| 1  | Curiosity is associated with enhanced                                  |
|----|------------------------------------------------------------------------|
| 2  | tonic firing in dorsal anterior cingulate cortex                       |
| 3  |                                                                        |
| 4  |                                                                        |
| 5  | Maya Zhe Wang and Benjamin Yost Hayden                                 |
| 6  |                                                                        |
| 7  | Department of Neuroscience,                                            |
| 8  | Center for Magnetic Resonance Research, and                            |
| 9  | Center for Neuroengineering                                            |
| 10 |                                                                        |
| 11 | University of Minnesota, Minneapolis MN 55455                          |
| 12 |                                                                        |
| 13 |                                                                        |
| 14 | Contact Information:                                                   |
| 15 | Maya Zhe Wang                                                          |
| 16 | Department of Neuroscience & Center for Magnetic Resonance Research    |
| 17 | University of Minnesota, Minneapolis MN 55455                          |
| 18 | Email: <u>mayawangz@gmail.com</u>                                      |
| 19 |                                                                        |
| 20 | Keywords                                                               |
| 21 | Observing behavior, entropy, anterior cingulate cortex, orbitofrontal  |
| 22 | cortex, curiosity                                                      |
| 23 |                                                                        |
| 24 | Acknowledgements:                                                      |
| 25 | We thank Tommy Blanchard for help in designing the task, and Marc      |
| 26 | Mancarella and Meghan Castagno for assistance in data collection. We   |
| 27 | appreciate close help from Ethan Bromberg-Martin for help in designing |
| 28 | the task, and developing some of the analysis approaches we used here. |
| 29 | This research was supported by an NIH R01(DA038106) to BYH.            |
| 30 |                                                                        |
| 31 |                                                                        |
| 32 |                                                                        |
| 33 |                                                                        |
| 34 |                                                                        |
| 07 |                                                                        |

| 35<br>36 | ABSTRACT                                                                                    |
|----------|---------------------------------------------------------------------------------------------|
| 30<br>37 | Disparity between current and desired information, known as information gap, is             |
| 38       | an important driver of information-seeking and curiosity. To gain insight into its neural   |
| 39       | basis, we recorded responses of single neurons in dorsal anterior cingulate cortex (dACC)   |
| 40       | while rhesus macaques performed a task that induces and quantifies demand for               |
| 41       | information. We find that enhanced firing rates in dACC before the start of a trial predict |
| 42       | a stronger bias towards information-seeking choices. Following choices of uninformative     |
| 43       | options, firing rates are tonically enhanced until information is delivered. The level of   |
| 44       | enhancement observed is correlated on a trial-by-trial basis with the value assigned to the |
| 45       | prospective information. Finally, variation in this tone is positively correlated with      |
| 46       | receptiveness to new information, as inferred by preference changes on subsequent trials.   |
| 47       | These patterns are not observed in a complementary dataset collected in orbitofrontal       |
| 48       | cortex (OFC), suggesting these effects reflect at least somewhat anatomically localized     |
| 49       | processing.                                                                                 |

| 50 | INTRODUCTION                                                                                |
|----|---------------------------------------------------------------------------------------------|
| 51 | Ignorance is not always bliss. A decision-maker who is uncertain about the                  |
| 52 | outcomes of their potential actions and choices may have a desire to probe the              |
| 53 | environment for information that can provide the missing knowledge. Indeed, decision-       |
| 54 | makers may gain utility from doing so, even if the information is neutral or bad (Kidd      |
| 55 | and Hayden, 2016; White et al., 2019). This fact has motivated scholars to propose that     |
| 56 | curiosity is motivated in part by an information gap, ego dystonic discrepancy between      |
| 57 | current and desired information (Golman & Loewenstein, 2015; Gottlieb et al., 2013;         |
| 58 | Kang et al., 2009; Loewenstein, 1994). In this view, lack of information is a special drive |
| 59 | state that can be sated by obtaining information. The information gap is the central        |
| 60 | theoretical structure linking curiosity to psychology and ultimately to neuroscience        |
| 61 | (Golman & Loewenstein, 2018; Gottlieb & Oudeyer, 2018; Kidd & Hayden, 2016;                 |
| 62 | Marvin & Shohamy, 2016; van Lieshout et al., 2018).                                         |
| 63 | Despite its value in motivating psychological hypotheses, the neuronal basis of             |
| 64 | the information gap remains to be identified (Cervera et al., 2020). We hypothesized that   |
| 65 | the brain computes and represents the demand for information within a circumscribed         |
| 66 | circuit. Several factors motivated us to hypothesize that the dorsal anterior cingulate     |
| 67 | cortex (dACC) would be one such region. The dACC is associated with monitoring both         |
| 68 | cognitive and visceral (i.e. basal drive state) variables (Heilbronner & Hayden, 2016a;     |
| 69 | Morecraft & Van Hoesen, 1998). At least one study has linked activity in dACC to            |
| 70 | curiosity (Jepma et al., 2012). Neurons in dACC also track - and drive demand for -         |
| 71 | counterfactual information, suggesting the region may monitor current information gap,      |
|    |                                                                                             |

| 72 | and drive information-seeking decisions (Hayden, et al., 2009). Moreover, enhanced           |
|----|----------------------------------------------------------------------------------------------|
| 73 | hemodynamic activity in this region is associated with enhanced control, with                |
| 74 | specification of control, and with exploratory processes in foraging, which have some        |
| 75 | heuristically similarity to information-seeking (Kolling et al., 2012; Shenhav et al., 2013; |
| 76 | Shenhav et al., 2017; Smith et al., 2019; Heilbronner and Hayden, 2016). Finally, activity   |
| 77 | in this region is directly associated with information-seeking processes, with curiosity per |
| 78 | se (e.g. Jepma et al., 2012). Given these facts we hypothesized that dACC neurons would      |
| 79 | track current level of information gap.                                                      |
| 80 | Here we made use of the curiosity tradeoff task that we developed previously                 |
| 81 | (Blanchard et al., 2015). This task is based a version of the observing task designed for    |
| 82 | macaques (Bromberg-Martin & Hikosaka, 2009; Roper, 1999). On each trial, subjects            |
| 83 | choose between two gambles with different stakes and then wait 2.25 seconds until they       |
| 84 | are rewarded. One option provides information about the resolution of the gamble             |
| 85 | immediately; the other option maintains the mystery for the delay period. Monkeys are        |
| 86 | reliably information-seeking in this task, meaning they will sacrifice a small amount of     |
| 87 | water to obtain advance (Blanchard et al., 2015). We have proposed that this task satisfies  |
| 88 | an operational definition of curiosity (Wang & Hayden, 2019). Specifically, we believe       |
| 89 | that information-seeking choices in this task reflect a demand for information reflective    |
| 90 | of an information gap. Moreover, we believe that choice of an uninformative option leads     |
| 91 | to a state in which information is lacking and therefore maintains an information gap. In a  |
| 92 | previous study, we reported the responses of neurons in orbitofrontal cortex (OFC)           |
| 93 | during this task, although we did not examine either of these epochs (Blanchard et al.,      |

- 94 2015). For the present study, we compared this dataset to a second dataset, collected at
- 95 the same time as the first but not previously analyzed, recorded in dACC.

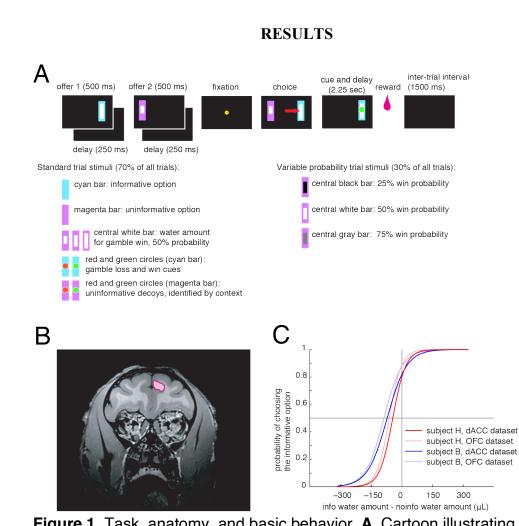


Figure 1. Task, anatomy, and basic behavior. A. Cartoon illustrating the
structure of the task (above) and different possible stimuli (below). B. Coronal
section of subject H showing the location of recording sites in dACC. C. Behavior
of two subjects on standard trials in dACC/OFC datasets (darker/lighter colors).
Likelihood of choosing informative option as a function of relative value between
the two options. Leftward shift of curves indicates that both subjects preferred the
informative option on standard trials.

108

100

97 98

99

109

## Behavior: macaques value advance information about gamble outcomes

- 110 We used a task we called the *curiosity tradeoff task* that we developed previously
- 111 (Blanchard et al., 2015; see also Bromberg-Martin and Hikosaka, 2009, which motivated
- 112 the design of our study).

| 113 | Standard trials (70% of trials): each gamble offers a 50% chance of a juice                  |
|-----|----------------------------------------------------------------------------------------------|
| 114 | reward of varying amount (Figure 1). Regardless of choice, any reward is given 2.25          |
| 115 | seconds later. Behavior of macaques in this task has been described in detail (Blanchard     |
| 116 | et al., 2015; Bromberg-Martin & Hikosaka, 2009; Bromberg-Martin, Matsumoto, &                |
| 117 | Hikosaka, 2010). Indeed, these two macaques were the same subjects used in our               |
| 118 | previous study and behavior here is, not surprisingly, nearly identical (Blanchard et al.,   |
| 119 | 2015, Figure 1C). As in our previous study, both subjects preferred informative cues.        |
| 120 | Subjects B and H chose the gamble with higher stakes on 78.2% and 83.0% of trials (both      |
| 121 | are greater than chance, p<0.0001, binomial test). Subjects B and H chose the more           |
| 122 | informative option on 67.8% and 69.4% of trials respectively (both p<0.0001, binomial        |
| 123 | test). When the two options had equal stakes, both subjects preferred information (B:        |
| 124 | 78.8%, H: 78.1%). Indifference points (Methods) for the two subjects were 76 $\mu$ l (B) and |
| 125 | 51 $\mu$ l (H). This indifference point identifies the subjective value of information.      |
| 126 | Variable probability trials (30% of trials): These trials were not used in our               |
| 127 | previous study and were introduced here as an additional control. On 30% of trials           |
| 128 | (randomly interleaved), subjects chose between two uninformative options that have the       |
| 129 | same stakes (225 uL juice). The probability was either 25%, 50%, or 70% and was the          |
| 130 | same for both offers on the same trial. On these trials, subjects chose the left and right   |
| 131 | option roughly equally (subject B: 55.1% left; subject H: 49.8% left). Any observed          |
| 132 | left/right bias did not depend on probability (regression of left choice against the three   |
| 133 | probability conditions, subject B: p=0.44, subject H: p=0.18).                               |

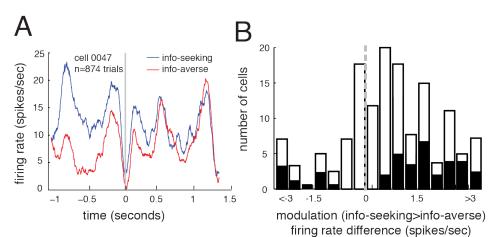




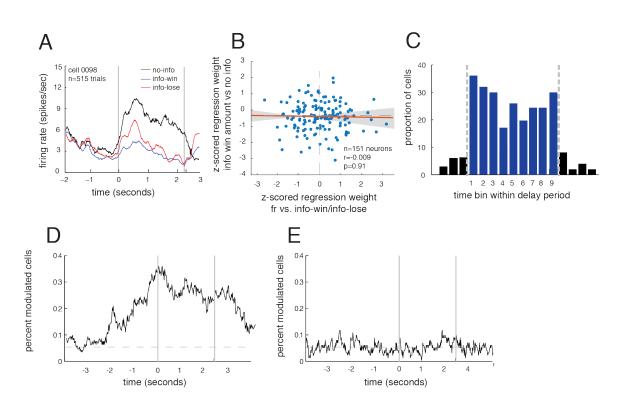
Figure 2. Pre-trial correlation between demand for information and firing
rates in dACC neurons. A. Responses of an example neuron showing higher
firing rates on info-seeking trials vs. info-averse trials (these categories are
determined by average behavior, see main text). B. Histogram of pre-trial
differences between info-seeking and info-averse trials. Neurons with individually
significant effects are shown in black.

- 141
- 142

#### Enhanced pre-trial activity in dACC predicts information-seeking choices

- 143 We recorded responses of 151 single neurons in dACC (n=88 in subject B and
- n=63 in subject H). We collected an average 551 trials per cell, and a minimum of 500
- trials. We reasoned that if demand for information reflects a drive state, it would have
- 146 neuronal signatures before trial onset. We therefore considered the 500 ms period
- 147 immediately preceding the presentation of the first offer. We divided all trials into two
- 148 categories, (1) ones that were more information-seeking than average, (2) ones that were
- 149 less information-seeking than average. These categories were defined in terms of the
- 150 average subjective value the subject placed on information as inferred by the choice made
- 151 during the task. Many trials could not be assigned to a category and were therefore
- 152 excluded from this analysis (**Methods**).

| 153 | For the example neuron shown in Figure 2A, pre-trial activity was higher on                 |
|-----|---------------------------------------------------------------------------------------------|
| 154 | relatively information-seeking trials (p=0.004 Student's t-test). Responses of 27.2% of     |
| 155 | neurons (n=41/151) differentiated the two trial types (this proportion is significant,      |
| 156 | p<0.001, binomial test, Figure 2B). Of these, 75.6% (n=31/41) showed enhanced firing        |
| 157 | (this proportion is significant, p=0.0015, binomial test). Responses of 26.4% of neurons    |
| 158 | (n=40/151) differentiated information-seeking trials relative to neutral trials (as         |
| 159 | determined by t-test, this proportion is significant, p<0.001, binomial test). Of these     |
| 160 | neurons, 70.0% (n= $28/40$ ) were enhanced (this proportion is significantly different from |
| 161 | 0.5, p=0.0166, binomial test). Thus, increased pre-trial firing predicts information-       |
| 162 | seeking choices. Indeed, the average ensemble firing rate for all neurons (including non-   |
| 163 | significantly modulated ones) was 0.71 spikes/sec greater preceding information-seeking     |
| 164 | trials than neutral trials and 0.42 spikes/sec lower on information-averse trials than on   |
| 165 | neutral ones (both these differences are significant, p<0.001, t-test). These numbers       |
| 166 | represent a relatively high proportion (17.32% and 10.24%, respectively) of the baseline    |
| 167 | pre-trial firing rate (that is, 4.1 spikes/sec).                                            |



# 168

169

Figure 3. Delay period response modulation for no-info trials. Time 0 in A, 170 D, and E indicates the start of delay period. A. Responses of an example neuron 171 172 on trials in which no upcoming reward information is given during the delay (no-173 info trials, black) and trials in which this information is given (info trials, blue and 174 red). Responses on no-info trials are systematically enhanced, a pattern that is common in the population. **B.** Scatter plot of regression weights for info vs. no 175 info trials (y-axis) against info-win vs. info-lose (x-axis). These variables are not 176 correlated, suggesting that codes for information gap and reward are unrelated. 177 **C.** We divided data into nine time bins and found significant modulation in each 178 179 one, suggesting, on no-info trials, the modulation is sustained across the delay 180 period. **D.** Plot of proportion of cells significantly modulated by info vs. no-info status, using a sliding 500 ms window. Horizontal dashed line indicates chance 181 level (i.e., 5%). E. Plot of proportion of cells significantly modulated by the win-182 and lose-related cues on no-info trials (when they are non-predictive). We see no 183 184 measurable effect.

- 185
- 186

## Informational uncertainty tonically enhances firing rates in dACC

187

On trials in which the subject chose the no-info option (no-info trials), subjects

- 188 proceeded to enter a state of temporally extended uncertainty. During this period, the
- subject did not know whether a reward would occur for 2.25 seconds. We next asked how

11

190 neurons would respond to this sustained lack of uncertainty resolution. We reasoned that 191 if uncertainty has no special implications, then the firing rate may resemble a weighted 192 average of the firing rates associated with the two possible contrapositive outcomes 193 (learning that a large/no reward is impending). On the other hand, if the status of lacking 194 information in this task is somehow special, it may lead to a firing rate outside the range 195 of the other two, and, in particular, systematic enhancement in firing across the long 196 period the uncertainty is maintained.

For a typical neuron (Figure 3A), responses on no-info trials are enhanced (2.9 197 spikes/sec and 3.2 spikes/sec, p<0.01 in both cases, Student's t-test). In our entire sample, 198 199 firing rate on no-info trials was different from the average firing rate on both types of info 200 trials in a substantial number of neurons (46.3%, n=70/151, p<0.001, binomial test). This 201 modulation appears to last the entire waiting period. We divided the 2.25 second waiting 202 period into nine equal 250 ms time bins. In all nine bins, a significant proportion of cells 203 encoded the variables for info vs. no info. Even the bin with the lowest proportion had 204 18%, n=28 cells, which is greater than chance (p<0.001, binomial test).

We next asked whether neurons that showed enhancement in one of these epochs were more likely to be the ones that showed enhancement in another. (That is, whether these effects reflect a sustained enhancement in some neurons, or periodic short bursting in more neurons). We reasoned that if the same set of cells was involved in signaling information from one bin to another, then we would see a positive correlation in their unsigned regression weights (i.e. absolute value of regression weights, see Azab & Hayden, 2017 for details). For every pair of bins (n=72 comparisons, i.e. 9 time bins x 8

212 other time bins), the cells involved were more overlapping than chance (correlation was

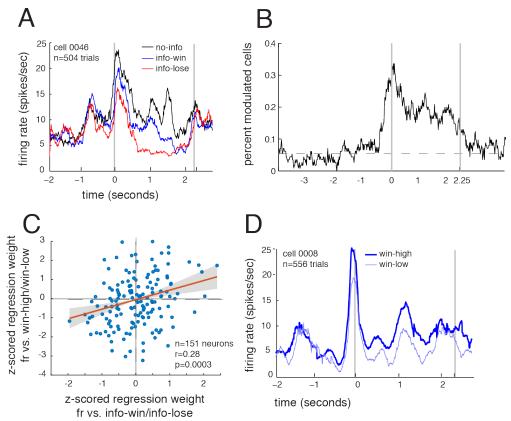
- significant, average r=0.29, p<0.05 in all individual cases).
- 214 We next considered the average effect of informational status on aggregate (grand
- average) firing rate. We found that the average firing rate on all no-info trials (8.22
- spikes/sec) for all neurons (including non-significantly modulated ones) was greater than
- on info-trials (5.97 spikes/sec; this difference is significant, p<0.001, Student's t-test).
- 218 The population of significantly modulated cells was positively biased, meaning more
- individual neurons showed an increase in firing than showed a decrease (74.3%, n=52/70, n=52/70)
- 220 p < 0.001, binomial test).

Note that this average positive deflection is unlikely to reflect a sustained version of the bias the predicted information-seeking choices (see previous section). That bias led to greater firing before info trials, whereas the delay period modulation showed the reverse pattern. Thus, any firing rate hysteresis would presumably have reduced our measured effects, not spurred a false positive.

- 226
- 227

# Delay period enhancement is greater on high information-demand trials

In a previous study using this task, we found that the value of information (willingness to pay) rises with stakes of the chosen option (Blanchard et al., 2015). These results indicate that demand for information is higher on higher stakes trials (i.e. trials on which the subjects are in suspense about a higher valued gamble). Overall, responses of 21.9% of cells (n=33/151) were modulated by the stakes during the no-info delay period; the majority (72.7%, n=24/33) showed an enhancement (this bias is significant, p=0.0135, binomial test). Indeed, the average firing of the population was greater in the
top stakes tercile than in the bottom stakes tercile (difference in the entire population,
1.32 spikes/sec, p<0.001, Student's t test). Nonetheless, the firing rate in the bottom</li>
tercile was greater than responses in either info-win or info-lose conditions (difference in
the entire population, 1.91 spikes/sec, p<0.01, Student's t test).</li>





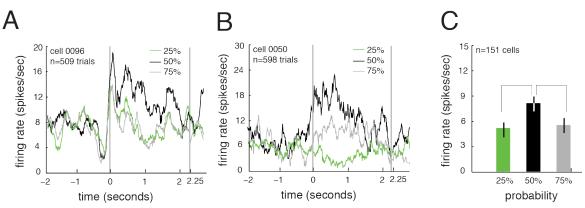
240 Figure 4. Neuronal encoding of upcoming rewards. A. Responses of an 241 example neuron during the delay period (starting at time 0 on the graph) on infowin (blue) and info-lose (red) trials. Info-win and info-lose trials are significantly 242 different throughout the course of the delay (0 to 2.25 seconds). Firing rates on 243 244 no-info trials (black) are also shown, for reference, **B.** Proportion of cells whose 245 responses significantly modulated by the difference between info-win and info-246 lose using a sliding 500 ms window. Horizontal dashed line indicates chance 247 level (i.e., 5%). **C.** Scatter plot showing regression weights for info-win-high vs. 248 info-win-low (y-axis) against info-win / info-lose (x-axis). The positive correlation indicates that dACC neurons use correlated codes for the two value variables. D. 249

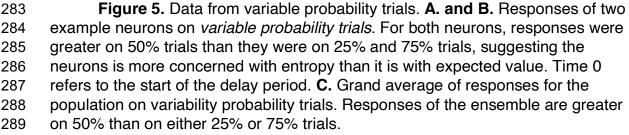
14

Responses of an example cell to info-win trials when the stakes are high (thick
line) and low (thin line).

| 253 | Tonic firing rates in dACC encode upcoming reward information                              |
|-----|--------------------------------------------------------------------------------------------|
| 254 | Enhancement on no-info trials may be a consequence of reward encoding. For                 |
| 255 | example, perhaps it is unpleasant to wait in suspense, or, conversely, it may be pleasant  |
| 256 | to wait in anticipation. We thus leveraged our ability to perform within-task              |
| 257 | characterization of reward sensitivity for each neuron. Figure 4A shows the choice-        |
| 258 | aligned responses of an example neuron separated by trial type, no-info (black), info-win  |
| 259 | (blue), and info-lose (red). The format is the same as in Figure 3A. For this neuron,      |
| 260 | responses following info-win trials were tonically higher than responses following info-   |
| 261 | loss trials (red vs. blue line, average difference, 3.6 spikes/sec, p<0.01, t-test). This  |
| 262 | pattern was typical of neurons in the sample (Figure 4B). Tonic changes in firing rate     |
| 263 | across the epoch were observed in 41% ( $n=61/151$ ) of neurons depending on the win-loss  |
| 264 | status of the trial. This bias did not show a directionality; $47.5\%$ (n=29/61) showed an |
| 265 | enhancement; the bias is not significant (p=0.80, binomial test).                          |
| 266 | Neurons did not just encode win vs. loss. They also encoded specific reward                |
| 267 | volume anticipated. For the neurons in Figure 4D, the average firing rate was higher on    |
| 268 | info-win trials with larger than average rewards (thick line) than with smaller than       |
| 269 | average rewards (thin line, difference, 2.1 spikes/sec, p=0.009). On info-win trials,      |
| 270 | responses of 29.8% of neurons (n=45/151) encoded the stakes of the anticipated reward      |
| 271 | (regression of firing rate against size of anticipated reward). This bias was also not     |
| 272 | directional (19 positive and 26 negative, p=0.37, binomial test). The neural coding        |
| 273 | pattern, namely strength and direction, used by dACC neurons for the win-loss bias was     |

| 274 | closely correlated with that the reward volume effect, suggesting that this effect reflects a  |
|-----|------------------------------------------------------------------------------------------------|
| 275 | generic reward encoding (correlation of tuning indices for the two dimensions, r=0.31,         |
| 276 | p<0.001). This correlation indicates that, within dACC, there is a general code for            |
| 277 | anticipated reward - that is win vs. loss uses the same coding format as amount won on         |
| 278 | win trials. In any case, this result suggests that the lack of correlation between codes for   |
| 279 | information gap and for reward vs. no reward (see above and Figure 2A) is not simply           |
| 280 | and artifact of noise. (And indeed, that correlation, r=-0.02 is significantly lower than this |
| 281 | one, Fisher r-to-z, z=-2.97, two-tailed p=0.003, see below).                                   |





282

291

#### Controlling for confounds with reward and arousal in dACC

292 Subjects' willingness to pay for information suggests it has an intrinsic value. We

- 293 therefore wondered whether the tonic firing rate enhancement associated with lack of
- information is an artifactual consequence of reward or reward anticipation coding. We
- reasoned that if the information gap induced enhancement were an artifactual

16

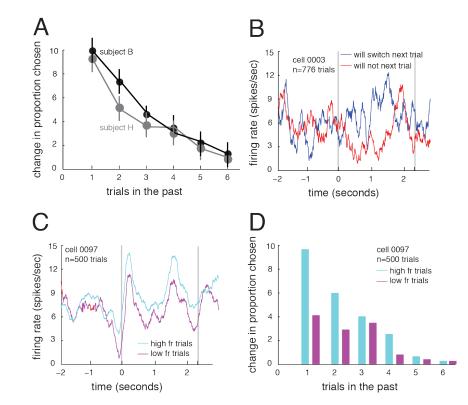
| 296 | consequence of reward or reward anticipation coding, then we should see the neural           |
|-----|----------------------------------------------------------------------------------------------|
| 297 | coding pattern for information gap and reward related variables to be significantly          |
| 298 | similar. Otherwise, information gap evokes a differentiable pattern than do reward related   |
| 299 | variables in dACC. To test this idea, we therefore computed an info-gap coefficient (the     |
| 300 | linear term of the regression coefficient for firing rate against no-info vs info) and two   |
| 301 | reward indices for each neuron, one related to info-win vs. info-lose (win-lose coefficient) |
| 302 | and one related to the size of the anticipated reward on the info-win trials (win-amount     |
| 303 | coefficient, see Methods).                                                                   |
| 304 | The correlation between the info-gap coefficient and the two reward indices was              |
| 305 | not significantly different from zero in either case (win-lose coefficient: r=-0.02, p=0.59; |
| 306 | win amount coefficient: r=-0.033, p=0.36). Because this lack of effect is difficult to       |
| 307 | interpret - it may reflect noise - we next estimated sample noise using a previously         |
| 308 | developed cross-validation technique, Blanchard et al., 2015). The correlations we           |
| 309 | observed within sample for info-gap coefficient with the two reward coefficients were        |
| 310 | both significantly greater than zero (r=0.67 and r=0.38, respectively, p<0.01 in both        |
| 311 | cases). They were also significantly greater than the observed correlations (differences     |
| 312 | were p<0.001 in both cases, bootstrap test), indicating that noise was not a limiting factor |
| 313 | and indicating that our observed correlation was significantly less than the value we        |
| 314 | would have observed had the true correlation been 1.0. These results suggest that            |
| 315 | information gap and arousal (both reward-related coefficients) evoke unrelated neural        |

response patterns and thus the effect of information gap cannot be simply explained away

317 by arousal.

| 318 | It is also worth noting that the modulation observed on no-info trials does not               |
|-----|-----------------------------------------------------------------------------------------------|
|     |                                                                                               |
| 319 | appear to reflect the low level features of the stimuli; on info and no-info trials, the same |
| 320 | two cues were presented, but they had either reward-predictive or reward-irrelevant           |
| 321 | meaning, depending on context (Figure 3E). On no-info trials, dACC neurons did not            |
| 322 | encode the color of the decoy cue (5.3% of cells did so, $n=8/151$ , $p=0.85$ ).              |
| 323 | To gain additional perspective on the potential confound with arousal, we                     |
| 324 | included a new trial type. On variable probability trials (30% of all trials), subjects chose |
| 325 | between identical offers. These trials had either 25%, 50%, and 75% stakes and a              |
| 326 | medium reward. Responses of two example neurons are shown in Figures 5A and 5B.               |
| 327 | These neurons showed greater firing on 50% trials than on the other two trial types.          |
| 328 | Overall, 52.3% of neurons ( $n=79/151$ ) showed a significant difference for the conditions   |
| 329 | (ANOVA test on individual neurons).                                                           |
| 330 | The example neurons are typical - we found that on these trials, neurons                      |
| 331 | differentiated 25% from 50% (difference for all neurons: 3.46 spikes/sec, p<0.001), and       |
| 332 | 50% from 75% (difference for all neurons: 2.68 spikes/sec, p<0.001), although they did        |
| 333 | not differentiate 25% from 75% (difference: 0.39 spikes/sec, p=0.34). Note that these         |
| 334 | analyses reflect control for multiple comparisons. This pattern suggests that neurons         |
| 335 | encode entropy (sometimes called uncertainty), rather than expected value. In other           |
| 336 | words, the most parsimonious explanation of the factors driving neural responses is           |
| 337 | "amount of information available." To formally test this idea, we compared linear and         |
| 338 | quadratic models; we found that the quadratic model fit better in more of the condition-      |
|     |                                                                                               |

## 339 selective neurons (n=38/79 for quadratic and 6/79 for linear fit, see **Methods** and



340 Burnham & Anderson, 2010).

341

342

343 Figure 6. Data related to adjustment and likelihood of changing strategy. 0 point on X axis in A-C reflect the start of delay period. A. Subjects switch sides 344 345 more often following gambling losses than gambling wins; this effect persists 3-4 346 trials. B. Plot of firing rate of an example cell showing different firing rates on oninfo trials (i.e. controlling for information status and reward status) separated by 347 whether the subject will switch on the next trial. C. Plot of an example cell in high 348 349 and low firing rate trials (note that this effect, while significant, is a consequence 350 of our analysis). Time zero indicates start of delay period. D. On higher firing rate 351 trials for the neuron shown in panel B. subjects are more likely to adjust behavior 352 on subsequent trials.

- 353
- 354
- 355

Variations in dACC firing rate predict likelihood of changing strategy in

356 response to outcomes

We wondered if the firing rate enhancement we saw correlates with readiness to learn. We have previously investigated the effects of risky outcomes on behavioral adjustments in some detail (Hayden et al., 2009; Hayden et al., 2011). For present purposes, the key idea is that switching – whether or not it is beneficial – is driven by attention to recent outcomes, so that variability in propensity to switch reflects variability in receptivity to recent outcomes.

Here, we find that following wins, subjects are more likely to choose the same side (left vs right). Specifically, relative to losses, on wins, subject B showed a 9.6% increased likelihood of repeating the rewarded side and subject H showed a 10.0% increase (these numbers, while small, are significantly greater than 0, p<0.001, binomial test, **Figure 6A**). These effects are observable as far out as 4 trials later. Gamble wins changed preference at a statistically significant level for subject B (3.5% increase, p=0.0288) and for subject H (3.8% increase, p=0.0446).

370 We next asked how these trial-to-trial adjustment effects correspond to variations 371 in firing rate. Figure 6B shows the delay period firing rate of an example neuron on no 372 info trials. This neuron showed enhanced firing rate for info-gap and this firing rate 373 predicted choice switch on the next trial. Figure 6C shows the responses of an example 374 neuron on no-info trials, separated into higher and lower than average firing rates, after 375 regressing out stakes. For this neuron, responses were 1.81 spikes/sec higher on higher 376 firing rate trials (p=0.019, t-test; note that this difference is pre-ordained by the analysis). 377 **Figure 6D** then shows the adjustment pattern for this session on both trial types. This 378 overall pattern was also observed in the population. Specifically, we performed a linear

| 379 | regression of firing rate in the window against side switch (binary variable, 1 for switch, - |
|-----|-----------------------------------------------------------------------------------------------|
| 380 | 1 for no-switch ), including additional factors for stakes and past win/lose. Responses of    |
| 381 | 22.5% (n=34/151) of neurons show a correlation with switching, after regressing out           |
| 382 | other variables; 76.4% are positive (n=26/34, this proportion is significant, p=0.0029,       |
| 383 | binomial test). We also performed a linear regression of firing rate in the window against    |
| 384 | strategy switch (binary variable), including additional factors for stakes and past           |
| 385 | win/lose. We find that responses of $12.5\%$ of neurons (n=19/151) show a significant         |
| 386 | correlation with switching, and that 15% are positive ( $n=15/19$ , $p=0.0192$ ).             |
| 387 |                                                                                               |
| 388 | Lack of corresponding effects in OFC                                                          |
| 389 | We collected complementary results in a study of the OFC (those data are                      |
| 390 | summarized in Blanchard et al., 2015). In our previous manuscript reporting on that           |
| 391 | dataset, our analyses focused on responses to offers, whereas here we consider pre-trial      |
| 392 | and delay period effects. Here, we report new results focusing on the pre-trial and delay     |
| 393 | period effects in the OFC dataset.                                                            |
| 394 | Overall, OFC appears very weakly involved in the aspects of the task that strongly            |
| 395 | drive dACC responses. In OFC, variability in firing rates pre-trial did not predict           |
| 396 | information-seeking decisions. Specifically, 7.96% of neurons (n=9/113 neurons) showed        |
| 397 | a firing rate correlation with upcoming choice (not significant, p=0.1877, binomial test).    |
| 398 | This proportion is significantly smaller than the proportion observed in dACC (i.e.           |
| 399 | 25.8%, p<0.001, binomial test). The average firing rate before information-seeking trials     |
| 400 | was not different than the average firing rate before information-averse trials (difference:  |
|     |                                                                                               |

| 401        | 0.11 spikes/sec, p=0.85, t-test). Uncertainty about upcoming rewards did enhance delay                                                                                                    |
|------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 402        | activity in OFC in a significant proportion of neurons, although the proportion was close                                                                                                 |
| 403        | to threshold (9.7% of cells, $n=11/113$ , $p=0.0293$ , binomial test). The effect was visible as                                                                                          |
| 404        | an increase in firing as in OFC, although the effect is not significant (difference: 0.44                                                                                                 |
| 405        | spike/sec, p=0.33), and is significantly lower than the difference in dACC (p<0.001,                                                                                                      |
| 406        | Student's t-test).                                                                                                                                                                        |
|            |                                                                                                                                                                                           |
| 407        | Finally, variation in firing rate in OFC did not predict adjustments in behavior.                                                                                                         |
| 407<br>408 | Finally, variation in firing rate in OFC did not predict adjustments in behavior. Specifically, we observed this correlation in 2.65% of cells ( $n=3/113$ ). This proportion is          |
|            |                                                                                                                                                                                           |
| 408        | Specifically, we observed this correlation in 2.65% of cells ( $n=3/113$ ). This proportion is                                                                                            |
| 408<br>409 | Specifically, we observed this correlation in 2.65% of cells ( $n=3/113$ ). This proportion is not significant ( $p=0.29$ , binomial test) and is significantly lower than the proportion |

22

| 413 | DISCUSSION                                                                                     |
|-----|------------------------------------------------------------------------------------------------|
| 414 | Curiosity, a drive for non-instrumental information, clearly has multiple possible             |
| 415 | causes. Here, we asked whether those causes can include mitigating the costs associated        |
| 416 | with uncertainty. Specifically, we reasoned that remaining in a state of suspense may be       |
| 417 | aversive in part because it carries some metabolic costs. To test this hypothesis, we          |
| 418 | examined the responses of single dACC neurons during an information tradeoff task              |
| 419 | (Blanchard et al., 2015). We find that tonically enhanced firing rates in dACC predict         |
| 420 | information-seeking on a trial-by-trial basis, a potential neuronal correlate of the that is a |
| 421 | hypothesized driver of curiosity. Choice of uninformative options leads to a sustained         |
| 422 | tonic enhancement in firing that persists until the information is provided. Variability in    |
| 423 | this enhancement predicts demand for information and sensitivity of the subject to             |
| 424 | outcome information (as assessed by adjustment behavior). These changes were not               |
| 425 | observed in OFC, suggesting that our putative enhancements in activity related to              |
| 426 | uncertainty are at least somewhat anatomically localized. These observations in turn           |
| 427 | endorse the idea that dACC serves in part to accumulate evidence for purposes of guiding       |
| 428 | action (Hayden et al., 2011; Hayden and Heilbronner, 2016; Hunt et al., 2018; Kolling et       |
| 429 | al., 2012).                                                                                    |
| 430 | Neurons in many prefrontal regions encode multiple task variables and, typically,              |

Neurons in many prefrontal regions encode multiple task variables and, typically,
neural correlates of task variables show a population-level balance of positive and
negative responses. This overall balance likely reflects the fact that positive and negative
deflections can both carry information and, because spiking is costly, there are metabolic
benefits that accrue to a brain that can keep overall spiking levels low regardless of the

| 435 | situation. The putative correlates of information gap we introduce here, in contrast, are        |
|-----|--------------------------------------------------------------------------------------------------|
| 436 | biased towards the positive direction. The bias towards the positive direction suggests the      |
| 437 | speculative possibility that encoding these variables imposes metabolic costs on dACC            |
| 438 | (Laughlin et al., 1998). These costs did not appear to be counteracted by savings in other       |
| 439 | task epochs or in at least one other brain region, the OFC. If the brain is efficient at         |
| 440 | managing its own energy budget, it will seek out situations that can reduce spiking. Thus,       |
| 441 | our results provide tentative evidence consistent with the hypothesis that demand for            |
| 442 | information in this task reflects a demand for energy efficiency.                                |
| 443 | Why would it be costly to do be in a state of suspense? One possibility is that,                 |
| 444 | when there is information available to learn, the brain's learning systems enter into a state    |
| 445 | of <i>eligibility</i> , that is, they have the ability to enter into multiple possible knowledge |
| 446 | states. Perhaps these knowledge states are low-energy, but the metastable state in which         |
| 447 | multiple knowledge states are possible is higher energy. Another – not incompatible -            |
| 448 | possibility is that the brain must enter into a state of enhanced vigilance to monitor           |
| 449 | information and that the acquisition of that information allows the brain to reduce its          |
| 450 | vigilance and focus on other tasks. Both possible explanations – eligibility and vigilance       |
| 451 | have at least some support in the form of previous correlations with dACC activity.              |
| 452 | We have proposed that this task satisfies an operational definition of curiosity                 |
| 453 | (Wang & Hayden, 2018; Wang et al., 2018; Wang and Hayden, 2019). An influential                  |
| 454 | theory of curiosity holds that the demand for information is often driven by an                  |
| 455 | information gap (Golman & Loewenstein, 2015; Gottlieb et al., 2013; Kang et al., 2009;           |
| 456 | Loewenstein, 1994; Golman & Loewenstein, 2018; Loewenstein, 1994). That is, a                    |
|     |                                                                                                  |

| 457 | decision-maker's assignment of value to an informative option is caused in part by a                 |
|-----|------------------------------------------------------------------------------------------------------|
| 458 | disparity between <i>desired</i> and <i>actual</i> knowledge. In this view, lack of information is a |
| 459 | drive state that can be sated by information. Consumption of information is rewarding                |
| 460 | and lack of it - when desired - is aversive or at least dystonic. The information gap is the         |
| 461 | central theoretical structure linking curiosity to psychology and ultimately to                      |
| 462 | neuroscience (Golman & Loewenstein, 2018; Gottlieb & Oudeyer, 2018; Kidd &                           |
| 463 | Hayden, 2016; Marvin & Shohamy, 2016; van Lieshout et al., 2018). Our results suggest                |
| 464 | that the information gap would have a specific and anatomically localized set of                     |
| 465 | correlates, and that this set includes dACC and not OFC.                                             |
| 466 | Our results have some bearing on debates about the ultimate nature of the dACC.                      |
| 467 | The function of this region has long been linked to both monitoring and executive                    |
| 468 | control, as well as to core economic functions (Heilbronner & Hayden, 2016; Morecraft                |
| 469 | & Van Hoesen, 1998; Shenhav et al., 2013). Our work is most directly associated with                 |
| 470 | theories suggesting it is a general-purpose monitor and controller. For example, past work           |
| 471 | suggests that dACC monitors conflict, reward outcomes, and other factors that lead to                |
| 472 | control (Alexander & Brown, 2011; Azab & Hayden, 2018; Botvinick et al., 1999;                       |
| 473 | Shenhav et al., 2013; Shenhav et al., 2017; Hillman & Bilkey, 2010; Widge et al., 2019).             |
| 474 | Our results, then, suggest a tentative link between executive control and information-               |
| 475 | seeking, one that has been generally under-appreciated in the curiosity literature. In               |
| 476 | particular, they suggest that curiosity may serve be part of a larger tradeoff that involves         |
| 477 | efficient allocation of cognitive resources.                                                         |
|     |                                                                                                      |

| 478 | Functional neuroanatomy – the identification of region-specific functions is an                 |
|-----|-------------------------------------------------------------------------------------------------|
| 479 | important goal of cognitive neuroscience. Some cognitive functions related to economic          |
| 480 | choice appear to be broadly distributed (Cisek & Kalaska, 2010; Hunt & Hayden, 2017;            |
| 481 | Vickery et al., 2011; Yoo & Hayden, 2018). Our work here, however, indicates that there         |
| 482 | is what appears to be a qualitative difference between OFC and dACC (Kennerley et al.           |
| 483 | 2011; Rudebeck et al., 2006; Hunt et al., 2018). Because we were only able to record in         |
| 484 | two regions it is unclear what the full meaning of this difference is - one possibility is that |
| 485 | monitoring is a specialized cingulate function. Another possibility is that OFC is              |
| 486 | specialized. Indeed, it has been proposed that OFC encodes a cognitive map of the state         |
| 487 | space for the currently relevant task but is not directly involved in changing behavior         |
| 488 | (Schuck et al., 2016; Wikenheiser & Schoenbaum, 2016; Wilson et al., 2014). If so, then         |
| 489 | it would not be involved in driving the state change or in keeping track of the                 |
| 490 | environmental variables for potential state update. Our data suggest that dACC is a strong      |
| 491 | candidate for these functions, and may thus play a complementary role to OFC in this            |
| 492 | process.                                                                                        |
| 402 |                                                                                                 |

#### **MATERIALS AND METHODS**

#### 494 495

496

#### Electrophysiological Techniques

Two male rhesus macaques (*Macaca mulatta*) served as subjects. All procedures were approved by the University Committee on Animal Resources at the University of Rochester and were designed and conducted in compliance with the Public Health Service's Guide for the Care and Use of Animals. In this manuscript, we discuss two related datasets, one from dACC (the focal dataset) and one from OFC (the comparator dataset). The same subjects were used for both studies; OFC data were collected first and the dACC dataset was collected soon afterwards using the same recording methods .

504 A Cilux recording chamber (Crist Instruments) was placed over the prefrontal 505 cortex, overlying both area 24 of dACC (as defined in Heilbronner and Hayden, 2016a). 506 This is the same region used in our past studies, e.g. Hayden et al., 2011; Hayden et al., 507 2009. We also recorded in area 13 of OFC (Figure 1B: this is the same region used in 508 these subjects in our past studies, for example Wang and Hayden, 2017 and Sleezer et al., 509 2016). Position was verified by magnetic resonance imaging with the aid of a Brainsight 510 system (Rogue Research Inc.). Neuroimaging was performed at the Rochester Center for 511 Brain Imaging, on a Siemens 3T MAGNETOM Trio Tim using 0.5 mm voxels.

512 Single electrodes (Frederick Haer & Co., impedance range 0.8 to 4 mohm) were 513 lowered using a microdrive (NAN Instruments) until waveforms were isolated. Action 514 potentials were isolated on a Plexon system (Plexon, Inc). Neurons were selected for 515 study solely based on the quality of isolation. All collected neurons for which we 516 managed to obtain at least 500 trials were analyzed. Eye position was sampled at 1,000 517 Hz by an infrared eye-monitoring camera system (SR Research). Stimuli were controlled 518 by a computer running MATLAB (Mathworks) with Psychtoolbox and Eyelink Toolbox. 519 A standard solenoid valve controlled the duration of juice delivery. The relationship 520 between solenoid open time and juice volume was established and confirmed before, 521 during, and after recording.

522 523

## Information tradeoff task

524 Two offers were presented in sequence on each trial. The first offer appeared for 525 500 ms, followed by a 250 ms blank period; a second option appeared for 500 ms 526 followed by a 250 ms blank period. Every trial had one informative and one 527 uninformative option. The order of presentation (informative vs. uninformative) and 528 location of presentation (info-on-left vs. info-on-right) varied randomly by trial. The 529 offered water amount varied randomly for each option (75 to 375  $\mu$ L water in 15  $\mu$ L 530 increments). 70% of trials were standard trials; for the OFC dataset, 100% of trials were 531 standard trials. The remaining trials were variable probability trials; these were 532 interleaved randomly with standard trials.

Each offer was represented by a rectangle 300 pixels tall and 80 pixels wide (11.35 degrees of visual angle tall and 4.08 degrees wide). On standard trials, all options offered a 50% probability of gamble win, to be delivered 2.25 seconds after the choice. Informative gambles (cyan rectangle) indicated that the subject would see a 100% valid cue immediately after choice indicating whether the gamble was won or lost.

Uninformative gambles (magenta rectangle) indicated that a random cue would 538 539 appear immediately after choice. Valid and invalid cues were physically identical (green 540 and red circles inscribed on the chosen rectangle). Each offer contained an inner white 541 rectangle. The height of this rectangle linearly scaled with the water amount to be gained 542 in the case of a gamble win. Offers were separated from the fixation point by 550 pixels 543 (27.53 degrees). Subjects were free to fixate upon the offers (and almost always did so). 544 After the offers, a central fixation spot appeared. Following 100 ms fixation, both offers 545 reappeared simultaneously and the animal chose one by shifting gaze to it. Then the 2.25 546 s delay began, and the cue was immediately displayed. Any reward was delivered after 547 this delay. All trials were followed by a 750 ms inter-trial interval (ITI) with a blank screen. Previous training history for these subjects at the time of recording included a full 548 549 session (several months) with this task, two types of foraging tasks (Blanchard & 550 Hayden, 2014; Hayden et al., 2011), three gambling/choice tasks (Farashahi et al., 2018; 551 Heilbronner & Hayden, 2016b; Pirrone et al., 2018), and an attentional task (similar to 552 the one used in Hayden & Gallant, 2013).

553 554

# **Indifference point**

555 We identified when subjects chose informative and non-informative options with 556 equal probability (50%-50%) and then calculated the difference in stakes (as in water 557 amount) between the two options. We found that non-informative would have to have 558 larger stakes than informative ones and this number is 76  $\mu$ l for subject B and 51  $\mu$ l for 559 subject H. Therefore, the information equates to 76  $\mu$ l of juice reward for subject B and 51  $\mu$ l for subject H.

561

562

## Identifying information-seeking and information-averse trials

563 For the pre-trial analysis, we divided all trials into three categories, (1) ones that 564 were more information-seeking than average (information-seeking trials), (2) ones that 565 were less information-seeking than average (information-averse trials), and (3) ones for 566 which we could not assign information-seeking with any confidence (neutral trials). First, 567 we computed an *equivalent value* for the uninformative option by adding a session-wide 568 average value of information for that subject (i.e. 76 µl for subject B and 51 µl for subject H). In effect, this means we computed the average information-seekingness of the 569 570 session and then divided trials into ones that were more or less information-seeking than 571 would be predicted given the average. Trials were placed into the first category if the 572 subject chose the informative option and its value was less than the equivalent value of 573 the uninformative option. Trials were placed into the second category if the subject chose 574 the uninformative option and its equivalent value was less than the value of the 575 informative option. Note that in many trials, the choice did not provide information 576 germane to this question, and these were place into a third class. For example, if the 577 informative option had a value greater than that of the uninformative one, the subject's 578 choice would not be classifiable.

- 579 580 **Model comparison**
- 581

We used AIC weights to conduct model comparison and select the better fitting model.

582 For model comparison, AIC weights were calculated as following:

583 
$$w_i(AIC) = \frac{\exp\left(-\frac{1}{2}(AIC_i - AIC_{min})\right)}{\sum_{r=1}^m \exp\left(-\frac{1}{2}(AIC_r - AIC_{min})\right)}, (i = 1, 2, ..., m).$$
(7)

- 584  $W_i$  is the probability of a model  $M_i$  being the one, among all *m* candidate models that is
- 585 closest to the true data-generating model (Burnham & Anderson, 2010).

| 587        | REFERENCES                                                                                                                                                             |
|------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 588<br>589 | Alexander, W. H., & Brown, J. W. (2011). Medial prefrontal cortex as an action-outcome                                                                                 |
| 590        | predictor. <i>Nature Neuroscience</i> , 14(10), 1338–1344. http://doi.org/10.1038/nn.2921                                                                              |
| 591        | Azab, H., & Hayden, B. Y. (2017). Correlates of decisional dynamics in the dorsal                                                                                      |
| 592        | anterior cingulate cortex. <i>PLoS Biology</i> , 15(11), e2003091.                                                                                                     |
| 593        | Azab, H., & Hayden, B. Y. (2018). Correlates of economic decisions in the dorsal and                                                                                   |
| 594        | subgenual anterior cingulate cortices. The European Journal of Neuroscience, 47(8),                                                                                    |
| 595        | 979–993.                                                                                                                                                               |
| 596        | Blanchard, T. C., & Hayden, B. Y. (2014). Neurons in Dorsal Anterior Cingulate Cortex                                                                                  |
| 597        | Signal Postdecisional Variables in a Foraging Task, 34(2), 646–655.                                                                                                    |
| 598        | http://doi.org/10.1523/JNEUROSCI.3151-13.2014                                                                                                                          |
| 599        | Blanchard, T. C., Hayden, B. Y., & Bromberg-Martin, E. S. (2015). Orbitofrontal cortex                                                                                 |
| 600        | uses distinct codes for different choice attributes in decisions motivated by curiosity.                                                                               |
| 601        | Neuron, 85(3), 602-614. http://doi.org/10.1016/j.neuron.2014.12.050                                                                                                    |
| 602        | Botvinick, M., Nystrom, L. E., Fissell, K., Carter, C. S., & Cohen, J. D. (1999). Conflict                                                                             |
| 603        | monitoring versus selection-for-action in anterior cingulate cortex. Nature Publishing                                                                                 |
| 604        | <i>Group</i> , <i>402</i> (6758), 179.                                                                                                                                 |
| 605        | Bromberg-Martin, E. S., & Hikosaka, O. (2009). Midbrain Dopamine Neurons Signal                                                                                        |
| 606        | Preference for Advance Information about Upcoming Rewards. Neuron, 63(1), 119-                                                                                         |
| 607        | 126. http://doi.org/10.1016/j.neuron.2009.06.009                                                                                                                       |
| 608        | Bromberg-Martin, E. S., Matsumoto, M., & Hikosaka, O. (2010). Dopamine in                                                                                              |
| 609        | motivational control: rewarding, aversive, and alerting. <i>Neuron</i> , 68(5), 815–834.                                                                               |
| 610        | http://doi.org/10.1016/j.neuron.2010.11.022                                                                                                                            |
| 611        | Cervera, R. L., Wang, M. Z., & Hayden, B. (2020). Curiosity from the Perspective of                                                                                    |
| 612        | Systems Neuroscience. PsychArxiv.                                                                                                                                      |
| 613<br>614 | Cisek, P., & Kalaska, J. F. (2010). Neural mechanisms for interacting with a world full of action choices. <i>Annual Review of Neuroscience</i> , <i>33</i> , 269–298. |
| 615        | David, S. V., & Hayden, B. Y. (2012). Neurotree: A collaborative, graphical database of                                                                                |
| 616        | the academic genealogy of neuroscience. PloS one, 7(10).                                                                                                               |
| 617        | Farashahi S, Azab H, Hayden B, Soltani A. (2018) On the flexibility of basic risk                                                                                      |
| 618        | attitudes in monkeys. J. Neurosci. 38, 4383 – 4398. (doi:10.1523/jneurosci. 2260-                                                                                      |
| 619        | 17.2018)                                                                                                                                                               |
| 620        | Golman, R., & Loewenstein, G. (2015). Curiosity, Information Gaps, and the Utility of                                                                                  |
| 621        | Knowledge. SSRN Electronic Journal. http://doi.org/10.2139/ssrn.2149362                                                                                                |
| 622        | Golman, R., & Loewenstein, G. (2018). Information gaps: A theory of preferences                                                                                        |
| 623        | regarding the presence and absence of information. <i>Decision</i> , 5(3), 143.                                                                                        |
| 624        | Gottlieb, J., & Oudeyer, PY. (2018). Towards a neuroscience of active sampling and                                                                                     |
| 625        | curiosity. Nature Reviews. Neuroscience, 1.                                                                                                                            |
| 626        | Gottlieb, J., Oudeyer, PY., Lopes, M., & Baranes, A. (2013). Information-seeking,                                                                                      |
| 627        | curiosity, and attention: computational and neural mechanisms. Trends in Cognitive                                                                                     |
| 628        | Sciences, 17(11), 585–593. http://doi.org/10.1016/j.tics.2013.09.001                                                                                                   |
| 629        | Hayden, B. Y., & Gallant, J. L. (2013). Working memory and decision processes in                                                                                       |
| 630        | visual area v4. Frontiers in Neuroscience, 7, 18.                                                                                                                      |

| 631 | http://doi.org/10.3389/fnins.2013.00018                                                    |
|-----|--------------------------------------------------------------------------------------------|
| 632 | Hayden, B. Y., Pearson, J. M., & Platt, M. L. (2011). Neuronal basis of sequential         |
| 633 | foraging decisions in a patchy environment. Nature neuroscience, 14(7), 933.               |
| 634 | Hayden, B. Y., Heilbronner, S. R., Pearson, J. M., & Platt, M. L. (2011). Surprise signals |
| 635 | in anterior cingulate cortex: neuronal encoding of unsigned reward prediction errors       |
| 636 | driving adjustment in behavior. Journal of Neuroscience, 31(11), 4178-4187.                |
| 637 | Hayden, B. Y., Pearson, J. M., & Platt, M. L. (2009). Fictive reward signals in the        |
| 638 | anterior cingulate cortex. science, 324(5929), 948-950.                                    |
| 639 | Heilbronner, S. R. (2017). Modeling risky decision-making in nonhuman animals: shared      |
| 640 | core features. Current opinion in behavioral sciences, 16, 23-29.                          |
| 641 | Heilbronner, S. R., & Hayden, B. Y. (2016a). Dorsal Anterior Cingulate Cortex: A           |
| 642 | Bottom-Up View. Annual Review of Neuroscience, 39(1), annurev-neuro-070815-                |
| 643 | 013952. http://doi.org/10.1146/annurev-neuro-070815-013952                                 |
| 644 | Heilbronner, S. R., & Hayden, B. Y. (2016b). The description-experience gap in risky       |
| 645 | choice in nonhuman primates. Psychonomic Bulletin & Review, 23(2), 593-600.                |
| 646 | http://doi.org/10.3758/s13423-015-0924-2                                                   |
| 647 | Hillman, K. L., & Bilkey, D. K. (2010). Neurons in the rat anterior cingulate cortex       |
| 648 | dynamically encode cost-benefit in a spatial decision-making task. Journal of              |
| 649 | Neuroscience, 30(22), 7705–7713.                                                           |
| 650 | Hunt, L. T., & Hayden, B. Y. (2017). A distributed, hierarchical and recurrent framework   |
| 651 | for reward-based choice. Nature Reviews. Neuroscience, 18(3), 172.                         |
| 652 | Hunt, L. T., Malalasekera, W. N., de Berker, A. O., Miranda, B., Farmer, S. F., Behrens,   |
| 653 | T. E., & Kennerley, S. W. (2018). Triple dissociation of attention and decision            |
| 654 | computations across prefrontal cortex. Nature neuroscience, 21(10), 1471-1481.             |
| 655 | Jepma, M., Verdonschot, R. G., Van Steenbergen, H., Rombouts, S. A., & Nieuwenhuis,        |
| 656 | S. (2012). Neural mechanisms underlying the induction and relief of perceptual             |
| 657 | curiosity. Frontiers in Behavioral Neuroscience, 6, 5.                                     |
| 658 | Kang, M. J., Hsu, M., Krajbich, I. M., Loewenstein, G., McClure, S. M., Wang, J. TY.,      |
| 659 | & Camerer, C. F. (2009). The wick in the candle of learning: Epistemic curiosity           |
| 660 | activates reward circuitry and enhances memory. Psychological Science, 20(8), 963-         |
| 661 | 973.                                                                                       |
| 662 | Kennerley, S. W., Behrens, T. E. J., & Wallis, J. D. (2011). Double dissociation of value  |
| 663 | computations in orbitofrontal and anterior cingulate neurons. Nature Publishing            |
| 664 | Group, 14(12), 1581–1589. http://doi.org/10.1038/nn.2961                                   |
| 665 | Kolling, N., Behrens, T. E., Mars, R. B., & Rushworth, M. F. (2012). Neural mechanisms     |
| 666 | of foraging. Science, 336(6077), 95-98.                                                    |
| 667 | Kidd, C., & Hayden, B. Y. (2016). The Psychology and Neuroscience of Curiosity.            |
| 668 | Neuron, 88(3), 449-460. http://doi.org/10.1016/j.neuron.2015.09.010                        |
| 669 | Laughlin, S. B., van Steveninck, R. R. de R., & Anderson, J. C. (1998). The metabolic      |
| 670 | cost of neural information. Nature Neuroscience, $I(1)$ , 36.                              |
| 671 | Loewenstein, G. (1994). The psychology of curiosity: A review and reinterpretation.        |
| 672 | Psychological Bulletin, 116(1), 75.                                                        |
| 673 | Marvin, C. B., & Shohamy, D. (2016). Curiosity and reward: Valence predicts choice and     |
| 674 | information prediction errors enhance learning. Journal of Experimental Psychology:        |

- 675 General, 145(3), 266.
- 676 Morecraft, R. J., & Van Hoesen, G. W. (1998). Convergence of limbic input to the cingulate motor cortex in the rhesus monkey. Brain Research Bulletin, 45(2), 209-677 678 232.
- Pirrone, A., Azab, H., Hayden, B. Y., Stafford, T., & Marshall, J. A. R. (2018). Evidence 679 680 for the speed-value trade-off: Human and monkey decision making is magnitude 681 sensitive. Decision, 5, 129-142. doi 10.1037/dec0000075
- 682 Roper, K. L. E. A. (1999). Observing Behavior in Pigeons: The Effect of Reinforcement 683 Probability and Response Cost Using a Symmetrical Choice Procedure, 1–20.
- 684 Rudebeck, P. H., Buckley, M. J., Walton, M. E., & Rushworth, M. F. S. (2006). A role 685 for the macaque anterior cingulate gyrus in social valuation. Science, 313(5791), 686 1310–1312. http://doi.org/10.1126/science.1128197
- 687 Schuck, N. W., Cai, M. B., Wilson, R. C., & Niv, Y. (2016). Human Orbitofrontal Cortex 688 Represents a Cognitive Map of State Space. Neuron, 91(6), 1402–1412. 689 http://doi.org/10.1016/j.neuron.2016.08.019
- 690 Shenhav A, Musslick S, Lieder F, et al. (2017). Toward a Rational and Mechanistic 691 Account of Mental Effort. Annu Rev Neurosci. 40: 99–124.
- 692 Shenhav, A., Botvinick, M. M., & Cohen, J. D. (2013). The expected value of control: an 693 integrative theory of anterior cingulate cortex function. Neuron, 79(2), 217–240.
- 694 Sleezer, B. J., Castagno, M. D., & Hayden, B. Y. (2016). Rule encoding in orbitofrontal 695 cortex and striatum guides selection. Journal of Neuroscience, 36(44), 11223–11237.
- 696 Smith, E. H., Horga, G., Yates, M. J., Mikell, C. B., Banks, G. P., Pathak, Y. J., ... & 697 Sheth, S. A. (2019). Widespread temporal coding of cognitive control in the human 698 prefrontal cortex. Nature neuroscience, 1-9.
- 699 Strait, C. E., Blanchard, T. C., & Hayden, B. Y. (2014). Reward value comparison via 700 mutual inhibition in ventromedial prefrontal cortex. Neuron, 82(6), 1357-1366. 701 http://doi.org/10.1016/j.neuron.2014.04.032
- 702 van Lieshout, L. L., Vandenbroucke, A. R., Müller, N. C., Cools, R., & de Lange, F. P. (2018). Induction and relief of curiosity elicit parietal and frontal activity. Journal of 703 704 Neuroscience, 38(10), 2579–2588.
- 705 Vickery, T. J., Chun, M. M., & Lee, D. (2011). Ubiquity and specificity of reinforcement 706 signals throughout the human brain. Neuron, 72(1), 166–177.
- 707 Wang, M. Z., & Hayden, B. Y. (2019). Monkeys are curious about counterfactual 708 outcomes. Cognition, 189, 1-10.
- 709 Wang, M. Z., & Hayden, B. Y. (2017). Reactivation of associative structure specific 710 outcome responses during prospective evaluation in reward-based choices. Nature 711 Communications, 8, 15821. http://doi.org/10.1038/ncomms15821
- 712 White, J. K., Bromberg-Martin, E. S., Heilbronner, S. R., Zhang, K., Pai, J., Haber, S. N., 713 & Monosov, I. E. (2019). A neural network for information seeking. Nature 714 communications, 10(1), 1-19.
- 715 Widge, A. S., Heilbronner, S. R., & Hayden, B. Y. (2019). Prefrontal cortex and 716 cognitive control: new insights from human electrophysiology. F1000Research, 8.
- 717 Wikenheiser, A. M., & Schoenbaum, G. (2016). Over the river, through the woods:
- 718 cognitive maps in the hippocampus and orbitofrontal cortex. Nature Reviews.

- 719 *Neuroscience*, *17*(8), 1–11. http://doi.org/10.1038/nrn.2016.56
- Wilson, R. C., Takahashi, Y. K., Schoenbaum, G., & Niv, Y. (2014). Orbitofrontal cortex
  as a cognitive map of task space. *Neuron*, *81*(2), 267–279.
- 722 http://doi.org/10.1016/j.neuron.2013.11.005
- Yoo, S. B. M., & Hayden, B. Y. (2018). Economic choice as an untangling of options
- into actions. *Neuron*, *99*(3), 434–447.