Discovery of a novel simian pegivirus in common marmosets (*Callithrix jacchus*) with lymphocytic enteritis

4

5 Heffron AS¹, Lauck M¹, Somsen ED¹, Townsend EC¹, Bailey AL², Eickhoff J³, Newman CM¹,

6 Kuhn J⁴, Mejia A⁵, Simmons HA⁵, O'Connor DH¹.

7 Affiliations

8 ¹ Department of Pathology and Laboratory Medicine, School of Medicine and Public Health,

- 9 University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- 10 ² Department of Pathology and Immunology, Washington University School of Medicine, St.
- 11 Louis, Missouri, United States of America

³ Department of Biostatistics & Medical Informatics, University of Wisconsin-Madison, Madison,
 WI, United States of America

- ⁴ Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious
- 15 Diseases, National Institutes of Health, Fort Detrick, Frederick, Maryland, United States of 16 America
- ⁵ Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison,
- 18 Wisconsin, United States of America

19 Abstract

From 2010 to 2015, 73 common marmosets (Callithrix jacchus) housed at the Wisconsin 20 National Primate Research Center (WNPRC) were diagnosed postmortem with lymphocytic 21 22 enteritis. We used unbiased deep-sequencing to screen the blood of deceased enteritis-positive 23 marmosets for the presence of RNA viruses. In five out of eight marmosets found to have 24 lymphocytic enteritis, we discovered a novel pegivirus not present in ten subsequently deep-25 sequenced healthy marmosets. The novel virus, which we have named Southwest bike trail 26 virus (SOBV), is most closely related to a strain of simian pegivirus A (68% nucleotide identity) 27 that was previously isolated from a three-striped night monkey (Aotus trivirgatus). To determine 28 the prevalence of this novel virus within the WNPRC marmoset colony, we screened 146 living 29 animals and found an overall prevalence of 34% (50/146). Over the next four years, 85 of the 30 146 screened marmosets were examined histologically for lymphocytic enteritis. Out of these 85

- 31 animals, 27 SOBV-infected common marmosets had developed lymphocytic enteritis, compared
- 32 to 42 uninfected common marmosets, indicating no association between this virus and
- development of enteritis (*p*=0.820). The novel pegivirus was also found in 2 of 32 (6.25%)
- 34 healthy marmosets screened while in quarantine during the transfer from the New England
- 35 Primate Research Center to the WNPRC.

36 Importance

37 Common marmosets (Callithrix jacchus) are a valuable model species. We discovered two 38 variants of a novel pegivirus, which we named the Southwest bike trail virus (SOBV), in 39 common marmosets which had postmortem histologic diagnosis of lymphocytic enteritis. We 40 screened 146 live healthy marmosets in the Wisconsin National Primate Research Center colony and found 34% (50/146) of the animals were infected. SOBV was also present in 2 of 32 41 42 (6.25%) healthy marmosets from the New England Primate Research Center. These findings 43 have implications for animal studies in which infection-free animals are desired, and they 44 demonstrate the need for further investigations to increase understanding of this genus of 45 viruses.

46 Introduction

47 Common marmosets (Callithrix jacchus) are a valuable model species due to their small body size, communal monogamous familial behavior, birth of hematopoietic chimeric litters, short 48 49 parturition intervals, and status as members of a non-endangered primate species.¹⁻⁴ The utility of common marmosets in research has resulted in a recent increase in demand for these 50 animals.⁵ The Wisconsin National Primate Research Center (WNPRC) in Wisconsin, Madison, 51 52 USA, houses a common marmoset colony typically consisting of about 240 common 53 marmosets, which are used by researchers at the University of Wisconsin-Madison for 54 aroundbreaking research in neurological, neurobehavioral, and pharmacologic studies, and many others.6-16 55

56

57 From 2010 to 2015, 73 common marmosets housed at the WNPRC were euthanized due 58 experimental end point, chronic, intractable diarrhea, or chronic severe weight loss, underwent 59 necropsy with histology and were diagnosed with lymphocytic enteritis. Beyond the regrettable 60 loss of animal life, common marmoset demise due to enteritis is harmful to both colony success 61 and to the scientific studies to which these animals are assigned. Though lymphocytic enteritis is one of the most common causes of death in captive common marmosets,¹⁷⁻²² the epizootic at 62 63 WNPRC was associated with an unusually high disease incidence, prompting investigations into a possible infectious contributor. Unbiased deep-sequencing led to the discovery of two closely 64 65 related variants of a novel pegivirus, most closely related to a variant of simian pegivirus A (SPgV-A) previously isolated from a three-striped night monkey (Aotus trivirgatus). This novel 66 pegivirus was present in a subset of deceased common marmosets diagnosed postmortem with 67 68 lymphocytic enteritis and not present in matched healthy controls. Pegiviruses, members of genus Pegivirus (Amarillovirales: Flaviviridae), are ubiquitous in animal populations,²³⁻³⁴ but their 69 biological consequences are poorly understood. Given the importance of common marmosets 70 71 as a model species and the disease burden caused by lymphocytic enteritis, we set out to 72 characterize the possible link between these new viruses and the disease state. 73 74 Here, we report the discovery of two variants of a novel pegivirus in a captive common 75 marmoset colony. We establish phylogenetic relationships with other known pegiviruses. Since

this virus was discovered in common marmosets with lymphocytic enteritis and was absent in healthy controls, we measured the prevalence of the virus in the colony. We investigated the

77 nearing controls, we measured the prevalence of the virus in the colory. We investigated the potential association between the virus and the occurrence of lymphocytic enteritis. We

79 ultimately found no statistically significant association between infection status and disease.

Still, we did find the virus to be highly prevalent (34%) in our colony, less prevalent (6.25%) in a

so comparison colony, and significantly associated with increasing age (p=0.03237). These

82 findings have implications for animal studies in which infection-free animals are desired, and

they demonstrate the need for further investigations to increase understanding of this genus ofviruses.

85 Results

86 Captive common marmosets harbor a novel pegivirus

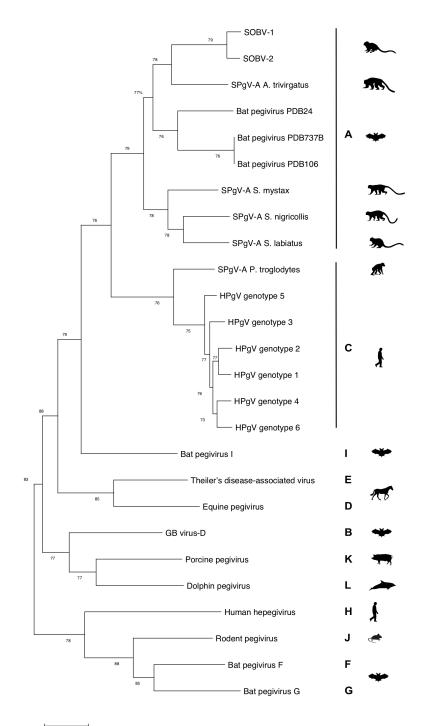
87 To examine the etiology of the unusually high rate of lymphocytic enteritis in deceased WNPRC 88 common marmosets, banked plasma samples from eight common marmosets diagnosed with lymphocytic enteritis and from 10 healthy, live common marmosets to be used as controls were 89 90 screened by deep sequencing for the presence of DNA and RNA viruses. Five of eight 91 deceased marmosets with lymphocytic enteritis were infected with the previously undocumented 92 pegivirus. We propose this novel virus (BioProject accession number PRJNA613737), be 93 formally named the Southwest bike trail virus (SOBV). The ten healthy common marmoset 94 controls were found to be negative for this virus.

95

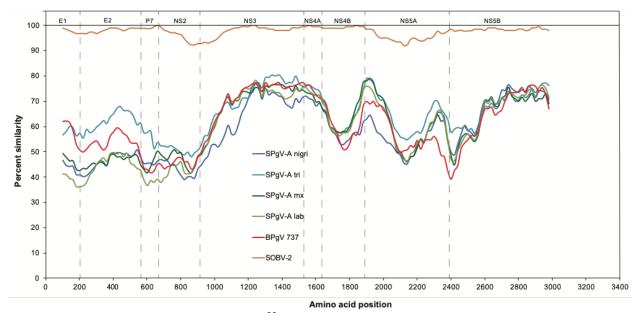
SOBV consists of a 9.8-kb-long contig that is highly similar to the genome of simian pegivirus A
 (SPgV A) trivirgatus, a simian pegivirus previously discovered in a three-striped night monkey
 (*Aotus trivirgatus*)²⁶ (Figure 1), with 68% nucleotide identity across the coding sequence when
 aligned using ClustalW with an IUB cost matrix (gap extension cost, 6.66; gap open cost,

100 15.00). Four of the five marmosets infected with SOBV had variants of the virus having 98-99%
101 sequence identity, while one marmoset was infected with a variant with 88% sequence identity
102 to the others. We have named these variants SOBV-1 and -2.

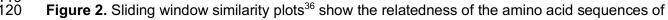
103

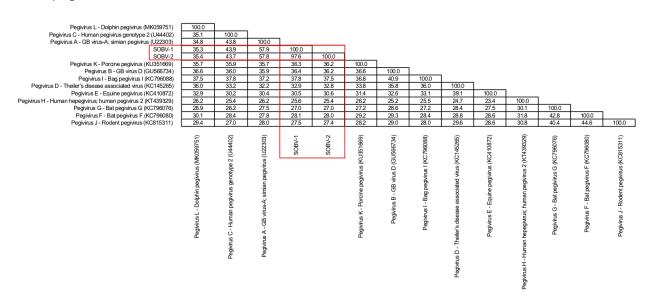

Pairwise comparisons of nucleotide identity across the entire coding region further illustrate the similarity of SOBV-1 and SOBV-2 and the divergence between these novel virus strains and the

106 next most closely-related viruses (Figure 2, Figure 3), most of which were simian pegiviruses.


107 Interestingly, a pegivirus isolate found in a bat, BPgV 737,³⁵ also shared a high degree of

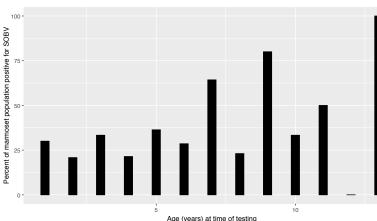
108 similarity with the novel pegivirus and with similar simian pegiviruses.


109


- 110
- **Figure 1.** A phylogenetic tree of newly discovered pegivirus Southwest bike trail virus (SOBV
- strains 1 and 2) shows it is most closely related to pegiviruses found in other New World
- 113 monkeys. We generated maximum likelihood trees using MEGA6.06 (1,000 bootstrap
- 114 replicates, GTR+I+γ model) from codon-based alignments (via MAFFT); Bootstrap values of
- 115 less than 70 are omitted.
- 116 *Abbreviations*: HPgV = human pegivirus; SPgV = simian pegivirus; GBV-C = G.B. virus C; BPgV
- 117 = bat pegivirus; EqPgV = equine pegivirus; HePegi = hepegivirus; RPgV = rodent pegivirus
- 118

119 120

- 121 SOBV-2 and other closely related pegiviruses to SOBV-1. Dashed vertical lines indicate the
- 122 putative approximate start positions of inferred viral proteins, from left to right: E1, E2, NS2, 123 NS3, NS4A, NS4B, NS5A, and NS5B,³⁷
- 124 Abbreviations: SPgV-A nigri = GBV-A-like virus recovered from Saguinus nigricollis; SPgV-A tri
- 125 = GBV-A-like virus recovered from *Aotus trivirgatus*; SPgV-A mx = GBV-A-like virus recovered
- 126 from Saguinus mystax; SPgV-A lab = GBV-A-like virus recovered from Saguinus labiatus; BPgV
- 127 = bat pegivirus recovered from *Eidolon helvum*
- 128


129 130

- Figure 3. Sequence identity matrix based on amino acid alignment of the newly discovered
- 131 SOBV-1 and SOBV-2 (red box) compared to members of the 11 recognized pegivirus species
- 132 and of one* proposed species.37
- 133 *The classification of dolphin into species "Pegivirus L" has been suggested.³⁸

Novel pegivirus infects up to 35% of a captive common marmoset 134 colony 135

136 Having identified the novel pegivirus, we sought to determine its prevalence within the WNPRC 137 common marmoset colony. We developed an RT-PCR assay to detect a conserved region of 138 the putative helicase protein of SOBV and used this to screen plasma collected from 146 139 healthy live common marmosets in the WNPRC colony, confirming results through deep-140 sequencing of the amplicons. At the time of the initial screening in March-April 2014, 50 of the 141 146 (34.25%) healthy screened animals tested positive for SOBV. Nineteen of 60 females 142 (31.67%) and 31 of 86 males (36.05%) tested positive at the time of screening. Sex was not 143 associated with the likelihood of infection using univariate logistic regression (p=0.5834). Age at 144 the time of screening was mildly associated with the likelihood of infection (p=0.03237), with the 145 likelihood of positivity increasing with age (Figure 4). 146

147

WNPRC common marmosets screened for SOBV			
Age (years) at time of screening	Total number common marmosets	Number common marmosets infected	Number common marmosets non- infected
1	20	6	14
2	24	5	19
3	18	6	12
4	14	3	11
5	22	8	14
6	7	2	5
7	14	9	5
8	13	3	10
9	5	4	1
10	6	2	4
11	2	1	1
12	0	0	0
13	1	1	0

151 Figure 4. Prevalence of infection with Southwest bike trail virus (SOBV) in common marmosets

152 at the WNPRC increases with age. One hundred forty-six live, healthy common marmosets in

153 the WNPRC captive common marmoset colony were screened for SOBV using RT-PCR and

154 deep sequencing methods. The likelihood of infection with these viruses was significantly

- 155 statistically associated with increasing age (p=0.03237) using univariate logistic regression.
- 156

157 In November 2014, 82 common marmosets were transferred from the New England Primate

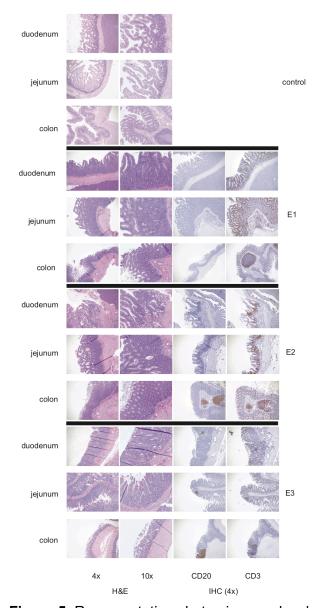
Research Center (NEPRC) to the WNPRC. Samples from 32 NEPRC animals were collected 158

159 while the animals were in guarantine. Two (6.25%) were found to be infected with SOBV when 160 screened by RT-PCR in guarantine.

Presence of novel pegivirus is not statistically significantly 161 associated with common marmoset lymphocytic enteritis 162

163 We next sought to determine whether infected animals were more likely to develop lymphocytic

164 enteritis. Typical enteric architecture consists of slender, often branching villi, with short


165 intestinal glands, small numbers of lymphocytes in the lamina propria, and prominent B cell

166 aggregates dispersed throughout the length of the intestines (Figure 5, control). Lymphocytic

167 enteritis was diagnosed as a disruption of this architecture, with lymphocytic infiltration that

168 expands the lamina propria, resulting in widening and shortening of villi and hyperplasia of crypt 169 epithelium (Figure 5, E1-E3). Cases varied in severity, with mild cases showing only slight

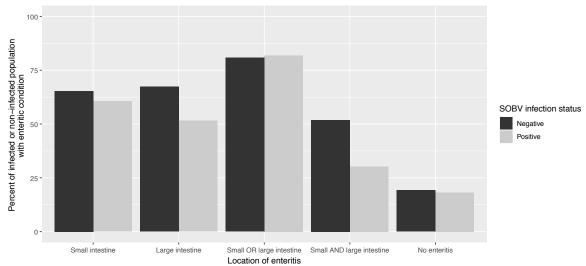
- 170 expansion of the lamina propria and advanced cases showing complete loss of villus
- 171 architecture due to infiltration of the lamina propria with large numbers of CD3-positive
- 172 lymphocytes. Eighty-five of the live WNPRC animals initially screened for SOBV in 2014 were
- euthanized for experimental end points or clinical illness between their screening and May 3,
- 174 2019. Sixty-nine (81.18%) of these animals were diagnosed by postmortem histological analysis
- with lymphocytic enteritis of the small intestine, or large intestine, or both. Two animals were
- 176 removed from this analysis due to confounding factors (one animal had severe tissue autolysis,
- and the other animal had B cell lymphoma of the small and large intestines).
- 178

179

Figure 5. Representative photomicrographs show lymphocytic enteritis distorting normal
 intestinal structures in the duodenum, jejunum, and colon of common marmosets. Histology

182 performed upon intestinal samples from 85 common marmosets. All intestinal sections were

183 stained with hematoxylin and eosin (H&E). Intestinal sections from animals with enteritis were


184 stained using B cell-specific and T cell-specific staining procedures (immunohistochemistry) with

185 monoclonal antibodies to CD20 or CD79 (B cell markers) and CD3 (T cell marker), respectively.

186

187 Pegivirus infection was not found to be associated with an increased likelihood of developing 188 lymphocytic enteritis in the large intestine (p=0.196), small intestines (p=0.779), both small and 189 large intestines (p=0.0798), or either the large or small intestines (p=0.820) (Figure 6).

191 192 Figure 6. Infection with Southwest bike trail virus (SOBV) is not associated with the likelihood of 193 developing lymphocytic enteritis. Eighty-five common marmosets at the WNPRC, which had

194 been previously screened for SOBV by RT-PCR or deep-sequencing of plasma samples, were

195 examined postmortem for histological evidence of lymphocytic enteritis. Pegivirus infection was

196 not found to be associated with an increased likelihood of developing lymphocytic enteritis in the

197 large intestine (p=0.196), small intestines (p=0.779), both small and large intestines (p=0.0798),

198 or either the large or small intestines (p=0.820) using univariate logistic regression.

Discussion 199

200 We describe the discovery of a novel simian pegivirus first identified in common marmosets 201 diagnosed with lymphocytic enteritis. We show this pegivirus was prevalent in our colony during 202 a period of increased incidence of lymphocytic enteritis and that it was less prevalent in a 203 similar, healthy colony. The novel virus was not significantly associated with the likelihood of 204 developing lymphocytic enteritis, though prevalence of the virus increased with increasing age 205 in the common marmoset. With an average prevalence of 34%, SOBV appears common 206 throughout the WNPRC common marmoset colony.

207

208 Pegiviruses, the members of genus Pegivirus (Amarillovirales: Flaviviridae), have single-

stranded, positive-sense RNA genomes and produce enveloped virions.³⁹ The first members of 209

the genus were identified about twenty years ago,⁴⁰ and since that time pegiviruses have been 210

found in many animal populations.^{23-34,38} Pegiviruses have never been shown to be causative 211

agents of any disease or alteration in physiology,⁴¹⁻⁵⁸ though human pegivirus (HPgV; species 212

Pegivirus A) has been linked to incidence of various types of lymphoma,⁵⁹⁻⁶⁶ though this remains 213

controversial.⁶⁷⁻⁷¹ HPgV has, intriguingly, been linked to improved outcomes in coinfection with 214 HIV-1⁷²⁻⁸⁸ and Ebola virus,⁸⁷ leading some to propose the use of HPgV as a biotherapy.⁸⁹

- 215
- 216

It is not known whether these viruses are unique to the captive common marmoset populations 217 or whether they are also present in wild populations.⁹⁰ Other pegiviruses have been discovered 218

in wild common marmosets in the 1990s,⁹¹ but their prevalence has never been examined. The 219 220 prevalence of these viruses in our captive common marmoset population was guite high 221 compared to the best-studied pegivirus, HPgV, which is found in about 1–4% of human 222 populations.⁹²⁻⁹⁹ The novel pegiviruses were most similar to a pegivirus discovered in a threestriped night monkey (Aotus trivirgatus),²⁶ a monkey used in malaria research at other primate 223 research facilities.¹⁰⁰⁻¹⁰² Interestingly, SOBV was highly similar to several variants of a bat 224 225 pegivirus isolated from African straw-coloured fruit bats (Eidolon helvum). This was somewhat 226 surprising given that the bat pegivirus isolates fall into Pegivirus species B. However, bat 227 pegiviruses have been found to be prevalent (up to 5%) among wild bats around the globe and 228 to span the full diversity of pegivirus species.³⁵ Our findings suggest common ancestry or an 229 otherwise close relationship between these variants.

230

231 The routes of transmission of SOBV and of other simian pegiviruses have not been examined. 232 Human pegivirus transmission has been extensively studied and is known to be occur efficiently through blood products or dialysis,^{43,103-107} intravenous drug use and needle sticks,^{104,108-110} 233 sexual intercourse,^{104,108,111,112} and from mother to infant.^{104,113-117} In humans, HPgV can replicate 234 at high titers in a host for more than a decade^{103,118,119} with an unusually low mutation rate 235 compared to other RNA viruses,^{120,121} with the host's production of anti-pegivirus antibodies 236 237 resulting in protective sterilizing immunity once the immune system recognizes and clears the 238 virus.^{73,119} The duration of pegivirus infections in humans indicates SOBV may be similarly long-239 lasting commensals of common marmosets, potentially impacting common marmoset lives in 240 unknown ways. Defining mechanisms of transmission will be important in preventing infection 241 and thereby allowing the study of these viruses' effects.

242

The high prevalence of this virus at the WNPRC raises essential considerations about potential effects on common marmoset experiments. Facilities working with common marmosets should prescreen the animals to establish the pegivirus infection status of animals in research. Future investigations, perhaps involving the isolation of common marmosets for years at a time to follow the natural history of long-term pegivirus infection in these animals, could examine the long-term effects of infecting common marmosets with SOBV.

249

This study has several limitations. First, this study was observational in nature and could not 250 251 examine a causal link between viral positivity and the development of enteritis. Definitive 252 establishment of causation would require demonstrating that animals infected experimentally 253 develop lymphocytic enteritis. Second, not all of the animals initially screened were deceased at 254 the time of this analysis and future necropsies of these animals may contribute additional data 255 concerning the likelihood of enteritis development. Third, we were unable to culture this virus; difficulties in culturing pegiviruses have been documented.^{37,122} Finally, some animals in this 256 257 study may have cleared the virus before the samples we tested were collected. Consequently, 258 these animals could have been mistakenly classified as virus-naïve; others may have acquired 259 the virus after our initial screening. Serial testing of animals would have counteracted this 260 problem; however, this was a retrospective study, so serial testing was impossible. 261 Development of a SOBV-specific ELISA or other serodiagnosis tools would enable deeper 262 appropriate analyses of SOBV infection rates both prospectively and retrospectively. 263 In summary, this work describes the discovery of a novel simian pegivirus and investigates its 264 265 relationship with a widespread and devastating cause of common marmoset mortality. Our

study lays the groundwork for the future development of a nonhuman primate model system

- using this natural infection as a potential model for studying the mechanisms of these enigmatic
- viruses and providing a greater understanding of their genus as a whole.
- 269

270 Materials and methods

271 Animals

272 All animals in this study were common marmosets (Callithrix jacchus Linnaeus, 1758) housed at 273 the Wisconsin National Primate Research Center (WNPRC) in Madison, WI, USA. The common 274 marmoset colony at the WNPRC was established in 1960. The original animals were imported 275 from northeastern Brazil, with the final importation occurring in the early 1970s. The average 276 yearly population of the colony each year from 2010 to 2019 was approximately 240 animals, all of which were born in captivity. WNPRC animals screened were 41% (60 animals) female and 277 278 59% (86 animals) male. Age at the time of screening ranged from 0.82–12.82 years (mean 279 4.65+/-2.83 years, median 4.26 years).

280

281 The New England Primate Research Center (NEPRC), Southborough, MA, USA, was closed in

- 282 2015, resulting in a transfer of 82 common marmosets to WNPRC before closure in November
- 283 2014. Plasma samples were collected from these animals upon their arrival at WNPRC
- 284 (November–December 2014) while quarantined in a separate building and location from the
- WNPRC marmoset colony. In the population initially from the NEPRC, 45 (55%) of the screened animals were female, and 37 (45%) were male. Age at the time of screening ranged from 0.65–
- 287 10.66 years (mean 3.74+/-2.60, median 2.51 years) in this population.

287 10.66 years (mean 3.74+/-2.60, median 2.51 years) in this population

288 Ethics

All common marmosets were cared for by WNPRC staff according to the regulations and

- 290 guidelines outlined in the National Research Council's Guide for the Care and Use of Laboratory
- Animals, the Animal Welfare Act, the Public Health Service Policy on the Humane Care and Use of Laboratory Animals, and the recommendations of the Weatherall report
- 293 (https://royalsociety.org/topics-policy/publications/2006/weatherall-report/). Per WNPRC
- standard operating procedures for animals assigned to protocols involving the experimental
- inoculation of infectious pathogens, environmental enhancement included constant visual,
- auditory, and olfactory contact with conspecifics, the provision of feeding devices that inspire
- foraging behavior, the provision and rotation of novel manipulanda, and enclosure furniture (i.e.,
- 298 perches, shelves). The common marmosets were housed socially in enclosures measuring
- 0.6m D × 0.9m W × 1.8 m H or 0.6m D × 1.2m W × 1.8 m H. The WNPRC maintains an
- 300 exemption from the USDA for these enclosures as they do not meet the Animal Welfare Act
- 301 regulations for floor space but greatly exceed height requirements as the species are arboreal.
- 302 This study was approved by the University of Wisconsin-Madison College of Letters and 303 Sciences and Vice Chanceller for Personne and Creducts Education Contern Institutional
- 303 Sciences and Vice Chancellor for Research and Graduate Education Centers Institutional
- Animal Care and Use Committee (animal protocol numbers G005401 and G005443).

305 Unbiased deep-sequencing

306 Samples from 18 common marmosets (8 deceased common marmosets diagnosed with

307 lymphocytic enteritis through necropsy and 10 live, healthy common marmosets) from the

308 WNPRC and 12 common marmosets (all live and healthy) from the NEPRC were screened for

the presence of viruses using unbiased deep-sequencing. The live WNPRC common

- 310 marmosets and the live NEPRC common marmosets were selected randomly for deep-311 sequencing.
- 312

- 313 DNA and RNA were isolated from plasma. Common marmoset plasma (1 ml/animal) was
- 314 centrifuged at 5,000 x g for 5 min at 4°C. Supernatants were removed and filtered through a
- 315 0.45-µm filter, then centrifuged at maximum speed (20,817 g) for 5 min at 4°C. Supernatants
- 316 were removed and incubated for 90 min at 37°C with a DNA/RNA digest cocktail consisting of 4
- 317 µI DNAfree DNAse (0.04 U/µI; Ambion, Austin, TX, USA), 6 µI Baseline Zero DNAse (0.1 U/µI, 318
- Epicentre Technologies, Madison, WI, USA), 1 µI Benzonase (1 U/µI, Sigma-Adrich, St. Louis, 319 MO, USA), and 12 µl DNAse 10x buffer. Viral nucleic acids were then isolated using the Qiagen
- 320 QIAamp MinElute Virus Spin Kit without the use of AW1 buffer or carrier RNA (Qiagen,
- 321 Valencia, CA, USA). Random hexamers were used to prime cDNA synthesis (Life
- 322 Technologies, Grand Island, NY, USA), followed by DNA purification using Ampure XP beads,
- as previously described^{123,124}. Deep-sequencing libraries were prepared using the Nextera XT 323
- 324 DNA Library Prep Kit (Illumina, San Diego, CA, USA) and sequenced on MiSeq (Illumina).

Viral sequence and phylogenetic analysis 325

Sequence data were analyzed using CLC Genomics Workbench 5.5 (CLC bio, Aarhus, 326

- 327 Denmark). Low-quality reads (Phred <Q30) and short reads (<100 bp) were removed with CLC
- 328 Genomics Workbench 7.1 (CLC bio, Aarhus, Denmark), and the remaining reads were
- 329 assembled de novo using the MEGAHIT assembler. Assembled contiguous sequences
- 330 (contigs) and singleton reads were gueried against GenBank database nt using the basic local 331 alignment search tools blastn. Nucleotide sequences were codon aligned individually for all
- 332
- known pegiviruses with complete genomes using ClustalW in the alignment editor program in 333 MEGA v5.10 and edited manually. The best-fitting distance model of nucleotide substitution for
- 334 each alignment was inferred using the maximum likelihood (ML) method with goodness of fit
- 335 measured by the Bayesian information criterion in MEGA6.06. The best-fitting nucleotide
- 336 substitution model for the phylogenetic alignments was inferred to be the GTR model with 337 discrete gamma and invariant among-site rate variation.
- 338
- 339 Protein family analysis and putative protein predictions were performed using Pfam
- 340 (http://pfam.xfam.org/). The nucleotide similarity of the novel pegivirus with related pegivirus
- 341 lineages was determined across the polyprotein using SimPlot v3.5.1³⁶ following TranslatorX
- 342 alignment (MAAFT) without Gblocks cleaning.

Screening for SOBV by RT-PCR 343

- 344 Plasma samples from 136 healthy WNPRC common marmosets were screened specifically for
- 345 SOBV by RT-PCR. Twenty plasma samples collected from NEPRC animals were likewise 346 screened by RT-PCR as they contained less than 100 µl.
- 347
- 348 Screening of the 136 animals was performed with samples from animals positive for SOBV by 349 deep-sequencing as positive controls. RNA was isolated from 200-500 µl of plasma using the 350 QIAamp Viral RNA Mini Kit (Qiagen). A primer set (forward primer:
- 351 GGTGGTCCACGAGTGATGA; reverse primer: AGGTACCGCCTGGGGTTAG) targeting a
- 352 region of the viral helicase which was conserved among the animals initially positive by deep 353 sequencing was designed, resulting in a 615-bp amplicon. Viral RNA was reverse-transcribed
- 354 and amplified using the SuperScript III High Fidelity One-Step RT-PCR kit (Invitrogen, Life
- 355 Technologies, Carlsbad, CA, USA). The reverse transcription-PCR conditions were as follows:
- 356 50°C for 30 min; 94°C for 2 min; 40 cycles of 94°C for 15 s, 55°C for 30 s, and 68°C for 1 min;
- 357 and 68°C for 5 min. Following PCR, amplicons were purified from excised gel slices (1%
- 358 agarose) using the Qiagen MinElute Gel Extraction kit (Qiagen). Each amplicon was quantified

using Quant-IT HS reagents (Invitrogen), and approximately 1 ng of each was used in a

tagmentation reaction with the Nextera XT DNA Library Prep Kit. Final libraries representing

361 each amplicon were characterized for average length using a DNA high sensitivity chip on a

- 362 2100 bioanalyzer (Agilent Technologies, Loveland, CO, USA) and quantitated with Quant-IT HS
- 363 reagents. Libraries were sequenced on a MiSeq.

³⁶⁴ Postmortem diagnosis of lymphocytic enteritis

365 All animals humanely euthanized or found dead at the WNPRC undergo complete post mortem 366 examination (necropsy) with histology. Standard hematoxylin and eosin (H&E) stains are used 367 for histological examinations to determine whether normal tissue architecture and cellular 368 populations are present. In this study, immunohistochemical (IHC) CD3 and CD20 or CD79 staining was performed on any samples with lymphocytic enteritis to differentiate lymphocyte 369 370 populations (primarily T cells, B cells, or mixed T and B cells). Diagnosis of T-cell rich lymphocytic enteritis was based on abnormal villus architecture of the intestines and IHC 371 staining.^{21,125} If confounding factors hampered diagnosis (e.g., severe B cell lymphoma or 372

autolysis), the animal was removed from the analysis.

374 Statistical analysis

375 We used univariate logistic regression to evaluate the associations of SOBV viremia with

enteritis risk. Analyses were repeated to determine association with enteritis in small bowel only,

377 colon only, both small bowel and colon, and either small bowel or colon. All reported P-values

are two-sided and P<0.05 was used to define statistical significance. Statistical analyses were

379 conducted using R version 3.6.3 in RStudio version 1.1.383.

380 Data accessibility and management

381 Metagenomic sequencing data have been deposited in the Sequence Read Archive (SRA)

382 under Bioproject PRJNA613737. Derived data, analysis pipelines, and figures have been made

available for easy replication of these results at a publicly-accessible GitHub

384 (https://github.com/aheffron/SPgVwnprc_in_marmosets).

- 385
- 386

387 Acknowledgments

388 This work was supported in part through Laulima Government Solutions, LLC prime contract 389 with the US National Institute of Allergy and Infectious Diseases (NIAID) under Contract No. 390 HHSN272201800013C. J.H.K. performed this work as employees of Tunnell Government 391 Services (TGS), a subcontractor of Laulima Government Solutions, LLC under Contract No. 392 HHSN272201800013C. The views and conclusions contained in this document are those of the 393 authors and should not be interpreted as necessarily representing the official policies, either 394 expressed or implied, of the US Department of Health and Human Services or of the institutions 395 and companies affiliated with the authors. Access to the dolphin silhouette was generously 396 provided by Chris Huh (https://creativecommons.org/licenses/by-sa/3.0/).

397 398

399

400			
401		rences	
402	1.	Tardif S, Bales K, Williams L, et al. Preparing New World monkeys for laboratory	
403		research. <i>ILAR J.</i> 2006;47(4):307-315.	
404	2.	Abbott DH, Barnett DK, Colman RJ, Yamamoto ME, Schultz-Darken NJ. Aspects of	
405		common marmoset basic biology and life history important for biomedical research.	
406	_	Comp Med. 2003;53(4):339-350.	
407	3.	Mansfield K. Marmoset models commonly used in biomedical research. Comp Med.	
408		2003;53(4):383-392.	
409	4.	Primate Factsheets: Common marmoset (Callithrix jacchus) Taxonomy, Morphology, &	
410		Ecology. 2005. <u>http://pin.primate.wisc.edu/factsheets/entry/common_marmoset</u> .	
411	_	Accessed 04 April 2020.	
412	5.	Servick K. Why are U.S. neuroscientists clamoring for marmosets? Science Magazine.	
413	-	23 Oct. 2018, 2018.	
414	6.	Converse AK, Aubert Y, Allers KA, Sommer B, Abbott DH. Flibanserin-Stimulated	
415		Partner Grooming Reflects Brain Metabolism Changes in Female Marmosets. J Sex	
416	_	Med. 2015;12(12):2256-2266.	
417	7.	Smith AL, Freeman SM, Barnhart TE, et al. Initial investigation of three selective and	
418		potent small molecule oxytocin receptor PET ligands in New World monkeys. <i>Bioorg</i>	
419	•	Med Chem Lett. 2016;26(14):3370-3375.	
420	8.	Ausderau KK, Dammann C, McManus K, Schneider M, Emborg ME, Schultz-Darken N.	
421		Cross-species comparison of behavioral neurodevelopmental milestones in the common	
422	•	marmoset monkey and human child. <i>Dev Psychobiol.</i> 2017;59(7):807-821.	
423	9.	Vermilyea SC, Guthrie S, Meyer M, et al. Induced Pluripotent Stem Cell-Derived	
424		Dopaminergic Neurons from Adult Common Marmoset Fibroblasts. Stem Cells Dev.	
425	40	2017;26(17):1225-1235.	
426	10.	Olson EJ, Shaw GC, Hutchinson EK, et al. Bone Disease in the Common Marmoset:	
427	44	Radiographic and Histological Findings. <i>Vet Pathol.</i> 2015;52(5):883-893.	
428	11.	Ziegler TE, Sosa ME, Colman RJ. Fathering style influences health outcome in common	
429	10	marmoset (Callithrix jacchus) offspring. <i>PLoS One</i> . 2017;12(9):e0185695.	
430	12.	Kropp J, Di Marzo A, Golos T. Assisted reproductive technologies in the common	
431		marmoset: an integral species for developing nonhuman primate models of human	
432	10	diseases. <i>Biol Reprod.</i> 2017;96(2):277-287.	
433	13.	Jones CA, Duffy MK, Hoffman SA, et al. Vocalization development in common	
434 435		marmosets for neurodegenerative translational modeling. <i>Neurol Res.</i> 2018;40(4):303- 311.	
435	14.	Iwatsuki-Horimoto K, Nakajima N, Kiso M, et al. The Marmoset as an Animal Model of	
430	14.	Influenza: Infection With A(H1N1)pdm09 and Highly Pathogenic A(H5N1) Viruses via the	
437		Conventional or Tracheal Spray Route. Front Microbiol. 2018;9:844.	
439	15.	Braun K, Schultz-Darken N, Schneider M, Moore CF, Emborg ME. Development of a	
439	15.	novel postnatal neurobehavioral scale for evaluation of common marmoset monkeys.	
440		Am J Primatol. 2015;77(4):401-417.	
441	16.	Kraynak M, Flowers MT, Shapiro RA, Kapoor A, Levine JE, Abbott DH. Extraovarian	
443	10.	gonadotropin negative feedback revealed by aromatase inhibition in female marmoset	
444		monkeys. Am J Physiol Endocrinol Metab. 2017;313(5):E507-E514.	
445	17.	Parambeth JC, Ross CN, Miller AD, et al. Serum Cobalamin and Folate Concentrations	
446		in Common Marmosets (Callithrix jacchus) with Chronic Lymphocytic Enteritis. Comp	
447		Med. 2019;69(2):135-143.	
448	18.	Chalmers DT, Murgatroyd LB, Wadsworth PF. A survey of the pathology of marmosets	
449	10.	(Callithrix jacchus) derived from a marmoset breeding unit. Lab Anim. 1983;17(4):270-	
450		279.	

451 452	19.	David JM, Dick EJ, Jr., Hubbard GB. Spontaneous pathology of the common marmoset (Callithrix jacchus) and tamarins (Saguinus oedipus, Saguinus mystax). <i>J Med Primatol.</i>
453 454 455	20.	2009;38(5):347-359. Tucker MJ. A survey of the pathology of marmosets (Callithrix jacchus) under experiment. Lab Anim. 1984;18(4):351-358.
456 457	21.	Ludlage E, Mansfield K. Clinical care and diseases of the common marmoset (Callithrix jacchus). <i>Comp Med.</i> 2003;53(4):369-382.
458 459	22.	Kaspareit J, Friderichs-Gromoll S, Buse E, Habermann G. Background pathology of the common marmoset (Callithrix jacchus) in toxicological studies. <i>Exp Toxicol Pathol.</i>
460 461	23.	2006;57(5-6):405-410. Bukh J, Kim JP, Govindarajan S, et al. Experimental infection of chimpanzees with
462 463 464	24.	hepatitis G virus and genetic analysis of the virus. <i>J Infect Dis.</i> 1998;177(4):855-862. Birkenmeyer LG, Desai SM, Muerhoff AS, et al. Isolation of a GB virus-related genome from a chimpanzee. <i>J Med Virol.</i> 1998;56(1):44-51.
464 465 466	25.	Cheng Y, Zhang W, Li J, et al. Serological and histological findings in infection and transmission of GBV-C/HGV to macaques. <i>J Med Virol</i> . 2000;60(1):28-33.
467 468	26.	Sibley SD, Lauck M, Bailey AL, et al. Discovery and characterization of distinct simian pegiviruses in three wild African Old World monkey species. <i>PLoS One.</i>
469 470 471	27.	2014;9(2):e98569. Adams NJ, Prescott LE, Jarvis LM, et al. Detection in chimpanzees of a novel flavivirus related to GB virus-C/hepatitis G virus. <i>J Gen Virol.</i> 1998;79 (Pt 8):1871-1877.
472 473	28.	Baechlein C, Grundhoff A, Fischer N, et al. Pegivirus Infection in Domestic Pigs, Germany. <i>Emerg Infect Dis.</i> 2016;22(7):1312-1314.
474 475	29.	Yang C, Wang L, Shen H, et al. Detection and genetic characterization of porcine pegivirus in pigs in the United States. <i>Transbound Emerg Dis.</i> 2018;65(3):618-626.
476 477	30.	Lei D, Ye Y, Lin K, et al. Detection and genetic characterization of porcine pegivirus from pigs in China. <i>Virus Genes.</i> 2019;55(2):248-252.
478 479 480	31.	Epstein JH, Quan PL, Briese T, et al. Identification of GBV-D, a novel GB-like flavivirus from old world frugivorous bats (Pteropus giganteus) in Bangladesh. <i>PLoS Pathog.</i> 2010;6:e1000972.
481 482	32.	Kapoor A, Simmonds P, Scheel TK, et al. Identification of rodent homologs of hepatitis C virus and pegiviruses. <i>mBio.</i> 2013;4(2):e00216-00213.
483 484	33.	Shi M, Lin XD, Vasilakis N, et al. Divergent Viruses Discovered in Arthropods and Vertebrates Revise the Evolutionary History of the Flaviviridae and Related Viruses. <i>J</i>
485 486 487 488	34.	<i>Virol.</i> 2016;90(2):659-669. Tomlinson JE, Kapoor A, Kumar A, et al. Viral testing of 18 consecutive cases of equine serum hepatitis: A prospective study (2014-2018). <i>J Vet Intern Med.</i> 2019;33(1):251-257.
489 490	35.	Quan PL, Firth C, Conte JM, et al. Bats are a major natural reservoir for hepaciviruses and pegiviruses. <i>Proc Natl Acad Sci U S A.</i> 2013;110(20):8194-8199.
491 492 493	36.	Lole KS, Bollinger RC, Paranjape RS, et al. Full-length human immunodeficiency virus type 1 genomes from subtype C-infected seroconverters in India, with evidence of intersubtype recombination. <i>J Virol.</i> 1999;73(1):152-160.
494 495 496	37.	Virus Taxonomy: 2019 Release: Genus: Pegivirus. 2020. <u>https://talk.ictvonline.org/ictv-reports/ictv_online_report/positive-sense-rna-viruses/w/flaviviridae/363/genus-pegivirus</u> . Accessed 04 April 2020.
497 498 499	38.	Rodrigues TCS, Subramaniam K, McCulloch SD, et al. Genomic characterization of a novel pegivirus species from free-ranging bottlenose dolphins (Tursiops truncatus) in the Indian River Lagoon, Florida. <i>Virus Res.</i> 2019;263:98-101.

500	39.	Smith DB, Becher P, Bukh J, et al. Proposed update to the taxonomy of the genera
500	39.	Hepacivirus and Pegivirus within the Flaviviridae family. J Gen Virol. 2016;97(11):2894-
502		2907.
503	40.	Simons JN, Leary TP, Dawson GJ, et al. Isolation of novel virus-like sequences
504		associated with human hepatitis. <i>Nat Med.</i> 1995;1(6):564-569.
505	41.	Heringlake S, Tillmann HL, Cordes-Temme P, Trautwein C, Hunsmann G, Manns MP.
506		GBV-C/HGV is not the major cause of autoimmune hepatitis. J Hepatol. 1996;25(6):980-
507		984.
508	42.	Bralet MP, Roudot-Thoraval F, Pawlotsky JM, et al. Histopathologic impact of GB virus C
509		infection on chronic hepatitis C. Gastroenterology. 1997;112(1):188-192.
510	43.	Feucht HH, Fischer L, Sterneck M, Broelsch CE, Laufs R. GB virus C transmission by
511		blood products. Lancet. 1997;349(9049):435.
512	44.	Goeser T, Seipp S, Wahl R, Muller HM, Stremmel W, Theilmann L. Clinical presentation
513		of GB-C virus infection in drug abusers with chronic hepatitis C. J Hepatol.
514		1997;26(3):498-502.
515	45.	Kanda T, Yokosuka O, Imazeki F, et al. GB virus-C RNA in Japanese patients with
516		hepatocellular carcinoma and cirrhosis. J Hepatol. 1997;27(3):464-469.
517	46.	Hadziyannis SJ. Fulminant hepatitis and the new G/GBV-C flavivirus. J Viral Hepat.
518		1998;5(1):15-19.
519	47.	Rambusch EG, Wedemeyer H, Tillmann HL, Heringlake S, Manns MP. [Significance of
520		coinfection with hepatitis G virus for chronic hepatitis Ca review of the literature]. Z
521		Gastroenterol. 1998;36(1):41-53.
522	48.	Brown KE, Wong S, Young NS. Prevalence of GBV-C/HGV, a novel 'hepatitis' virus, in
523		patients with aplastic anaemia. <i>Br J Haematol.</i> 1997;97(2):492-496.
524	49.	Servant A, Bogard M, Delaugerre C, Cohen P, Deny P, Guillevin L. GB virus C in
525		systemic medium- and small-vessel necrotizing vasculitides. Br J Rheumatol.
526		1998;37(12):1292-1294.
527	50.	Viazov S, Alberts KR, Ross RS, Seemayer CA, Roggendorf M. Lack of association
528		between GBV-C infection and spontaneous abortion. <i>Eur J Clin Microbiol Infect Dis.</i>
529	- 4	1999;18(6):458-459.
530	51.	Misiani R, Mantero G, Bellavita P, et al. GB virus C infection in patients with type II
531	50	mixed cryoglobulinemia. Ann Intern Med. 1997;127(10):891-894.
532	52.	Crovatto M, Mazzaro C, Mishiro S, et al. GBV-C/HGV and HCV infection in mixed
533	50	cryoglobulinaemia. Br J Haematol. 1999;106(2):510-514.
534 525	53.	Liu F, Knight GB, Agnello V. Hepatitis C virus but not GB virus C/hepatitis G virus has a role in type II cryoglobulinemia. <i>Arthritis Rheum.</i> 1999;42(9):1898-1901.
535 536	54.	Hardie D, Smuts H. Human pegivirus-1 in the CSF of patients with HIV-associated
537	54.	neurocognitive disorder (HAND) may be derived from blood in highly viraemic patients. J
538		Clin Virol. 2017;91:58-61.
539	55.	Sauleda S, Rio J, Montalban X, Martinez-Caceres E, Esteban JI, Guardia J. Lack of
540	55.	association between hepatitis G virus and multiple sclerosis. J Neurol Neurosurg
541		Psychiatry. 1998;64(2):283.
542	56.	Lamoril J, Andant C, Bogard C, et al. Epidemiology of hepatitis C and G in sporadic and
543	00.	familial porphyria cutanea tarda. <i>Hepatology.</i> 1998;27(3):848-852.
544	57.	Font J, Tassies D, Garcia-Carrasco M, et al. Hepatitis G virus infection in primary
545		Sjogren's syndrome: analysis in a series of 100 patients. Ann Rheum Dis.
546		1998;57(1):42-44.
547	58.	Jones JF, Kulkarni PS, Butera ST, Reeves WC. GB virus-Ca virus without a disease:
548		we cannot give it chronic fatigue syndrome. <i>BMC Infect Dis.</i> 2005;5:78.

549	59.	De Renzo A, Persico E, de Marino F, et al. High prevalence of hepatitis G virus infection
550		in Hodgkin's disease and B-cell lymphoproliferative disorders: absence of correlation
551		with hepatitis C virus infection. Haematologica. 2002;87(7):714-718; discussion 718.
552	60.	Krajden M, Yu A, Braybrook H, et al. GBV-C/hepatitis G virus infection and non-Hodgkin
553		lymphoma: a case control study. Int J Cancer. 2010;126(12):2885-2892.
554	61.	Giannoulis E, Economopoulos T, Mandraveli K, et al. The prevalence of hepatitis C and
555		hepatitis G virus infection in patients with B cell non-Hodgkin lymphomas in Greece: a
556		Hellenic Cooperative Oncology Group Study. Acta Haematol. 2004;112(4):189-193.
557	62.	Wiwanitkit V. Individuals with HGV-RNA are at high risk of B cell non-Hodgkin's
558		lymphoma development. Asian Pac J Cancer Prev. 2005;6(2):215-216.
559	63.	Ellenrieder V, Weidenbach H, Frickhofen N, et al. HCV and HGV in B-cell non-Hodgkin's
560		lymphoma. <i>J Hepatol.</i> 1998;28(1):34-39.
561	64.	Pavlova BG, Heinz R, Selim U, Tuchler H, Pittermann E, Eder G. Association of GB
562		virus C (GBV-C)/hepatitis G virus (HGV) with haematological diseases of different
563		malignant potential. J Med Virol. 1999;57(4):361-366.
564	65.	Chang CM, Stapleton JT, Klinzman D, et al. GBV-C infection and risk of NHL among
565		U.S. adults. <i>Cancer Res.</i> 2014;74(19):5553-5560.
566	66.	Fama A, Xiang J, Link BK, et al. Human Pegivirus infection and lymphoma risk and
567		prognosis: a North American study. <i>Br J Haematol</i> . 2018;182(5):644-653.
568	67.	Collier JD, Zanke B, Moore M, et al. No association between hepatitis C and B-cell
569		lymphoma. <i>Hepatology.</i> 1999;29(4):1259-1261.
570	68.	Arican A, Sengezer T, Bozdayi M, et al. Prevalence of hepatitis-G virus and hepatitis-C
571		virus infection in patients with non-Hodgkin's lymphoma. Med Oncol. 2000;17(2):123-
572		126.
573	69.	Nicolosi Guidicelli S, Lopez-Guillermo A, Falcone U, et al. Hepatitis C virus and GBV-C
574		virus prevalence among patients with B-cell lymphoma in different European regions: a
575		case-control study of the International Extranodal Lymphoma Study Group. Hematol
576	-	Oncol. 2012;30(3):137-142.
577	70.	Keresztes K, Takacs M, Horanyi M, Miltenyi Z, Illes A. HCV and HGV infection in
578	74	Hodgkin's disease. <i>Pathol Oncol Res.</i> 2003;9(4):222-225.
579	71.	Persico M, De Renzo A, Persico E, Notaro R, Torella R, Rotoli B. Hepatitis G virus in
580	70	patients with Hodgkin's lymphoma. <i>Br J Haematol.</i> 1998;103(4):1206-1207.
581	72.	Toyoda H, Fukuda Y, Hayakawa T, Takamatsu J, Saito H. Effect of GB virus C/hepatitis
582 583		G virus coinfection on the course of HIV infection in hemophilia patients in Japan. <i>J</i> Acquir Immune Defic Syndr Hum Retrovirol. 1998;17(3):209-213.
583 584	73.	Tillmann HL, Heringlake S, Trautwein C, et al. Antibodies against the GB virus C
585	75.	envelope 2 protein before liver transplantation protect against GB virus C de novo
586		infection. Hepatology. 1998;28(2):379-384.
587	74.	Lefrere JJ, Roudot-Thoraval F, Morand-Joubert L, et al. Carriage of GB virus C/hepatitis
588	74.	G virus RNA is associated with a slower immunologic, virologic, and clinical progression
589		of human immunodeficiency virus disease in coinfected persons. J Infect Dis.
590		1999;179(4):783-789.
591	75.	Yeo AE, Matsumoto A, Hisada M, Shih JW, Alter HJ, Goedert JJ. Effect of hepatitis G
592		virus infection on progression of HIV infection in patients with hemophilia. Multicenter
593		Hemophilia Cohort Study. Ann Intern Med. 2000;132(12):959-963.
594	76.	Xiang J, Wunschmann S, Diekema DJ, et al. Effect of coinfection with GB virus C on
595		survival among patients with HIV infection. N Engl J Med. 2001;345(10):707-714.
596	77.	Tillmann HL, Heiken H, Knapik-Botor A, et al. Infection with GB virus C and reduced
597		mortality among HIV-infected patients. N Engl J Med. 2001;345(10):715-724.
598	78.	Williams CF, Klinzman D, Yamashita TE, et al. Persistent GB virus C infection and
599		survival in HIV-infected men. N Engl J Med. 2004;350(10):981-990.

600	79.	Van der Bij AK, Kloosterboer N, Prins M, et al. GB virus C coinfection and HIV-1 disease
601		progression: The Amsterdam Cohort Study. <i>J Infect Dis.</i> 2005;191(5):678-685.
602	80.	Tenckhoff S, Kaiser T, Bredeek F, et al. Role of GB virus C in HIV-1-infected and
603		hepatitis C virus-infected hemophiliac children and adolescents. J Acquir Immune Defic
604		Syndr. 2012;61(2):243-248.
605	81.	Sahni H, Kirkwood K, Kyriakides TC, et al. GBV-C viremia and clinical events in
606		advanced HIV infection. J Med Virol. 2014;86(3):426-432.
607	82.	Hollingsworth RC, Jameson CL, Minton JE, et al. GBV-C/HGV coinfection in HIV-1-
608		positive men: frequent detection of viral RNA in blood plasma but absence from seminal
609		fluid plasma. J Med Virol. 1998;56(4):321-326.
610	83.	Goubau P, Liu HF, Goderniaux E, Burtonboy G. Influence of CD4+ lymphocyte counts
611		on GB virus C/hepatitis G virus carriership in HIV-positive individuals. J Med Virol.
612		1999;57(4):367-369.
613	84.	Rey D, Vidinic-Moularde J, Meyer P, et al. High prevalence of GB virus C/hepatitis G
614		virus RNA and antibodies in patients infected with human immunodeficiency virus type 1.
615		Eur J Clin Microbiol Infect Dis. 2000;19(9):721-724.
616	85.	Voirin N, Trepo C, Esteve J, et al. Effects of co-infection with hepatitis C virus and GB
617		virus C on CD4 cell count and HIV-RNA level among HIV-infected patients treated with
618		highly active antiretroviral therapy. AIDS. 2002;16(11):1556-1559.
619	86.	Li C, Collini P, Danso K, et al. GB virus C and HIV-1 RNA load in single virus and co-
620		infected West African individuals. AIDS. 2006;20(3):379-386.
621	87.	Lauck M, Bailey AL, Andersen KG, Goldberg TL, Sabeti PC, O'Connor DH. GB virus C
622		coinfections in west African Ebola patients. J Virol. 2015;89(4):2425-2429.
623	88.	Zhang W, Chaloner K, Tillmann HL, Williams CF, Stapleton JT. Effect of early and late
624		GB virus C viraemia on survival of HIV-infected individuals: a meta-analysis. HIV Med.
625		2006;7(3):173-180.
626	89.	Bhattarai N, Stapleton JT. GB virus C: the good boy virus? Trends Microbiol.
627		2012;20(3):124-130.
628	90.	Porter AF, Pettersson JH-O, Wei-Shan C, et al. Metagenomic identification of diverse
629		animal hepaciviruses and pegiviruses. <i>bioRxiv.</i> 2020.
630	91.	Bukh J, Apgar CL. Five new or recently discovered (GBV-A) virus species are
631		indigenous to New World monkeys and may constitute a separate genus of the
632		Flaviviridae. Virology. 1997;229(2):429-436.
633	92.	Seifried E, Bialleck H, Weber H, et al. [Prevalence of hepatitis G virus genome in blood
634	-	donors]. Beitr Infusionsther Transfusionsmed. 1997;34:11-15.
635	93.	Roth WK, Waschk D, Marx S, et al. Prevalence of hepatitis G virus and its strain variant,
636		the GB agent, in blood donations and their transmission to recipients. <i>Transfusion</i> .
637		1997;37(6):651-656.
638	94.	Yoshikawa A, Fukuda S, Itoh K, et al. Infection with hepatitis G virus and its strain
639		variant, the GB agent (GBV-C), among blood donors in Japan. Transfusion.
640		1997;37(6):657-663.
641	95.	Gutierrez RA, Dawson GJ, Knigge MF, et al. Seroprevalence of GB virus C and
642		persistence of RNA and antibody. J Med Virol. 1997;53(2):167-173.
643	96.	Lara C, Halasz R, Sonnerborg A, Sallberg M. Detection of hepatitis G virus RNA in
644		persons with and without known risk factors for blood-borne viral infections in Sweden
645		and Honduras. J Clin Microbiol. 1998;36(1):255-257.
646	97.	Gallian P, Rodrigues V, Cantaloube JF, et al. High prevalence of GB-C/hepatitis G virus
647		in a Brazilian population with helminth infection. J Med Virol. 1998;56(4):310-315.
648	98.	Mphahlele MJ, Aspinall S, Spooner R, Carman WF. Age related prevalence of hepatitis
649		G virus in South Africans. J Clin Pathol. 1999;52(10):752-757.

650	99.	Corwin AL, Hyams KC, Kim JP, et al. Short report: evidence of worldwide transmission
651	400	of hepatitis G virus. Am J Trop Med Hyg. 1997;57(4):455-456.
652	100.	Herrera S, Perlaza BL, Bonelo A, Arevalo-Herrera M. Aotus monkeys: their great value
653	101	for anti-malaria vaccines and drug testing. <i>Int J Parasitol.</i> 2002;32(13):1625-1635.
654	101.	Hutt MS, Davies DR, Voller A. Malarial infections in Aotus trivirgatus with special
655 656		reference to renal pathology. II. P. falciparum and mixed malaria infections. <i>Br J Exp</i>
656 657	102.	<i>Pathol.</i> 1975;56(5):429-438. Schmidt LH. Plasmodium falciparum and Plasmodium vivax infections in the owl monkey
658	102.	(Aotus trivirgatus). II. Responses to chloroquine, quinine, and pyrimethamine. Am J Trop
659		Med Hyg. 1978;27(4):703-717.
660	103.	Linnen J, Wages J, Jr., Zhang-Keck ZY, et al. Molecular cloning and disease association
661	100.	of hepatitis G virus: a transfusion-transmissible agent. Science. 1996;271(5248):505-
662		
663	104.	Karayiannis P, Thomas HC. Current status of hepatitis G virus (GBV-C) in transfusion: is
664		it relevant? Vox Sang. 1997;73(2):63-69.
665	105.	Stark K, Meyer CG, Tacke M, et al. Hepatitis G virus RNA and hepatitis G virus
666		antibodies in renal transplant recipients: prevalence and risk factors. <i>Transplantation.</i>
667		1997;64(4):608-612.
668	106.	Kallinowski B, Ahmadi R, Seipp S, Bommer J, Stremmel W. Clinical impact of GB-C
669		virus in haemodialysis patients. Nephrol Dial Transplant. 1998;13(1):93-98.
670	107.	Huang CH, Kao JH, Kuo YM, Tsai TJ, Hung KY, Chen DS. GB virus C/hepatitis G virus
671		infection in patients on continuous ambulatory peritoneal dialysis. Nephrol Dial
672		Transplant. 1998;13(11):2914-2919.
673	108.	Fiordalisi G, Bettinardi A, Zanella I, et al. Parenteral and sexual transmission of GB virus
674		C and hepatitis C virus among human immunodeficiency virus-positive patients. J Infect
675		<i>Dis.</i> 1997;175(4):1025-1026.
676	109.	Anastassopoulou CG, Paraskevis D, Sypsa V, et al. Prevalence patterns and genotypes
677		of GB virus C/hepatitis G virus among imprisoned intravenous drug users. J Med Virol.
678	4.4.0	1998;56(3):246-252.
679	110.	Shibuya A, Takeuchi A, Sakurai K, Saigenji K. Hepatitis G virus infection from needle-
680		stick injuries in hospital employees. <i>J Hosp Infect.</i> 1998;40(4):287-290.
681	111.	Kao JH, Chen W, Chen PJ, Lai MY, Lin RY, Chen DS. GB virus-C/hepatitis G virus
682		infection in prostitutes: possible role of sexual transmission. <i>J Med Virol</i> . 1997;52(4):381-
683	110	384.
684 685	112.	Semprini AE, Persico T, Thiers V, et al. Absence of hepatitis C virus and detection of hepatitis G virus/GB virus C RNA sequences in the semen of infected men. <i>J Infect Dis.</i>
686		1998;177(4):848-854.
687	113.	Viazov S, Riffelmann M, Sarr S, Ballauff A, Meisel H, Roggendorf M. Transmission of
688	115.	GBV-C/HGV from drug-addicted mothers to their babies. <i>J Hepatol.</i> 1997;27(1):85-90.
689	114.	Zanetti AR, Tanzi E, Romano L, et al. Multicenter trial on mother-to-infant transmission
690	117.	of GBV-C virus. The Lombardy Study Group on Vertical/Perinatal Hepatitis Viruses
691		Transmission. J Med Virol. 1998;54(2):107-112.
692	115.	Hino K, Moriya T, Ohno N, et al. Mother-to-infant transmission occurs more frequently
693		with GB virus C than hepatitis C virus. Arch Virol. 1998;143(1):65-72.
694	116.	Lin HH, Kao JH, Yeh KY, et al. Mother-to-infant transmission of GB virus C/hepatitis G
695		virus: the role of high-titered maternal viremia and mode of delivery. J Infect Dis.
696		1998;177(5):1202-1206.
697	117.	Santos LM, Lobato RC, Barral MFM, Goncalves CV, da Hora VP, Martinez AMB.
698		Prevalence and vertical transmission of human pegivirus among pregnant women
699		infected with HIV. Int J Gynaecol Obstet. 2017;138(1):113-118.

- 118. Wang JT, Tsai FC, Lee CZ, et al. A prospective study of transfusion-transmitted GB
 virus C infection: similar frequency but different clinical presentation compared with
 hepatitis C virus. *Blood.* 1996;88(5):1881-1886.
- Prati D, Zanella A, Bosoni P, et al. The incidence and natural course of transfusion associated GB virus C/hepatitis G virus infection in a cohort of thalassemic patients. The
 Cooleycare Cooperative Group. *Blood.* 1998;91(3):774-777.
- Nakao H, Okamoto H, Fukuda M, et al. Mutation rate of GB virus C/hepatitis G virus over
 the entire genome and in subgenomic regions. *Virology.* 1997;233(1):43-50.
- Suzuki Y, Katayama K, Fukushi S, et al. Slow evolutionary rate of GB virus C/hepatitis G
 virus. J Mol Evol. 1999;48(4):383-389.
- Chivero ET, Stapleton JT. Tropism of human pegivirus (formerly known as GB virus C/hepatitis G virus) and host immunomodulation: insights into a highly successful viral infection. *J Gen Virol.* 2015;96(Pt 7):1521-1532.
- 123. Lauck M, Sibley SD, Hyeroba D, et al. Exceptional simian hemorrhagic fever virus diversity in a wild African primate community. *J Virol.* 2013;87(1):688-691.
- Lauck M, Switzer WM, Sibley SD, et al. Discovery and full genome characterization of two highly divergent simian immunodeficiency viruses infecting black-and-white colobus monkeys (Colobus guereza) in Kibale National Park, Uganda. *Retrovirology.*2013;10:107.
- 719 125. Gartner LP, Hiatt JL. *Color atlas of histology.* 5th ed. Philadelphia: Wolters Kluwer
 720 Health/Lippincott William & Wilkins; 2009.
- 721