P 1

1	Draft Genome Sequences of Seven Strains of Dickeya dadantii, a Quick
2	Decline-causing Pathogen in Fruit Trees, Isolated from Japan
3	
4	Takashi Fujikawa ^{a,#} , Hiroe Hatomi ^a , Nobuyoshi Ota ^a
5	
6	^a Institute of Fruit Tree and Tea Science, National Agriculture and Food Research
7	Organization (NARO), Tsukuba, Ibaraki, Japan
8	
9	Running title: Genome sequences of 7 D. dadantii strains in Japan
10	

11 **#Corresponding author:** ftakashi@affrc.go.jp

12 Abstract

Plant pathogenic bacterium *Dickeya dadantii* causes quick decline in fruit trees (apple,
Japanese pear, and peach). In this study, we report on the draft genome sequences of
seven strains of *D. dadantii* isolated from fruit trees with typical quick decline
symptoms in Japan.

17

18Dickeya dadantii is a plant pathogenic bacterium that causes soft rot disease in various 19plants (1). In addition to being a soft-rot pathogen, it causes quick decline (QD) in fruit 20trees, such as apple, peach, and Japanese pear trees (2, 3). The symptoms of QD include 21red-brown sap leakage from the trunk and/or branches, softening bark, defoliation, leaf 22and shoot necrosis, and dieback. However, the lifecycle of D. dadantii is not yet well 23understood. The genetic characteristics of this bacterium will need to be defined to develop effective measures for the control of QD. To this end, we performed 2425whole-genome sequencing (WGS) of seven D. dadantii strains isolated from fruit trees 26with symptoms of OD. 27The strains sequenced in this study were obtained from the Institute of Fruit Tree

and Tea Science (NARO) (Table 1), isolated from apple, peach, and Japanese pear trees, and identified as *D. dadantii* according to our previous studies (2, 3). The strains were cultivated in YP broth (2) at 27°C for 1 day with agitation at 140 rpm. Then, 1-ml

31	aliquots of each culture were used for DNA extraction with a DNeasy mini kit (Qiagen,
32	Hilden, Germany). Their genome sequences were determined using WGS, as previously
33	reported (4, 5, 6, 7). Briefly, the genomic DNA was sequenced using an Ion PGM
34	sequencer with an Ion PGM Hi-Q View OT2 kit, an Ion PGM Hi-Q View Sequencing
35	kit, and a 318 Chip kit v2 (Thermo Fisher Scientific, Waltham, MA, USA), according to
36	the manufacturer's instructions. Default parameters were used unless specified
37	otherwise. The sequence reads were quality controlled (quality score <20) and the
38	adapter sequences were removed using the CLC Genomics Workbench (version 10,
39	except for Kunimi3-1 (ver. 12), and BI1-1 (ver. 20)). Using the resulting reads, contigs
40	(filtered with a size >500 bp) were assembled de novo using the CLC Genomics
41	Workbench. The draft genomes were annotated using the NCBI Prokaryote Genome
42	Annotation Pipeline (PGAP).
43	The WGS analysis indicated that the genome size of the seven strains was 4.7-4.9
44	Mbp with a G+C content of 56.1-56.4% (Table 1). The genome information of this
45	species was previously published in NCBI as 4.7-5.0 Mbp with a G+C content of
46	56.3-56.5% (e.g. strains 3937 and DSM 18020; GenBank accession no. CP002038 and
47	CP023467, respectively), which supports the results of our WGS analysis. Moreover,
48	PGAP identified 4,311-4,488 genes and multiple rRNA and tRNA genes in these
49	genomes (Table 1). This information can be used to compare the genomes and gene

50	expression patterns of different strains or species. Therefore, the results of our WGS
51	analysis may help to elucidate the characteristics of D. dadantii, a bacterium related to
52	the virulence of QD.
53	
54	Data availability
55	All WGS projects in this study have been deposited at DDBJ/ENA/GenBank. The
56	corresponding read data are available from the Sequence Read Archive (SRA) with the
57	accession numbers provided in Table 1.
58	
59	Acknowledgments
60	We would like to express our gratitude to Ms. M. Taguchi and Ms. A. Sasaki for
61	supporting this work and to the members of IFTS-NARO for their helpful discussions.
61 62	supporting this work and to the members of IFTS-NARO for their helpful discussions. We would also like to thank Editage (www.editage.jp) for English language editing.
62	We would also like to thank Editage (www.editage.jp) for English language editing.
62 63	We would also like to thank Editage (www.editage.jp) for English language editing. This work received no specific grant from any funding agency in the public, commercial,
62 63 64	We would also like to thank Editage (www.editage.jp) for English language editing. This work received no specific grant from any funding agency in the public, commercial,

68 of virulence programme. Environ Microbiol Rep 5:622 636.

69 2. Ota N, Fujikawa T. 2020. Reproduction of bacterial quick decline of fruit to
--

- soil inoculation with *Dickeya dadantii*. J Gen Plant Pathol 86:199 204.
- 3. Fujikawa T, Ota N, Sasaki M, Nakamura T, Iwanami T. 2019. Emergence of apple
- 52 bacterial quick decline caused by *Dickeya dadantii* in Japan. J Gen Plant Pathol
- 73
 85:314□319.
- 4. Fujikawa T, Sawada H. 2016. Genome analysis of the kiwifruit canker pathogen

75 *Pseudomonas syringae* pv. *actinidiae* biovar 5. Sci Rep 6:21399.

- 5. Fujikawa T, Sawada H. 2019. Genome analysis of Pseudomonas syringae pv.
- *actinidiae* biovar 6, which produces the phytotoxins, phaseolotoxin and coronatine.
- 78 Sci Rep 9:3836.
- 6. Nakazono-Nagaoka E, Fujikawa T, Shikata A, Tachaapaikoon C, Waeonukul R,
- 80 Pason P, Ratanakhanokchai K, Kosugi A. 2019. Draft genome sequence data of
- 81 *Clostridium thermocellum* PAL5 possessing high cellulose-degradation ability. Data
- 82 in Brief 25:104274.
- 83 7. Sawada H, Fujikawa T, Nishiwaki Y, Horita H. 2020. Pseudomonas kitaguniensis sp.
- Nov., a pathogen causing bacterial rot of Welsh onion in Japan. Int J Sys Evol
- 85 Microbiol. https://doi.org/10.1099/ijsem.0.004123

	Strain information		Genome information					PGAP ^a annotation			Reads information			
Strain	Isolation host	Isolation area	GenBank accession	Genome size (bp)	G+C content	No. of contigs	N ₅₀	Total no. of	rRNAs (5S,	tRNAs	SRA ^b accession	No. of reads	Average length	Geno me
			no.		(mol%			genes	16S,		no.		(bp)	cover
)				23S)					age
														(x)
BI1-1	Apple	Japan:	JABEOZ0	4,663,807	56.2	271	39,637	4,311	1, 2, 1	46	SRR11696	673,373	229.2	33.1
		Iwate	00000000								188			
BI3-1	Apple	Japan:	PHRA000	4,771,676	56.3	92	151,183	4,331	4, 1, 1	61	SRR11692	5,046,90	298.9	316.1
		Iwate	00000								751	7		
Aka1-1	Peach	Japan:	JABEPA00	4,714,768	56.4	268	43,532	4,429	5, 1, 1	57	SRR11696	592,688	258.8	32.5
		Fukushima	0000000								187			
Yana2-2	Peach	Japan:	JABEPB0	4,825,596	56.4	204	61,681	4,432	3, 2, 1	48	SRR11696	1,510,29	255.4	79.9
		Fukushima	00000000								186	2		
Kunimi-3	Peach	Japan:	SMHE000	4,869,298	56.5	141	96,135	4,446	2, 1, 2	62	SRR11730	1,941,54	287.6	114.7
		Fukushima	00000								645	5		
Kousui1-1	Japanese	Japan:	JABEPC0	4,881,710	56.1	193	68,290	4,488	5, 1, 3	53	SRR11696	1,308,24	263.2	70.5
	pear	Saga	00000000								185	8		
Housui2-1	Japanese	Japan:	JABEPD0	4,882,493	56.2	197	56,134	4,481	4, 1, 6	49	SRR11696	1,746,61	258.4	92.4
	pear	Saga	00000000								184	2		

1 Table 1. Genome data and accession numbers of seven *Dickeya dadantii*.

2 ^aNCBI Pipeline Genome Annotation Pipeline

3 ^bshort read archive