trombino, A.F., et al., Expression of the aryl hydrocarbon receptor/transcription factor (AhR) 

and AhR-regulated CYP1 gene transcripts in a rat model of mammary tumorigenesis. Breast 

Cancer Res Treat, 2000. 63(2): p. 117-31. 

54. Marlowe, J.L., et al., The aryl hydrocarbon receptor binds to E2F1 and inhibits E2F1-induced 

apoptosis. Mol Biol Cell, 2008. 19(8): p. 3263-71. 

55. Booth, M.J., et al., Oxidative bisulfite sequencing of 5-methylcytosine and 5-

hydroxymethylcytosine. Nature Protocols, 2013. 8: p. 1841. 

56. Frommer, M., et al., A genomic sequencing protocol that yields a positive display of 5-

methylcytosine residues in individual DNA strands. Proc Natl Acad Sci U S A, 1992. 89(5): p. 

1827-31. 

57. Richards, R., et al., Evaluation of massively parallel sequencing for forensic DNA methylation 

profiling. Electrophoresis, 2018. 39(21): p. 2798-2805. 

58. Krueger, F., et al., DNA methylome analysis using short bisulfite sequencing data. Nature 

Methods, 2012. 9: p. 145. 

 

  

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 28, 2020. ; https://doi.org/10.1101/2020.05.25.115428doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.25.115428
http://creativecommons.org/licenses/by-nc-nd/4.0/


Table 1: CpG site differences from EPIC array and the BSAS methods at the 15 loci 
of differing levels of significance (not significant, nominally significant, significant 
after P-value adjustment) 

 

 

 

  

       Illumina EPIC array BSAS Difference  

between 

methods 

  Cg/Gene Position in 

genome 

Illumina ID β 

difference 

P value FDR 

Adjusted P 

value 

β 

difference 

P 

value 

FDR 

Adjusted P 

value  

β difference 

         

1 AHRR2  Chr5, GB cg05575921 -0.233 5.33E-12 3.7E-06 -0.041 0.006* 0.245 -0.192 

2 cg11977356* Chr19 cg11977356 -0.040 0.474 0.999 -0.004 0.406 0.959 -0.036 

3 ITPR1 Chr3, GB cg08987995 -0.001 0.572 0.999 0.005 0.820 0.822 -0.006 

4 MAGI Chr7, GB cg21121803 -0.008 0.572 0.999 -0.007 0.809 0.959 -0.0004 

5 EHMT2 Chr6, GB cg07829740 0.005 0.037 0.999 -0.015 0.071 0.579 0.020 

6 PPM1L Chr3, GB cg26406186 -0.006 0.818 0.999 0.011 0.904 0.963 -0.017 

7 cg00571101* Chr12 cg00571101 0.004 0.368 0.999 -0.004 0.813 0.952 0.008 

8 cg09078959* Chr5 cg09078959 -0.001 0.893 0.999 -0.005 0.001* 0.245 0.004 

9 cg01614625* Chr7 cg01614625 -0.009 0.370 0.999 -0.006 0.569 0.952 -0.004 

10 DP10 Chr2, GB cg05868547 0.006 0.077 0.999 -0.003 0.713 0.952 0.009 

11 cg11293828* Chr12 cg11293828 -0.014 0.665 0.999 0.032 0.735 0.952 -0.045 

12 CHD7 Chr5, 

5’UTR 

cg19926587 -0.007 0.960 0.999 -0.006 0.429 0.959 -0.001 

13 NIPAL4 Chr5, 

TSS1500 

cg17695979 -0.007 0.714 0.999 -0.003 0.106 0.713 -0.004 

14 PRDM5 Chr4, GB cg01118724 -0.004 0.734 0.999 0.005 0.116 0.713 -0.009 

15 SLC17A7 Chr19, GB cg02624701 -0.043 0.312 0.999 0.018 0.646 0.952  -0.061 

Table 1 *When a cg number is listed, then there is no known gene associated with that CpG site. GB-Gene Body 
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Figure 1 
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 Figure 2 
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Figure Captions 

 

Figure 1. Scatter plot with a linear regression of the β values at each locus for BSAS 

and EPIC array plotted against each other. Colours represent the loci of interest, with 

the shapes representing the case and controls. There are two regression lines: A 

represents the correlation between cases with an adjusted R2 = 0.8878 and B 

represents controls with R2 = 0.8683. 

 

Figure 2- Bland Altman plots showing the mean differences between DNA 

methylation as measured by EPIC array vs. the same CpG sites measured using 

BSAS. A) Data from cannabis users, gathered using BSAS and the EPIC array 

(Cases) B) the control subjects used in BSAS and EPIC array. Each of the 15 points 

represent the CpG sites investigated. 

 

 

 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 28, 2020. ; https://doi.org/10.1101/2020.05.25.115428doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.25.115428
http://creativecommons.org/licenses/by-nc-nd/4.0/

