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Abstract 22 

 Biomonitoring is an essential tool for assessing ecological conditions and 23 

informing management strategies. The application of DNA metabarcoding and high 24 

throughput sequencing has improved data quantity and resolution for biomonitoring of 25 

taxa such as macroinvertebrates, yet, there remains the need to optimise these 26 

methods for other taxonomic groups. Diatoms have a longstanding history in freshwater 27 

biomonitoring as bioindicators of water quality status. However, periphyton scraping, a 28 

common diatom sampling practice, is time-consuming and thus costly in terms of 29 

labour. This study examined whether the benthic kick-net technique used for 30 

macroinvertebrate biomonitoring could be applied to bulk-sample diatoms for 31 

metabarcoding. To test this approach, we collected samples using both conventional 32 

microhabitat periphyton scraping and bulk-tissue kick-net methodologies in parallel from 33 

replicated sites with different habitat status (good/fair). We found there was no 34 

significant difference in community assemblages between conventional periphyton 35 

scraping and kick-net methodologies, but there was significant difference between 36 

diatom communities depending on site quality (P = 0.029). These results show the 37 

diatom taxonomic coverage achieved through DNA metabarcoding of kick-net is 38 

suitable for ecological biomonitoring applications. The shift to a more robust sampling 39 

approach and capturing diatoms and macroinvertebrates in a single sampling event has 40 

the potential to significantly improve efficiency of biomonitoring programmes.  41 

 42 

Key words: Biomonitoring, metabarcoding, periphyton, diatom, benthos, biodiversity, 43 

bioindicator, water quality, rbcL cpDNA, kick-net   44 
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Introduction 45 

  As climate change and other anthropogenic impacts continue to alter the 46 

environment, there is an increasing need for comprehensive ecological assessment. 47 

Rapid and robust biomonitoring is essential for informing management plans and 48 

mitigating further environmental degradation [1–3]. Freshwater biomonitoring typically 49 

involves sampling a range of aquatic taxa, with particular focus on biological indicator 50 

taxa, to assess environmental conditions based on diversity, richness, structure and 51 

function of the existing communities [3–5].  52 

 53 

Traditionally, biomonitoring data is generated through morphological taxonomic 54 

classifications, however there has been a recent shift towards DNA-based identification 55 

using metabarcoding [6] coupled with high throughput sequencing [7]. In aquatic 56 

systems such as wadable streams, a combination of bulk-tissue benthic sampling using 57 

kick-net methodology with DNA metabarcoding, facilitates rapid data collection whilst 58 

maintaining data integrity [8–10]. The metabarcoding approach has been employed for 59 

numerous biomonitoring studies involving macroinvertebrates [11,12] for assessing 60 

freshwater health [5,10,13].   61 

 62 

In addition to benthic macroinvertebrates, diatoms (members of Bacillariophyta) are also 63 

ideal biomonitoring target taxa for assessing freshwater system conditions [14–16]. 64 

These single-celled algae have a short generation time which allows for rapid 65 

responses to physical, chemical and biological changes in the environment [14,15,17].  66 

Similar to macroinvertebrates, the high diversity and ubiquity of diatoms is used to 67 
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create biotic indices that can accurately report freshwater quality [16,18,19]. Studies 68 

have shown that diatoms respond more readily to the presence of heavy metal 69 

pollutants compared to macroinvertebrates, which are generally more sensitive to shifts 70 

in hydrological conditions [17,20–22]. Monitoring only one of these taxonomic groups to 71 

assess overall ecosystem health could potentially cause gaps in knowledge that could 72 

subvert subsequent management strategies. Hence, diatoms are being used in a 73 

number of national and regional biomonitoring programmes.  74 

 75 

Current methods for diatom sampling are time-consuming and laborious, which could 76 

hamper widespread use of diatoms for extensive freshwater biomonitoring [23,24]. The 77 

conventional diatom collection method involves the scraping of periphyton (a 78 

combination of algae, cyanobacteria, microbes, and detritus) from numerous substrates 79 

within littoral habitats [23–26]. These samples are then fixed and visualised using light 80 

microscopy [27–30]. From here, microscopy standards and keys are followed [29–31] to 81 

enable identification of diatoms to different taxonomic ranks. Within recent years, there 82 

has been the shift towards DNA metabarcoding-based identification of diatoms 83 

[15,16,32,33]. This involves the manual homogenized of periphyton scrapings into 84 

single samples, which are then processed via standard diatom metabarcoding 85 

procedures [34,35]. Alternative sampling methods, such as collection through the 86 

benthic kick-net technique, have not been tested for diatom biomonitoring applicability, 87 

however it is expected that this technique would drastically reduce time spent collecting 88 

samples. The ability to study diatom and macroinvertebrate assemblages from a single 89 

sample would allow biomonitoring programs to achieve an intensive appraisal of 90 
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freshwater conditions. In a rapidly changing world, streamlining current methodology to 91 

obtain as much data in as little time as possible is crucial. 92 

 93 

Because DNA-based analysis of environmental samples such as contents of a kick-net 94 

sample can provide a broad spectrum of organisms in the habitat sampled, we 95 

hypothesized that kick-net metabarcoding will provide diatom biodiversity comparable to 96 

commonly used scraping method. Specifically, we aimed to 1) investigate the feasibility 97 

of kick-net sampling for capturing community assemblages of freshwater diatoms 98 

versus conventional periphyton scraping using a high throughput sequencing coupled 99 

metabarcoding approach and 2) compare diatom community assemblages across a 100 

known habitat quality scale (Good and Fair) using both conventional and kick-net 101 

sampling to investigate presence of diatom indicator groups. 102 

 103 

Methods 104 

Field Sampling 105 

 Samples were collected in November 2019 from Grand River tributaries across 106 

four study sites in Waterloo, Ontario (Fig. 1). Status and location data were provided by 107 

Dougan & Associates based on a 2018 benthos biomonitoring project for the City of 108 

Waterloo (S1 Table). The four selected sites were a subset of the sites from this project 109 

and were chosen based on accessibility and habitat quality. Hilsenhoff Biotic Index 110 

ranges (weighted by species) informed the habitat quality scale [36] which categorized 111 

sites into ‘Good’ (4.51-5.50) and ‘Fair’ (5.51-6.50).  112 

  113 
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Collection occurred in riffles, starting with a benthic kick-net sample, followed by 114 

subsequent periphyton scrapings of microhabitats representative of the reach (S2 115 

Table). Periphyton scraping refers to the sampling of sediment, rock, macrophytes and 116 

leaf litter. Three replicates of each sampling type were collected at each site. Kick-net 117 

collection followed the Canadian Aquatic Biomonitoring Network [CABIN] protocol [37]. 118 

Effort was standardized to three minutes. The sampler moved up stream in a zig-zag 119 

pattern to encompass all microhabitats within the reach. Periphyton scraping samples 120 

were comprised of five specimens per microhabitat type to account for variability within 121 

the microhabitat [23]. Negative controls, consisting of molecular grade water, were 122 

collected prior to the collection of each rock sample (n= 9) to ensure the toothbrushes 123 

used for scraping biofilms from rocks had been adequately sterilised (S3 Table). All 124 

other samples were collected using manufacture-sealed sterile equipment. All samples 125 

were collected in 1L sample jars and placed in a cooler to transport back to the lab. 126 

Upon arrival at the lab, samples (n=45) were preserved using 100% ethanol and stored 127 

in a -20°C freezer until processing.  128 

 129 

Sample Validation and Extraction 130 

 To account for potential false negatives [38], diatom presence in the samples 131 

was confirmed using microscopy. A small amount of ethanol used to preserve the 132 

samples was placed on a slide and observed under a compound microscope at 100X 133 

magnification. Visual inspection confirmed the presence of diatoms in each sample type 134 

(S1 Fig.), however no taxonomic information was taken as morphological identification 135 

was beyond the scope of this study.  136 
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 137 

Once diatom presence was validated, samples were homogenized using standard 138 

blenders decontaminated by washing with ELIMINase® (VWR, Canada) then rinsing 139 

with deionized water before treating with UV light for 30 minutes. Homogenate was 140 

subsequently transferred to 50 mL Falcon tubes, where one tube was set aside and 141 

centrifuged at 2400 rpm for two minutes. Supernatant was removed and residual pellets 142 

were incubated at 70 ºC until fully dried. Next, approximately 300 mg dried tissue was 143 

subsampled into PowerBead tubes and DNA extractions were completed using the 144 

DNeasy Power Soil kit (Qiagen, CA) following the manufacturer’s protocol. The only 145 

exception being that 50 µL of buffer C6 (TE) was used for final elution. Negative 146 

controls containing no tissue were also included with each batch of extractions. All 147 

negative controls failed to amplify and therefore were not sequenced.   148 

 149 

DNA Amplification, Library Preparation and Sequencing 150 

 Amplification targeted the 312 base pair long region of the chloroplast gene 151 

ribulose bisphosphate carboxylase large chain (rbcL) using five diatom specific primers. 152 

Following the methods of Rivera et al. [39], forward primers Diat_rbcL_708F_1 (5’-153 

AGGTGAAG- TAAAAGGTTCWTACTTAAA-3’), Diat_rbcL_708F_2 (5’-AGGT- 154 

GAAGTTAAAGGTTCWTAYTTAAA-3’) and Diat_rbcL_708F_3 (5’-AGGTGAAAC- 155 

TAAAGGTTCWTACTTAAA-3’) were combined in an equimolar mix. Two reverse 156 

primers, Diat_rbcL_R3_1 (5’-CCTTCTAATTTACC- WACWACTG-3’) and 157 

Diat_rbcL_R3_2 (5’-CCTTCTAATTTACCWA-CAACAG-3’), were also combined and 158 

used for amplification. Each reaction used the following reagents: 17.5 µL HyPureTM 159 
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molecular biology grade water, 2.5 µL 10X reaction buffer (200 mM Tris-HCl, 500 mM 160 

KCl, pH 8.4), 1 µL MgCl2 (50 mM), 05. µL dNTPs mix (10 mM), 0.5 µL of both forward 161 

(10 mM) and reserve (10 mM) equimolar mixes, 0.5 µL Invitrogen’s Platinum Taq 162 

polymerase (5 U) and 2 µL of DNA. Final reaction volume totaled 25 µL. 163 

 164 

PCR protocol largely followed Rivera et al. [39] with minor adjustments. Instead of thirty 165 

cycles of denaturation at 95°C for 45 seconds, annealing at 55°C for 45 seconds and 166 

extension at 72°C for 45 seconds [39], this study increased the number of cycles to 167 

thirty-five. PCR amplification was also performed in two-steps, with the second PCR 168 

using 2 µL of amplicons from the first PCR instead of DNA, and Illumina-tailed primers. 169 

All PCRs were completed in Eppendorf Mastercycler ep gradient S thermal cycler. 170 

Successful amplification was confirmed using 1.5% agarose gel electrophoresis before 171 

purifying second PCR amplicons with the MinElute Purification kit (Qiagen). The next 172 

step was quantifying purified samples with a QuantIT PicoGreen daDNA assay kit and 173 

using these values to normalize all samples to 3 ng/µL. Samples were then indexed and 174 

pooled before purifying with AMpure magnetic beads. QuantIT PicoGreen daDNA assay 175 

kit was once again used to quantify the library and Bioanalyzer was used to determine 176 

fragment length. The library was diluted to 4 nM and 10% PhiX was added before being 177 

sequenced using Illumina MiSeq with a V3 MiSeq sequencing kit (300 X 2; MS-102-178 

2003). 179 

 180 

Bioinformatic Processing 181 
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 Illumina MiSeq paired-end reads were processed using the SCVURL rbcL 182 

metabarcode pipeline-1.0.2 pipeline available from 183 

https://github.com/terrimporter/SCVURL_rbcL_metabarcode_pipeline 184 

. SCVURL is an automated snakemake [40] bioinformatic pipeline that runs in a conda 185 

[41] environment. SeqPrep v1.3.2 [42] was used to pair raw reads requiring a minimum 186 

Phred score of 20 to ensure 99% base-calling accuracy. CUTADAPT v2.6 was used to 187 

trim primers from sequences, leaving a minimum fragment length of at least 150 base 188 

pairs [43]. Global exact sequence variant (ESV) [44] analysis was performed on the 189 

primer-trimmed reads. Reads were dereplicated using the ‘derep_fulllength’ command 190 

with the ‘sizein’ and ‘sizeout’ options of VSEARCH v2.14.1 [45]. VSEARCH was also 191 

used to denoise the data using the unoise3 algorithm [46]. These steps were taken to 192 

remove sequences with errors, chimeric sequences, PhiX carry-over and rare reads 193 

(singletons or doubletons) [47]. ESVs were classified using the rbcL diatom Classifier 194 

available from https://github.com/terrimporter/rbcLdiatomClassifier. Reference rbcL 195 

sequences were downloaded from the INRA diatom project [48]and reformatted to train 196 

the naive Bayesian classifier to make rapid, accurate taxonomic assignments [49].  This 197 

method makes assignments to the species rank and produces a statistical measure of 198 

confidence for each taxon up to the domain rank to help reduce false positive taxonomic 199 

assignments.  We used 0.60 cutoff at the family rank (99% accuracy) and 0.20 cutoff at 200 

the genus rank (95% accuracy). The accuracy of the method assumes that target taxa 201 

are present in the reference database.  202 

 203 

Statistical Analysis 204 
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RStudio was used to analyze the data [50]. To account for variable reads within 205 

the library each sample was normalized to the 15th percentile using the ‘rrarefy’ function 206 

in the vegan package [51,52].  207 

 208 

ESV richness across the various sampling and status categories was calculated to 209 

assess differences between the methods and sites. A non-metric multi-dimensional 210 

(NMDS) analysis on Sorensen dissimilarities (binary Bray-Curtis) was conducted using 211 

the vegan ‘metaMDS’ function to determine if sampling method or site status created 212 

variation in community structure [5]. A scree plot was run using the ‘dimcheckMDS’ 213 

command from the goeveg package to determine the number of dimensions (k=2) to 214 

use with vegan metaMDS function[53]. Shephard’s curve and goodness of fit 215 

calculations were calculated using the vegan ‘stressplot’ and ‘goodness’ functions. The 216 

vegan ‘vegdist’ command was used to build a Sorensen dissimilarity matrix. We 217 

checked for heterogeneous distribution of dissimilarities using the ‘betadisper’ function.  218 

We used the ‘adonis’ function to perform a permutational analysis of variance 219 

(PERMANOVA). PERMANOVA was performed on conventional sampling methods 220 

(periphyton scraping) and kick-net methods, as well as site status to test for significant 221 

interactions between the categories [54].  222 

 223 

To maintain a balanced design during statistical testing, we pooled all periphyton 224 

sampling into one sample type (conventional) and maintained kick-net samples as a 225 

separate sample type. The Jaccard index was calculated to assess the overall 226 

similarities between the sites, collection methods and site status. Nestedness and 227 
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turnover of between kick-net and conventional samples were calculated using R 228 

package betapart function ‘beta-pair’ [55] followed by vegan function ‘betadisper’. The 229 

number of diatom family ESVs detected from kick-net or pooled conventional samples 230 

was also plotted. A dendrogram of diatom families detected was plotted using 231 

RAWGraphs (app.rawgraphs.io) and color-coded to show the samples the families were 232 

detected in [56]. Lastly, the frequency of ESVs detected from diatom families was 233 

visualized using a heatmap generated using geom_tile (ggplot) in R, plotting individual 234 

sample types for each site, split into two plots according to site status. 235 

 236 

Results 237 

 After bioinformatic processing, we generated 4,272 ESVs (2,166,157 reads). 238 

After taxonomic filtering (removal of non-diatom phyla), a total of 3,940 diatom ESVs 239 

(2,125,984 reads) were retained for data analysis. Read coverage per sample after 240 

normalisation (15th percentile cut-off) was 37,735. 241 

 242 

Since the rarefaction curves plateau, this indicated that the sequencing depth was 243 

sufficient to capture the ESV diversity in our PCRs (S2 Fig.). In terms of the top 10 244 

orders identified, the order Naviculales represented 30.6% of ESVs (30% of reads) and 245 

Bacillariales represented 18.6% of ESVs (15.4% of reads; S3 Fig.).  246 

 247 

Taxonomic Coverage  248 

In terms of taxonomic assignment, we identified a total of 1 phyla (Bacillariophyta), 4 249 

classes, 23 orders, 44 families and 77 genera at the 95% correct assignment level. ESV 250 
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richness varied across different sampling methods (Fig. 2). Mean overall ESV richness 251 

was used to calculate alpha diversity which displayed very similar values for all 252 

sampling methods across the four sites (S4 Table). Averaged across sites, kick-net 253 

samples produced the lowest mean ESV richness (225 ± 85), with sediment samples 254 

producing the highest ESV richness (317 ± 92).  255 

  256 

Through investigating diatom families, a majority of families detected were present in all 257 

microhabitats and kick-net samples (Fig. 3). Two families ( Coscinodiscaceae and 258 

Orthoseriaceae) were solely present in leaf litter samples and two families 259 

(Entomoneidaceae and Diadesmidaceae) were present only in sediment samples (Fig. 260 

3).  261 

 262 

In terms of diatom genera, some of the confidently identified genera represented by 263 

more than 2 sequence variants, identified from kick-net and conventional samples, 264 

included: Nitzschia (Bacillariales), Polypedilum (Chironomidae), Navicula (Naviculales), 265 

Amphora (Thalassiophysales) and Ulnaria (Licmophorales; Fig. 4).  266 

 267 

Diatom Diversity by Method and Site Status 268 

NMDS plots showed that replicates clustered close together for site and status, 269 

with overlap observed between sampling methods and replicates (Fig. 5). When pooling 270 

conventional periphyton samples (i.e. macrophyte, leaf litter, rock, and sediment) at 271 

each site, there remained overlap between kick-net and conventional samples and 272 

samples also remained clustered by site and status (S4 Fig). PERMANOVA of the 273 
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pooled samples, shows that analyzing data from kick-net or conventional samples 274 

(method) explains 13% of the variation in Bray Curtis dissimilarities (p-value = 0.776), 275 

sampling site (site) explains 58% of the variation (p-value = 0.009) and habitat quality 276 

status (status) explains 22% of the variation observed (p-value = 0.029; S5 Table).  The 277 

Jaccard index for kick-net compared with conventional samples is 0.53, indicating 278 

samples are 53% similar, whereas the Jaccard index for fair compared to good site 279 

quality status samples is 0.20, indicating samples are only 20% similar. In terms of beta 280 

diversities of communities aggregated by the treatments of "kick-net" and 281 

"conventional", there was no significant difference between turnover. For beta 282 

diversities of communities aggregated by site status, there was a significant difference 283 

between nestedness (P < 0.05) but not for turnover (P = 0.06).  Fair samples appear to 284 

be significantly nested within good samples. These results further indicate that site 285 

status has a significant effect on the sampled community composition whereas 286 

conventional versus kick-net sampling methods do not.   287 

 288 

For individual sample types (i.e. kick-net, macrophyte, leaf litter, rock, and sediment), 289 

the heatmap shows that kick-net samples are largely representative of the diversity of 290 

families detected within each conventional periphyton sampling method (Fig.6.). In 291 

some cases, kick-net samples failed to detect diatom families which were present in 292 

conventional periphyton samples (e.g. Sellaphoraceae and Diadesmidaceae in Clair15) 293 

and conversely, kick-net samples also detected families which were not detected in 294 

conventional periphyton samples (e.g. Eunotiaceae and Neidiaceae in Clair12; Fig. 6). 295 

Similar assemblages of diatoms communities were detected across both fair and good 296 
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quality sites, with the main difference observed between fair and good sites being the 297 

number of reads produced for families such as Thalassiosiraceae which was detected 298 

with a high number of reads (1000+) in fair sites and a lower number of reads (10-100) 299 

in good sites (Fig. 6).  300 

 301 

Discussion 302 

The demand for high-quality, reproducible ecological data is increasing in 303 

conjunction with the degradation of ecosystems globally [57]. There is a need to further 304 

streamline existing biomonitoring methodologies without sacrificing the quality of data 305 

produced [4,7,54,58]. With diatom assemblages providing a unique insight into the 306 

water quality status of lentic and lotic systems, fast-tracking diatom data collection for 307 

ecological assessments is a priority [39]. We have demonstrated that kick-net 308 

methodology with DNA metabarcoding provides sufficient taxonomic coverage to 309 

potentially be utilised as a for assessing diatom biodiversity in freshwater systems. 310 

 311 

Kick-net sampling technique, whereby a zig-zag path is taken across the reach, 312 

provided sufficient representation of existing diatom community assemblages within 313 

site-specific microhabitats. Samples derived from the kick-net technique were highly 314 

comparable with conventional samples in terms of diatom taxa detected, despite the 315 

kick-net approach being more passive compared to direct periphyton scraping. Specific 316 

diatom taxa are known to have ecological preferences for different freshwater 317 

microhabitats [59,60]. For watershed-level health estimates, it is beneficial to be able to 318 

efficiently detect the diversity of diatom taxa present without directly sampling each 319 
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microhabitat within a reach. We have demonstrated that kick-net methodology can   320 

sufficiently capture the existing diatom biodiversity, ground truthed by comparing 321 

assemblages detected with periphyton scrapings.  322 

 323 

Ultimately, the detection of bioindicator species is a key variable to consider when 324 

comparing biomonitoring methods, as these taxa are pivotal for detecting subtle 325 

differences in freshwater health [3,5,14]. Naviculaceae contains diatom species 326 

sensitive to herbicide exposure, which is a family we observed in all sites and with all 327 

collection methods [61]. Additionally, the bioindicator family Stephanodiscaceae, (a 328 

known tolerant taxon) [62], has a higher read abundance in ‘Fair’ sites compared to 329 

‘Good’ in both conventional and kick-net sample types. Despite the direct sampling 330 

approach of periphyton rock scraping, this methodology failed to detect this family at 331 

one of the sites where kick-net samples were successful at detecting this benthic family. 332 

Rock scrapings are commonly used as the sole collection method for diatoms 333 

[14,39,63,64], which suggests that the kick-net approach facilitates the detection of taxa 334 

which otherwise may be missed from conventional sampling. 335 

 336 

 337 

Conclusion 338 

Overall, this study found that benthic kick-net methodology enables a robust and 339 

detailed assessment of freshwater diatom communities. This methodology is a scalable 340 

option for generating a holistic insight into the health of freshwater systems. The high 341 

similarity of diatom taxa detected between methods and significant differences between 342 
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diatom communities detected in sites of differing habitat quality, demonstrates that this 343 

rapid method can provide accurate, fine-resolution taxonomic results. Future research 344 

should examine the duo-analyses approach of macroinvertebrate and diatom 345 

communities from a single kick-net sample, to determine reproducibility of multi-taxa 346 

targeting with this method. Additionally, future studies should consider exploring the use 347 

of multiple markers (i.e. rbcL cpDNA versus 18S rRNA gene), to address level of 348 

taxonomic resolution that can be obtained with these markers commonly used for 349 

diatom DNA barcoding. 350 

 351 

 352 

Supporting Information 353 

S1 Table. Information on study sites, including GPS coordinates and site status. 354 

S2 Table. Outline of collections methods used in this study. Samples for periphyton 355 

scraping were taken from a depth no greater than 1m (King et al. 2006). 356 

S3 Table. Summary table of decontamination and sterilisation procedures 357 

undertaken for the equipment in this study. 358 

S4 Table. Mean ESV values (replicates pooled) for each sample type across the 359 

four sites. Based on normalised data. 360 

S5 Table. rbcL exact sequence variants (ESVs) are not significantly different 361 

between sampling methods (kick-net versus conventional periphyton sampling).  362 

No significant beta dispersion was detected within groups (method, site, status). Only 363 

significant difference detected was rbcL ESVs between sites and status. Summary of 364 
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PERMANOVA results based on a Sorensen dissimilarity matrix of rbcL ESVs.  365 

Significant p-values are bolded. 366 

S1 Fig. Example of confirmation of diatom presence from preservative of kick-net 367 

sample. Image: CBG Photography Group. 368 

S2 Fig. All samples show that ESV sampling reached saturation. Samples were 369 

color-coded by site or method as shown in the legend.  The vertical dashed line 370 

indicates the 15th percentile of sampling read depth, which is the number of reads that 371 

would be used in any future analysis based on normalized data. 372 

S3 Fig. Naviculales is the most abundant diatom order detected.  Results for the 373 

top 10 orders are shown with respect to proportion of ESVs and reads recovered.  374 

Based on raw unnormalized data. 375 

S4 Fig. Non-metric multi-dimensional scaling plots of microhabitat samples 376 

pooled show clustering by due to site and status. Specifically, a) depicts overlap 377 

between the binary Bray Curtis (Sorensen) dissimilarities between different sampling 378 

approaches, b) sample site clustering c) clustering based on habitat quality status 379 

(stress = 0.012, R2 = 0.98).  Based on rarefied data. 380 
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Fig. 1. Map of 607 sample sites 607 
located 608 within the 608 
Waterloo 609 region 609 
(Ontario, 610 Canada) Scale 610 
bar shown in 611 km, site habitat 611 
status 612 indicated in 612 
legend. 613 
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 621 

 622 

 623 

 624 

Fig. 2. ESV richness varies across different sample types. Methods refer to the 625 

different sampling approaches analyzed (i.e. Kick-net, Macrophyte, Leaf Litter, Rock 626 

and Sediment). Replicates are pooled. Based on rarefied data.   627 
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 629 

Fig. 3. A majority of diatom families were detected in both microhabitat and kick-630 

net samples.  631 
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 637 

Fig. 4. Number of ESVs detected from genera detected from kick-net versus 638 

conventionally sampled diatoms are similar. The points are color-coded for the 639 

orders detected in this study.  A 1:1 correspondence line (dotted) is also shown. A log10 640 

scale is shown on each axis to improve the spread of points with small values. Based 641 

on rarefied data.  642 
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 649 
 650 
 651 
 652 
Fig. 5. Non-metric multi-dimensional scaling plots show clustering mainly due to 653 

site and status. Specifically, a) binary Bray Curtis (Sorensen) dissimilarities 654 

overlapping across different sampling approaches, b) clustering by site, c) overlap 655 

between replicates, and d) clustering based on habitat quality status (stress = 0.111, R2 656 

= 0.98).  Based on rarefied data. 657 

 658 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 28, 2020. ; https://doi.org/10.1101/2020.05.25.115089doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.25.115089
http://creativecommons.org/licenses/by-nc-nd/4.0/


32 
 

 659 

 660 

 661 

 662 

 663 

 664 

 665 

 666 

 667 

Fig. 6. Samples detect similar diatom families across sampling methods and site 668 

status. Only ESVs taxonomically assigned to families with high confidence (bootstrap 669 

support >= 0.60 for 95% accuracy) are included.  Part a) shows sites with a ‘good’ 670 

quality status b) sites with a ‘fair’ quality status. Sampling methods: K = kick-net; R = 671 

rock scraping; L = leaf litter; M = macrophyte; S = sediment. Empty lanes indicate the 672 

corresponding microhabitat was not present at the site. For each site, three replicates 673 

for each sampling method are pooled. Based on normalized data.  674 

 675 
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Data Availability 677 

Raw sequences will be available from NCBI SRA on acceptance. The SCVURL rbcL 678 

metabarcode pipeline-1.0.2 is available from 679 

https://github.com/terrimporter/SCVURL_rbcL_metabarcode_pipeline and the 680 

rbcLdiatomClassifier v1 we used is available on GitHub at 681 

https://github.com/terrimporter/rbcLdiatomClassifier. 682 
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