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Abstract 1 

Brain regions communicate with each other via tracts of myelinated axons, commonly 2 

referred to as white matter. White matter microstructure can be measured in the living 3 

human brain using diffusion based magnetic resonance imaging (dMRI), and has been 4 

found to be altered in patients with neuropsychiatric disorders. Although under strong 5 

genetic control, few genetic variants influencing white matter microstructure have ever 6 

been identified. Here we identified common genetic variants influencing white matter 7 

microstructure using dMRI in 42,919 individuals (35,741 in the UK Biobank). The dMRIs 8 

were summarized into 215 white matter microstructure traits, including 105 measures 9 

from tract-specific functional principal component analysis. Genome-wide association 10 

analysis identified many novel white matter microstructure associated loci (P < 2.3 × 11 

10-10). We identified shared genetic influences through genetic correlations between 12 

white matter tracts and 62 other complex traits, including stroke, neuropsychiatric 13 

disorders (e.g., ADHD, bipolar disorder, major depressive disorder, schizophrenia), 14 

cognition, neuroticism, chronotype, as well as non-brain traits. Common variants 15 

associated with white matter microstructure alter the function of regulatory elements in 16 

glial cells, particularly oligodendrocytes. White matter associated genes were enriched 17 

in pathways involved in brain disease pathogenesis, neurodevelopment process, and 18 

repair of white matter damage (P < 1.5 × 10-8). In summary, this large-scale tract-specific 19 

study provides a big step forward in understanding the genetic architecture of white 20 

matter and its genetic links to a wide spectrum of clinical outcomes.  21 

 22 

Keywords: White Matter Microstructure; dMRI; Diffusion Tensor Imaging; GWAS; 23 
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 3 

Brain functions depend on effective communication across brain regions1. White matter 1 

comprises roughly half of the human brain and contains most of the brain’s long-range 2 

communication pathways2. White matter tracts build a complex network of structural 3 

connections, which keeps the brain globally connected and shapes communication and 4 

connectivity patterns3-5. Cellular microstructure in white matter tracts plays a pivotal 5 

role in maintaining the integrity of connectivity and mediating signal transitions among 6 

distributed brain regions6. Evidence from neuroscience has further suggested that white 7 

matter microstructure may underpin brain function and dysfunction1,7,8, and 8 

connectivity differences or changes are relevant to a wide variety of neurological and 9 

psychiatric disorders, such as attention-deficit/hyperactivity disorder (ADHD)9, major 10 

depressive disorder (MDD)10, schizophrenia11, bipolar disorder12, multiple sclerosis13, 11 

Alzheimer’s disease14, corticobasal degeneration15, and Parkinson’s disease16. White 12 

matter microstructural differences and abnormalities can be captured in vivo by 13 

diffusion magnetic resonance imaging (dMRI). Using dMRI data, microstructural 14 

connectivity can be quantified in diffusion tensor imaging (DTI) models17 and measured 15 

by several DTI-derived parameters, including fractional anisotropy (FA), mean diffusivity 16 

(MD), axial diffusivity (AD), radial diffusivity (RD), and mode of anisotropy (MO). Among 17 

them, FA serves as the primary metric of interest in many studies18, which is a robust 18 

global measure of integrity/directionality and is highly sensitive to general connectivity 19 

changes. On the other hand, MD, AD, and RD directly quantify the abstract magnitude of 20 

directionalities, and thus are more sensitive to specific types of microstructural 21 

changes19. In addition, MO can characterize the anisotropy type, describing whether the 22 

shape of the diffusion tensor is more linear or planar20,21. See Supplementary Note for a 23 

global overview of these commonly used DTI parameters. 24 

 25 

White matter differences in general population cohorts are under strong genetic 26 

control. Both family and population-based studies have reported that DTI 27 

measurements of white matter microstructure have in general high heritability with 28 

estimates varying across different age groups22 and tracts23. For example, heritability 29 

estimates of tract-averaged FA ranged from 53% to 90% in twin study of the Human 30 

Connectome Project (HCP)24. Recent genome-wide association studies (GWAS) of UK 31 

Biobank reported an average SNP-based heritability of 48.7% across different tracts25. 32 
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Several GWAS23,25-29 have been performed to identify loci associated with 1 

inter-individual variation in white matter microstructure but shared at least two major 2 

limitations: (i) sample size and (ii) spatial specificity. First, the current largest published 3 

GWAS of dMRI phenotypes has sample size 17,706 in Zhao, et al. 25. Similar to other 4 

brain-related traits30, white matter has a complex and extremely polygenic genetic 5 

architecture25,31. Large sample size is essential to boost GWAS power in order to identify 6 

many common risk variants with small effect sizes. Second, previous GWAS mainly 7 

focused on global dMRI measures of the whole brain26,27 or tract-averaged (mean) 8 

values23,25. Global and tract-averaged measures can capture the largest variations in 9 

white matter, while reducing the burden to test multiple neuroimaging traits, 10 

particularly suitable for GWAS with limited sample size; however, these measures may 11 

lose lots of information, as microstructural differences and changes may not have a 12 

uniformly consistent pattern across the whole tract. Heterogeneous variation patterns 13 

typically exist within voxel-wise DTI maps of the 3D tract curve, which may be more 14 

relevant to specific underlying biological processes. For example, previous study found 15 

that the association between bipolar disorder and FA is specific to one given segment of 16 

the long anterior limb of internal capsule (ALIC) tract connecting prefrontal cortex with 17 

the thalamus and brain stem32. Due to these limitations, a large number of genetic 18 

factors influencing white matter may still be undiscovered. Consequently, with few 19 

exceptions (e.g., stroke26 and cognitive traits25), the shared genetic influences between 20 

white matter and other complex traits are unknown. Uncovering these potential genetic 21 

links may identify important brain regions that are involved in clinical outcomes, 22 

especially for brain-related disorders.  23 

 24 

To overcome these limitations, here we collected individual-level dMRI from five data 25 

resources: the UK Biobank33, Adolescent Brain Cognitive Development (ABCD34), HCP35, 26 

Pediatric Imaging, Neurocognition, and Genetics (PING36), and Philadelphia 27 

Neurodevelopmental Cohort (PNC37). We harmonized image processing by using the 28 

ENIGMA-DTI pipeline38,39 and obtained voxel-wise DTI maps for 42,919 subjects (after 29 

quality controls), including 35,741 in UK Biobank. We mainly focused on 21 predefined 30 

white matter tracts and generated two groups of phenotypes. The first group contains 31 

110 tract-averaged parameters for FA, AD, MD, MO and RD in 21 tracts and across the 32 
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 5 

whole brain. Second, we applied functional principal component analysis (FPCA40) to 1 

generate 105 tract-specific principal components (PCs) for FA by taking the top five PCs 2 

of the voxel-wise map within each tract. FPCA is a data-driven approach to characterize 3 

the strongest variation components of FA within each tract, which are expected to 4 

provide additional microstructural details about axonal organization and myelination 5 

omitted by tract-averaged values41,42, while limiting multiple testing. More importantly, 6 

these PCs may represent FA changes that are more relevant to specific clinical 7 

outcomes. We then performed a genome-wide association analysis for these 215 8 

phenotypes to discover the genetic architecture of white matter and explore the genetic 9 

links to a plethora of clinical endpoints in different trait domains. Our GWAS results 10 

have been made publicly available at https://github.com/BIG-S2/GWAS and can be 11 

easily browsed through our Brain Imaging Genetics Knowledge Portal (BIG-KP) 12 

https://bigkp.web.unc.edu/.  13 

 14 

 15 

RESULTS 16 

GWAS Discovery and Validation for 215 DTI parameters.  17 

Our discovery analysis utilized data from UKB subjects of British ancestry (n = 33,292). 18 

All of the 110 DTI mean parameters had significant SNP heritability43 (h2) after 19 

Bonferroni adjustment (215 tests, P < 9.4 × 10-31, Fig. 1a and Supplementary Table 1). 20 

The h2 estimates varied from 24.8% to 65.4% (mean h2 = 46.3%), which were 21 

comparable with previous results23,25. For the 105 tract-specific FA PC parameters, we 22 

found that 102 had significant h2 (mean h2 = 34.1%, h2 range = (8.6%, 65.8%), P < 1.1 × 23 

10-5). The 4th PC of corticospinal tract (CST, 6.2%), 5th PC of cingulum hippocampus (CGH, 24 

4.4%), and 4th PC of superior fronto-occipital fasciculus (SFO, 3.7%) had nominally 25 

significant h2 estimates (P < 0.03), which became insignificant after Bonferroni 26 

adjustment. The top five PCs in external capsule (EC) were highlighted in bottom panels 27 

of Figure 1b. Different from tract-averaged value, these PCs captured more specific FA 28 

variations in distinct subfields of EC, all of which had high h2 (mean h2 = 47.9%, h2 range 29 

= (42.9%, 52.6%), P < 1.8 × 10-89). Another illustration was given in Supplementary 30 

Figure 1 for the PCs of superior longitudinal fasciculus (SLF). These h2 results show that 31 

the additional microstructural variations captured by unconventional tract-specific FA 32 
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 6 

PCs are also generally under genetic control. As illustrated in later sections, those 1 

heritable local FA variation patterns may also have higher power to identify the shared 2 

genetic influences with other complex traits. 3 

 4 

We performed GWAS for these 215 DTI parameters using 9,023,710 common genetic 5 

variants after quality controls (Methods). All Manhattan and QQ plots can be browsed in 6 

our BIG-KP server. At a stringent significance level 2.3 × 10-10 (i.e., 5 × 10-8/215, 7 

additionally adjusted for the 215 phenotypes studied), FUMA44 clumped 595 partially 8 

independent significant variants (Methods) involved in 1,101 significant associations 9 

with 86 FA measures (21 mean and 65 PC parameters, Supplementary Figs. 2-3 and 10 

Supplementary Table 2). Genetic variants had broad effects across all white matter 11 

tracts, and one variant often influenced multiple FA measures, such as rs12146713 in 12 

region 12q23.3, rs309587 in 5q14.3, rs55705857 in 8q24.21, and rs1004763 in 22q13.1. 13 

Of the 595 significant variants, 302 were only detected by PC parameters. On average, 14 

the number of FA-associated significant variants was 37.0 in each tract (range = (4, 72), 15 

Fig. 2 and Supplementary Table 3), 50.3% of which were solely discovered by PC 16 

parameters (range = (26.3%, 100%)). For example, all of the 22 significant variants 17 

associated with CST were detected by PC parameters. Moreover, 66.7% (32/48) of the 18 

variants in posterior corona radiata (PCR), 64.9% (37/57) in posterior thalamic radiation 19 

(PTR), 59.7% (43/72) in SLF, and 56.3% (18/32) in cingulum cingulate gyrus (CGC) were 20 

only associated with PC parameters. These results clearly illustrate the unique 21 

contribution of tract-specific PC parameters in identifying genetic variants for FA 22 

variations within white matter tract. 23 

 24 

In addition, 770 significant variants were associated with 83 mean parameters of AD, 25 

MD, MO and RD (2,069 significant associations), 565 of these 770 variants (with 967 26 

associations) were not identified by FA measures (Fig. 2, Supplementary Figs. 2-3, and 27 

Supplementary Table 2). The mean number of significant variants in each tract moved 28 

up to 93.3 (range = (41, 160)), and rs13198474 in 6p22.2, rs2267161 in 22q12.2, 29 

rs55705857 in 8q24.21, rs7935166 in 11p11.2, and rs7225002 in 7q21.31 were 30 

associated with multiple non-FA measures. Of note, more than 70% of significant 31 

variants in cingulum (CGH (90.7%) and CGC (73.3%)) were detected by non-FA measures 32 
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 7 

(Supplementary Table 4), which may suggest that FA is less useful in the thin line-like 1 

C-shaped cingulum region than in other tracts. Based on a second and more strict LD 2 

clumping (LD r2 < 0.1), FUMA44 defined independent lead variants from the above 3 

independent significant variants and then genetic loci were characterized (Methods). 4 

The 3,170 (1,101 + 2,609) significant variant-trait associations were summarized as 994 5 

significant locus-trait associations (Supplementary Tables 5-6). We then performed 6 

functionally informed fine mapping for these locus-level signals using SuSiE45 via 7 

PolyFun46 framework (Methods). PolyFun + SuSiE identified 6,882 variant-trait pairs that 8 

had posterior causal probability (i.e., PIP) > 0.95 for 2,299 variants (Supplementary 9 

Table 7), suggesting the existence of multiple causal effects in associated loci. In 10 

summary, our results illuminate the broad genetics control on white matter 11 

microstructural differences. The genetic effects are spread across a large number of 12 

variants, consistent with the observed extremely polygenic genetic architecture of many 13 

brain-related traits30,47.  14 

 15 

We aimed to find independent replication of our discovery GWAS in five independent 16 

validation datasets, all consisting of individuals of European ancestry: the UKB White but 17 

Non-British (UKBW, n = 1,809), ABCD European (ABCDE, n = 3,821), HCP (n = 334), PING 18 

(n = 461), and PNC (n = 537). First, for each DTI parameter, we checked the genetic 19 

correlation (gc) between discovery GWAS and the meta-analyzed European validation 20 

GWAS (total n = 6,962) by LDSC48 (Methods). The mean gc estimate was 0.95 (standard 21 

error = 0.35) across the 215 DTI parameters, 121 of which were significant after 22 

adjusting for multiple testing by the Benjamini-Hochberg (B-H) procedure at 0.05 level 23 

(Supplementary Table 8). Genetic correlation estimates near 1 indicates a consistent 24 

genetic basis for these phenotypes measured in different cohorts and MRI scanners. 25 

Next, we meta-analyzed our discovery GWAS with these European validation GWAS and 26 

found that 79.6% significant associations had smaller P-values after meta-analysis, 27 

suggesting similar effect size and direction of the top variants in independent 28 

cohorts49,50. Additionally, we tested for replication by using polygenic risk scores51 (PRS) 29 

derived from discovery GWAS (Methods). After B-H adjustment at 0.05 level (215 × 5 30 

tests), the mean number of significant PRS in the five validation GWAS datasets was 195 31 

(range = (193, 211), P range = (8.5 × 10-27, 4.5 × 10-2), Supplementary Figs. 4-5 and 32 
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 8 

Supplementary Table 9). Almost all (214/215) DTI parameters had significant PRS in at 1 

least one dataset and 165 had significant PRS in all of them, showing the high 2 

generalizability of our discovery GWAS results. Across the five validation datasets, the 3 

mean additional variance that can be explained by PRS (i.e., incremental R-squared) was 4 

1.7% (range = (0.4%, 4.2%)) for the 165 consistently significant DTI parameters. The 5 

largest mean (incremental) R-squared was on the 2nd PC of EC (range = (2.2%, 6.5%), P 6 

range = (7.2 × 10-24, 1.5 × 10-9)).  7 

 8 

Finally, we constructed PRS on four non-European validation datasets: the UKB Asian 9 

(UKBA, n = 419), UKB Black (UKBBL, n = 211), ABCD Hispanic (ABCDH, n = 768), and ABCD 10 

African American (ABCDA, n = 1,257). The number of significant PRS was 158 and 40 in 11 

UKBA and UKBBL, respectively (B-H adjustment at 0.05 level, Supplementary Table 10). 12 

In addition, UKBW and UKBA had similar prediction performance (mean 2.38% vs. 13 

2.33%, P = 0.67), but the accuracy became significantly smaller in UKBBL (mean 2.38% 14 

vs. 1.67%, P = 3.9 × 10-9). For the two non-European non-UKB datasets, the number of 15 

significant PRS was 121 and 114 in ABCDH and ABCDA, respectively (B-H adjustment at 16 

0.05 level, Supplementary Table 11), which were much smaller than the ones observed 17 

in ABCDE. The R-squared were similar between ABCDH and ABCDE (mean 0.74% vs. 18 

0.69%, P = 0.28), but the accuracy significantly decreased in ABCDA (mean 0.48% vs. 19 

0.69%, P = 1.9 × 10-7). These findings show that UKB British GWAS findings have high 20 

generalizability in European cohorts, but the generalizability is reduced in 21 

cross-population applications, especially in Black/African-American cohorts, highlighting 22 

the importance of recruiting sufficient samples from global diverse populations in future 23 

genetics discovery of white matter.  24 

 25 

Concordance with previous GWAS. 26 

Of the 33,292 subjects in our UKB British discovery GWAS, 17,706 had been used in the 27 

largest previous GWAS25 for 110 mean parameters. To examine the robustness of their 28 

findings, we used the other 15,214 individuals (also removed the relatives52 of previous 29 

GWAS subjects) to perform a new validation GWAS and then evaluated the strength of 30 

replication (Methods). We calculated the replication slope, which was the correlation of 31 

the standardized effect size of variants estimated from two independent GWAS53. This 32 
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 9 

analysis was restricted to top (P < 1 × 10-6 in previous GWAS) independent lead variants 1 

after LD-based clumping (window size 250, LD r2 = 0.01). The replication slope was 0.84 2 

(standard error = 0.02, P < 2 × 10-16), indicating strong similarity between these top 3 

variant effect size estimates. We also applied FINDOR53 to reweight P-values by 4 

leveraging functional enrichments, after which the replication slope increased to 0.86 5 

(standard error = 0.02, P < 2 × 10-16). In addition, for each of the 110 mean parameters, 6 

we used LDSC48 to calculate genetic correlation between measurements from the two 7 

GWAS. The mean gc estimate was 1.03 (standard error = 0.14, Supplementary Fig. 6 and 8 

Supplementary Table 12) across these parameters, all of which were significant after 9 

B-H adjustment at 0.05 level (P < 1.4 × 10-5). In conclusion, these findings indicate that 10 

previous UKB GWAS results can be strongly validated in the new UKB British cohort.  11 

 12 

Next, we carried out association lookups for 1,160 (595 + 565) independent significant 13 

variants (and variants within LD) detected in our UKB British discovery GWAS (Methods). 14 

Of the 213 variants (with 696 associations) identified in Zhao, et al. 25, 202 (with 671 15 

associations) were in LD (r2 ≥	 0.6) with our independent significant variants 16 

(Supplementary Table 13). On the NHGRI-EBI GWAS catalog54, our results tagged many 17 

variants that had been implicated with brain structures, including 7 in van der Meer, et 18 

al. 55 for hippocampal subfield volumes, 7 in Verhaaren, et al. 56 for cerebral white 19 

matter hyperintensity (WMH) burden, 5 in Vojinovic, et al. 57 for lateral ventricular 20 

volume, 5 in Rutten-Jacobs, et al. 26 for WMH and white matter integrity, 2 in Klein, et al. 21 
58 for intracranial volume, 2 in Hibar, et al. 59 for subcortical brain region volumes, 2 in 22 

Fornage, et al. 28 for WMH burden, 1 in Elliott, et al. 23 for brain imaging measurements, 23 

1 in Luo, et al. 60 for voxel-wise brain imaging measurement, 1 in Hashimoto, et al. 61 for 24 

superior frontal gyrus grey matter volume, 1 in Ikram, et al. 62 for intracranial volume, 25 

and 1 in Sprooten, et al. 63 for global FA (Supplementary Table 14). When the 26 

significance threshold was relaxed to 5 × 10-8, we tagged variants reported in more 27 

previous studies, such as 2 in Shen, et al. 64 for brain imaging measurements, 2 in Chung, 28 

et al. 65 for hippocampal volume in dementia, 1 in Chen, et al. 66 for putamen volume, 29 

and 1 in Christopher, et al. 67 for posterior cingulate cortex (Supplementary Table 15). 30 

For example, we observed colocalizations in region 5q14.3 with previously reported 31 

variants for WMH volume and white matter integrity26, in 10q26.13 with hippocampal 32 
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 10 

volumes55, in 17q21.31 with subcortical59 and intracranial62 volumes, and in 17q25.1 1 

with WMH volume26/burden28,56 (Supplementary Fig. 7). 2 

 3 

Moreover, we found lots of previous associations with other complex traits in different 4 

domains (Supplementary Table 16). We highlighted 190 variants with psychological 5 

traits (e.g., neuroticism68, well-being spectrum69, general risk tolerance70), 179 with 6 

cognitive/educational traits (e.g., cognitive ability71, educational attainment72), 99 with 7 

psychiatric disorders (e.g., schizophrenia73, MDD74, bipolar disorder75, ADHD76, autism 8 

spectrum disorder77), 95 with anthropometric traits (e.g., height78, body mass index 9 

(BMI)53), 68 with bone mineral density79,80, 54 with smoking/drinking (e.g., smoking81, 10 

alcohol use disorder82), 20 with neurological disorders (e.g., corticobasal degeneration83, 11 

Parkinson's disease84, Alzheimer's disease85, multiple sclerosis86), 18 with sleep (e.g., 12 

sleep duration87, chronotype88), 11 with glioma (glioblastoma or non-glioblastoma) 13 

tumors89,90, and 6 with stroke91-93. For example, white matter associated variants 14 

colocalized with many risk variants of cognitive/educational traits as well as 15 

brain-related disorders in regions 17q21.31, 6p22.1, and 6p22.2 (Supplementary Fig. 8). 16 

Strong colocalizations were also found in 7p22.3 with anthropometric traits and bone 17 

mineral density, in 10p12.31 with smoking/drinking and anthropometric traits, in 9p21.3 18 

with glioma and stroke, and in 8q24.12 with bone mineral density (Supplementary Fig. 19 

9). 20 

 21 

To further explore these overlaps, we summarized the number of previously reported 22 

variants of other traits that can be tagged by any DTI parameters in each white matter 23 

tract (Supplementary Table 17). We found that variants associated with psychological, 24 

cognitive/educational, smoking/drinking traits and neurological and psychiatric 25 

disorders were globally linked to many white matter tracts (Supplementary Fig. 10). For 26 

traits in other domains, the overlaps may have some tract-specific patterns. For 27 

example, 3 of the 6 variants associated with stroke were linked to both SFO and ALIC, 28 

and the other 3 were found in superior corona radiata (SCR), anterior corona radiata 29 

(ACR), genu of corpus callosum (GCC), body of corpus callosum (BCC), EC, posterior limb 30 

of internal capsule (PLIC), and posterior limb of internal capsule (RLIC). In addition, 7 of 31 

the 11 risk variants of glioma were associated with splenium of corpus callosum (SCC), 32 
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12 of the 18 variants reported for sleep were related to PLIC or inferior fronto-occipital 1 

fasciculus (IFO), and 26 of the 68 variants associated with bone mineral density were 2 

linked to CST. In addition, more than half of the variants tagged by uncinate fasciculus 3 

(UNC) and fornix (FX) had been implicated with anthropometric traits. We carried out 4 

voxel-wise association analysis for four representative pleiotropic variants (Methods). 5 

Figure 3 illustrated their genomic locations and voxel-wise effect size patterns in spatial 6 

brain maps. rs593720 and rs13198474 had strong effects in corpus callosum (GCC, BCC, 7 

and SCC), corona radiata (ACR and SCR), and EX, and the two variants widely tagged 8 

psychiatric94 and neurological95 disorders, as well as psychological96 and 9 

cognitive/educational97 traits. On the other hand, rs77126132 highlighted in SCC and 10 

BCC was particularly linked to glioma89, and rs798510 in SCR, FX, and PLIC was 11 

associated with several anthropometric traits98.  12 

 13 

An atlas of genetic correlations with other complex traits. 14 

Because of the shared loci associated with both white matter microstructure and other 15 

complex traits, we systematically examined their pairwise genetic correlations by using 16 

our discovery GWAS summary statistics (n = 33,292) and publicly available 17 

summary-level data of other 76 complex traits via LDSC (Methods, Supplementary Table 18 

18). There were 760 significant pairs between 60 complex traits and 175 DTI parameters 19 

after B-H adjustment at 0.05 level (76 × 215 tests, P range = (8.6 × 10-12, 2.3 × 10-3), 20 

Supplementary Table 19), 38.3% (291/760) of which were detected by PC parameters. 21 

We found that DTI parameters were widely correlated with subcortical and WMH 22 

volumes (Supplementary Fig. 11), brain-related traits (Supplementary Fig. 12), and 23 

other non-brain traits (Supplementary Fig. 13). To validate these results, we performed 24 

cross-trait PRS separately on our five European validation GWAS datasets and LDSC on 25 

their meta-analyzed summary statistics (n = 6,962, Methods). We found that 681 26 

(89.6%) of these 760 significant pairs can be validated in at least one of the six validation 27 

analyses after B-H adjustment at 0.05 level (760 tests, P range = (1.7 × 10-10, 2.9 × 10-2), 28 

Supplementary Table 20), indicating the robustness of our findings. We then reran LDSC 29 

after meta-analyzed our UKB British discovery GWAS with these European validation 30 

GWAS (n = 40,254). The number of significant pairs increased to 855 between 62 31 
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complex traits and 178 DTI parameters (Fig. 4, Supplementary Figs. 14-16 and 1 

Supplementary Table 21). 2 

 3 

We replicated previously reported genetic correlations with cognitive/educational 4 

traits25, drinking behavior25, stroke23,26, and MDD25,26, and more tract-specific details 5 

were revealed. For example, stroke (any subtypes) and ischemic stroke subtypes92 (large 6 

artery stroke, cardioembolic stroke, and small vessel stroke) showed broad genetic 7 

correlations with corpus callosum (GCC and BCC), corona radiata (ACR, SCR, and PCR), 8 

limb of internal capsule (PLIC, ALIC), EC, SLF, SFO, and UNC (|gc| range = (0.16, 0.42), P < 9 

2.5 × 10-3), matching findings in our association lookups. We further observed that small 10 

vessel stroke subtype had specific but higher genetic correlations with ALIC and SFO 11 

(|gc| range = (0.52, 0.69), P < 1.2 × 10-3). In contrast, there were no significant genetic 12 

correlations detected for large artery and cardioembolic stroke, demonstrating the 13 

potentially much stronger genetic links between white matter tracts and small vessel 14 

stroke subtype.  15 

 16 

More importantly, many new genetic correlations were uncovered for brain-related 17 

traits, such as Alzheimer's disease, ADHD, bipolar disorder, schizophrenia, chronotype, 18 

insomnia, neuroticism, and risk tolerance. For example, significant genetic correlation 19 

was found between PTR and Alzheimer's disease (|gc| = 0.30, P = 1.7 × 10-3), EC and 20 

ADHD (|gc| = 0.18, P = 4.5 × 10-5), UNC and bipolar disorder (|gc| > 0.15, P < 4.0 × 10-4), 21 

and SLF and schizophrenia (|gc| = 0.11, P = 2.3 × 10-3), matching previously reported 22 

case-control differences12,99-101 on these tracts. We also found novel significant 23 

correlations for non-brain traits, including high blood pressure, height, BMI, bone 24 

mineral density, number of non-cancer illnesses and treatments, heavy manual or 25 

physical work, smoking, coronary artery disease, lung function, and type 2 diabetes 26 

(T2D). For example, high blood pressure was genetically correlated with 19 tracts 27 

including SFO, SLF, UNC, EC, and ALIC (|gc| range = (0.09, 0.25), P < 2.4 × 10-3). Previous 28 

research found widespread associations between human brain and these traits, such as 29 

bone mineral density102, hypertension103, T2D104, lung function105, heart disease106, and 30 

anthropometric traits107. Our findings further illuminate their underlying genetic links. 31 

We summarized significant genetic correlations identified in each tract and found that 32 
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32.3% (120/372) of these tract-trait genetic correlations can only be detected by PC 1 

parameters (Supplementary Fig. 17 and Supplementary Table 22). For example, most of 2 

the significant genetic correlations in EC were solely detected by its PC parameters, such 3 

as ADHD, BMI, cognitive function, neuroticism, and insomnia. 4 

 5 

We explored partial genetic causality among these traits using the latent causal 6 

variable108 (LCV) model (Methods). As suggested, we conservatively restricted the LCV 7 

analysis to pairs with at least nominally significant genetic correlation (P < 0.05), 8 

significant evidence of genetic causality (B-H adjustment at 0.01 level, 76 × 215 tests), 9 

and large genetic causality proportion estimate (|GCP| > 0.6), which were extremely 10 

unlikely to be false positives108. The LCV model suggested that high blood pressure was 11 

partially genetically causal for white matter (|GCP| > 0.67, P < 2.2 × 10-5, 12 

Supplementary Fig. 18 and Supplementary Table 23). On the other hand, white matter 13 

may have partially genetically causal effects on insomnia, under sleep, and neuroticism 14 

(|GCP| > 0.64, P < 7.1 × 10-8). These findings may lead to plausible biological hypotheses 15 

in future research and suggest the existence of different biological mechanisms 16 

underlying the atlas of genetic correlations. More efforts are required to explore causal 17 

relationships and the shared biological processes109 among these genetically correlated 18 

traits.  19 

 20 

Gene-level analysis. 21 

We carried out MAGMA110 gene-based association analysis for the 215 DTI parameters 22 

using our discovery GWAS summary statistics (Methods). There were 3,903 significant 23 

gene-level associations (P < 1.2 × 10-8, adjusted for 215 phenotypes) between 620 genes 24 

and 179 DTI parameters (Supplementary Table 24), 153 of the associated genes can 25 

only be discovered by PC parameters. We replicated 99 of 112 MAGMA genes reported 26 

in Zhao, et al. 25, 8 white matter-associated genes (SH3PXD2A, NBEAL1, C1QL1, COL4A2, 27 

TRIM47, TRIM65, UNC13D, FBF1) in Verhaaren, et al. 56, 4 (VCAN, TRIM47, XRCC4, 28 

HAPLN1) in Rutten-Jacobs, et al. 26, 3 (ALDH2, PLEKHG1, TRIM65) in Traylor, et al. 27, 3 29 

(ALDH2, PLEKHG1, TRIM65) in Hofer, et al. 111, 2 (TRIM47, TRIM65) in Fornage, et al. 28, 30 

and 2 (GNA12, GNA13) in Sprooten, et al. 112. Most of the other genes had not been 31 

implicated with white matter. Many of our MAGMA genes had been linked to other 32 
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complex traits (Supplementary Table 25), such as 70 genes in Anney, et al. 94 for autism 1 

spectrum disorder or schizophrenia, 50 in Morris, et al. 79 for heel bone mineral density, 2 

38 in Hoffmann, et al. 113 for blood pressure variation, 51 in Linnér, et al. 70 for risk 3 

tolerance, 36 in Rask-Andersen, et al. 98 for body fat distribution, and 26 in Hill, et al. 114 4 

for neuroticism.  5 

 6 

Next, we mapped significant variants (P < 2.3 × 10-10) to genes according to physical 7 

position, expression quantitative trait loci (eQTL) association, and 3D chromatin (Hi-C) 8 

interaction via FUMA44 (Methods). FUMA yielded 1,189 new associated genes (1,630 in 9 

total) that were not discovered in MAGMA analysis (Supplementary Table 26), 10 

replicating 286 of the 292 FUMA genes identified in Zhao, et al. 25 and more other genes 11 

in previous studies of white matter, such as PDCD1156, ACOX156, CLDN23111, 12 

EFEMP126,27,56, and IRS2111. More overlapped genes were also observed between white 13 

matter and other traits (Supplementary Table 27). Particularly, 876 FUMA genes were 14 

solely mapped by significant Hi-C interactions in brain tissues (Supplementary Table 28), 15 

demonstrating the power of integrating chromatin interaction profiles in GWAS of white 16 

matter.  17 

 18 

We then explored the gene-level pleiotropy between white matter and 79 complex 19 

traits, including nine neurological and psychiatric disorders115 studied in Sey, et al. 115 20 

and (other) traits studied in our genetic correlation analysis. For brain-related traits, the 21 

associated genes were predicted by the recently developed Hi-C-coupled MAGMA115 22 

(H-MAGMA) tool (Methods). Traditional MAGMA110 was used for non-brain GWAS. 23 

H-MAGMA prioritized 737 significant genes for white matter (P < 6.3 × 10-9, adjusted for 24 

215 phenotypes and two brain tissue types, Supplementary Table 29), and we focused 25 

on 329 genes that can be replicated in our meta-analyzed European validation GWAS (n 26 

= 6,962) at nominal significance level (P < 0.05, Supplementary Table 30). We found 27 

that 298 of these 329 genes were associated with at least one of 57 complex traits 28 

(Supplementary Table 31). Supplementary Figure 19 and Supplementary Table 32 29 

display the number of overlapped genes between 57 complex traits and 21 white matter 30 

tracts. Most white matter tracts have many pleiotropic genes with other complex traits, 31 

aligning with patterns in association lookups and genetic correlation analysis. For 32 
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example, schizophrenia had 80 overlapped genes with SLF, 71 with CGC, 68 with EC, and 1 

65 with SCR. Global white matter changes in schizophrenia patients had been 2 

observed101,116,117. Particularly, 230 white matter H-MAGMA genes had been identified 3 

in Sey, et al. 115 for nine neurological and psychiatric disorders (Supplementary Table 4 

33). NSF118, GFAP119, TRIM2773, HLA-DRA118,120, and KANSL177,96 were associated with 5 

five of these disorders, and another 69 genes were linked to at least three different 6 

disorders (Supplementary Fig. 20). In summary, our analysis largely expands the 7 

overview of gene-level pleiotropy, informing the shared genetic influences between 8 

white matter and other complex traits.  9 

 10 

Biological annotations.  11 

In order to identify tissues and cell types where genetic variation leads to changes in 12 

white matter microstructure, we performed partitioned heritability analyses121 from the 13 

GWAS of global FA and MD within tissue type and cell type specific regulatory elements. 14 

First, we utilized regulatory elements across multiple adult and fetal tissues122. As 15 

expected, both FA and MD had the most significant enrichment of heritability in active 16 

gene regulation regions of brain tissues (Fig. 5a, Supplementary Fig. 21, and 17 

Supplementary Table 34). To identify gross cell types, we again performed partitioned 18 

heritability using chromatin accessibility data of two brain cell types, neurons (NeuN+) 19 

and glia (NeuN-) sampled from 14 brain regions, including both cortical and 20 

subcortical123. For all regions, we found that significant enrichment of FA and MD 21 

heritability existed in glial but not neuronal regulatory elements after B-H adjustment at 22 

0.05 level (Fig. 5b). These results are expected as white matter is largely composed of 23 

glial cell types. For further resolution on cell types, we tested partitioned heritability 24 

enrichment within differentially accessible chromatin of glial cell subtypes, 25 

oligodendrocyte (NeuN-/Sox10+), microglia and astrocyte (NeuN-/Sox10-) and two 26 

neuronal cell subtypes GABAergic (NeuN+/Sox6+) and glutamatergic neurons 27 

(NeuN+/Sox6-) (Methods). Heritability of FA and MD was significantly enriched in 28 

oligodendrocyte, microglia, and astrocyte annotations (P < 4.8 × 10-3). The 29 

oligodendrocyte annotation accounted for 10.4% (standard error = 2.6%, P = 9.5 × 10-5) 30 

of the FA heritability while only composed 0.3% of the variants. In contrast, no 31 

significant enrichment was observed in neurons (Fig. 5c). These analyses imply that 32 
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common variants associated with white matter microstructure alter the function of 1 

regulatory elements in glial cells, particularly oligodendrocytes, the cell type expected to 2 

influence white matter microstructure, providing strong support of the biological 3 

validity of the genetic associations.  4 

 5 

To gain more insights into biological mechanisms, we performed several analyses to 6 

explore biological interpretations of white matter associated genes. First, MAGMA gene 7 

property110 analysis was carried out for 13 GTEx124 (v8) brain tissues to examine whether 8 

the tissue-specific gene expression levels were related to significance between genes 9 

and DTI parameters (Methods). After Bonferroni adjustment (13 × 215 tests), we 10 

detected 57 significant associations for gene expression in brain cerebellar hemisphere 11 

and cerebellum tissues (P < 1.8 × 10-5, Supplementary Fig. 22 and Supplementary Table 12 

35), suggesting that genes with higher transcription levels on white matter-presented 13 

regions also had stronger genetic associations with DTI parameters. In contrast, no 14 

signals were observed on regions primarily dominated by grey matter, such as basal 15 

ganglia and cortex. Next, we performed drug target lookups in a recently established 16 

drug target network125, which included 273 nervous system drugs (ATC code starts with 17 

“N”) and 241 targeted genes. We found that 19 white matter associated genes were 18 

targets for 104 drugs, 43 of which were anti-psychotics (ATC: N05A, target such as 19 

DRD4) to manage psychosis like schizophrenia and bipolar, 40 were anti-depressants 20 

(ATC: N06A, target such as SLC6A4) to treat MDD and other conditions, 14 were 21 

anti-Parkinson drugs (ATC: N04B, target such as HTR2B), and 14 were anti-convulsants 22 

(ATC: N03A, target such as SCN5A) used in the treatment of epileptic seizures 23 

(Supplementary Table 36). In addition, we treated white matter associated genes as an 24 

annotation and performed partitioned heritability enrichment analysis121 for the other 25 

76 complex traits (Methods). After B-H adjustment at 0.05 level, heritability of 54 26 

complex traits was significantly enriched in regions influencing DTI parameters 27 

(Supplementary Fig. 23 and Supplementary Table 37). These results suggest the 28 

potential clinical values of the genes identified for white matter microstructure.  29 

 30 

MAGMA110 competitive gene-set analysis was performed for 15,496 gene sets (5,500 31 

curated gene sets and 9,996 GO terms, Methods). We found 180 significant gene sets 32 
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after Bonferroni adjustment (15,496 × 215 tests, P < 1.5 × 10-8, Supplementary Table 38). 1 

The top five frequently prioritized gene sets were “dacosta uv response via ercc3 dn” 2 

(M4500), “dacosta uv response via ercc3 common dn” (M13522), “graessmann 3 

apoptosis by doxorubicin dn” (M1105), “gobert oligodendrocyte differentiation dn” 4 

(M2369), and “blalock alzheimers disease up” (M12921). M4500 and M13522 are 5 

ERCC3-associated gene sets related to xeroderma pigmentosum (XP) and 6 

trichothiodystrophy (TTD) syndromes, which are genetic disorders caused by a defective 7 

nucleotide excision repair system126,127. In addition to skin symptoms, patients of XP and 8 

TTD often reported various neurological deteriorations and white matter abnormalities, 9 

such as intellectual impairment128, myelin structures degradation129,  and diffuse 10 

dysmyelination130. M1105 regulates the apoptosis of breast cancer cells in response to 11 

doxorubicin treatment. Clinical research found that breast cancer chemotherapy like 12 

doxorubicin was neurotoxic131 and can cause therapy-induced brain structural changes 13 

and decline in white matter integrity132. M2369 plays a critical role in oligodendrocyte 14 

differentiation, which mediates the repair of white matter after damaging events133, and 15 

M12921 is related to the pathogenesis of Alzheimer's disease134.  16 

 17 

Several gene sets of rat sarcoma (Ras) proteins, small GTPases, and rho family GTPases 18 

were also prioritized by MAGMA, such as “go regulation of small gtpase mediated signal 19 

transduction” (GO: 0051056), “go small gtpase mediated signal transduction” (GO: 20 

0007264), “go re gelation of ras protein signal transduction” (GO: 0046578), “go ras 21 

protein signal transduction” (GO: 0007265), and “reactome signaling by rho gtpases” 22 

(M501). Ras proteins activity is involved in developmental processes and abnormalities 23 

of neural cells in central nervous system135,136; small and rho family GTPases play crucial 24 

roles in basic cellular processes during the entire neurodevelopment process and are 25 

closely connected to several neurological disorders137-139. We also observed significant 26 

enrichment in pathways related to nervous system, including “go neurogenesis” (GO: 27 

0022008), “go neuron differentiation” (GO: 0030182), “go neuron development” (GO: 28 

0048666), “go regulation of neuron differentiation” (GO: 0045664), and “go regulation 29 

of nervous system development” (GO: 0051960). Finally, we applied DEPICT140 gene-set 30 

enrichment testing for 10,968 pre-constituted gene sets (Methods), 7 of which survived 31 

Bonferroni adjustment (10,968 × 215 tests, P < 2.1 × 10-8), such as two gene sets 32 
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involved in Ras proteins and small GTPases (GO: 0046578 and GO: 0005083) and 1 

another two for vasculature and blood vessel developments (GO: 0001944 and GO: 2 

0001568, Supplementary Table 39). More MAGMA enriched gene sets can also be 3 

detected by DEPICT when the significance threshold was relaxed to 6.5 × 10-6 (i.e., not 4 

adjusted for testing 215 phenotypes). In summary, our results provide many insights 5 

into the underlying biological processes of white matter, suggesting that DTI measures 6 

could be useful in understanding the shared pathophysiological pathways between 7 

white matter microstructure and multiple diseases and disorders.  8 

 9 

DISCUSSION 10 

In this study, we analyzed the genetic architecture of brain white matter using dMRI 11 

scans of 42,919 subjects collected from five publicly accessible data resources. Through 12 

a genome-wide analysis, we identified hundreds of previously unknown variants and 13 

genes for white matter microstructural differences. Many previously reported genetic 14 

hits were confirmed in our discovery GWAS, and we further validated our discovery 15 

GWAS in a few replication cohorts. We evaluated the genetic relationships between 16 

white matter and a wide variety of complex traits in association lookups, genetic 17 

correlation estimation, and gene-level analysis. A large proportion of our findings were 18 

revealed by unconventional tract-specific PC parameters. Bioinformatics analyses found 19 

tissue and cell-specific functional enrichments and lots of enriched biological pathways. 20 

Together, these results suggest the value of large-scale neuroimaging data integration 21 

and the application of tract-specific FPCA in studying the genetics of human brain.   22 

 23 

One limitation of the present study is that the majority of publicly available dMRI data 24 

are from subjects of European ancestry and our discovery GWAS focused on UKB British 25 

individuals. Such GWAS strategy can efficiently avoid false discoveries due to population 26 

stratifications and heterogeneities across studies23,141, but may raise the question that 27 

to what degree the research findings can be generalized and applied to global 28 

populations142,143. In our analysis, we found that the UKB British-derived PRS were still 29 

widely significant in Hispanic, Asian, and Black/African American testing cohorts but had 30 

reduced performances, especially in Black/African American cohorts. This may indicate 31 

that the genetic architecture of white matter is similar but not the same across different 32 
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populations. Identifying the cross-population and population-specific components of 1 

genetic factors for human brain could be an interesting future topic. As more 2 

non-European neuroimaging data become available (e.g., the ongoing CHIMGEN 3 

project144 in Chinese population), global integration efforts are needed to study the 4 

comparative genetic architectures and to explore the multi-ethnic genetics relationships 5 

among brain and other human complex traits.  6 

 7 

URLs. 8 

Brain Imaging GWAS Summary Statistics, https://github.com/BIG-S2/GWAS;  9 

Brain Imaging Genetics Knowledge Portal, https://bigkp.web.unc.edu/; 10 

UKB Imaging Pipeline, https://git.fmrib.ox.ac.uk/falmagro/UK_biobank_pipeline_v_1;  11 

ENIGMA-DTI Pipeline, http://enigma.ini.usc.edu/protocols/dti-protocols/; 12 

PLINK, https://www.cog-genomics.org/plink2/;  13 

GCTA & fastGWA, http://cnsgenomics.com/software/gcta/; 14 

METAL, https://genome.sph.umich.edu/wiki/METAL;  15 

Michigan Imputation Server, https://imputationserver.sph.umich.edu/; 16 

FUMA, http://fuma.ctglab.nl/;  17 

MGAMA, https://ctg.cncr.nl/software/magma; 18 

H-MAGMA, https://github.com/thewonlab/H-MAGMA; 19 

LDSC, https://github.com/bulik/ldsc/; 20 

LCV, https://github.com/lukejoconnor/LCV/; 21 

DEPICT, https://github.com/perslab/depict;  22 

FINDOR, https://github.com/gkichaev/FINDOR; 23 

SuSiE, https://github.com/stephenslab/susieR; 24 

PolyFun, https://github.com/omerwe/polyfun; 25 

NHGRI-EBI GWAS Catalog, https://www.ebi.ac.uk/gwas/home; 26 

The atlas of GWAS Summary Statistics, http://atlas.ctglab.nl/; 27 

 28 

METHODS 29 

Methods are available in the Methods section. 30 

Note: One supplementary information pdf file, one supplementary figure pdf file, and 31 

one supplementary table zip file are available. 32 
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 27 

METHODS 28 

 29 

GWAS design and Imaging phenotypes. We analyzed the following GWAS datasets 30 

separately: 1) the UKB British discovery GWAS, which used data of individuals of British 31 

ancestry52 from the UKB study (n = 33,292); 2) five validation GWAS performed on 32 
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individuals of European ancestry: UKB White but Non-British (UKBW, n = 1,809), ABCD 1 

European (ABCDE, n = 3,821), HCP (n = 334), PING (n = 461), and PNC (n = 537); 3) two 2 

non-European UKB validation GWAS: UKB Asian (UKBA, n = 419) and UKB Black (UKBBL, 3 

n = 211); 4) two non-European non-UKB validation GWAS, including ABCD Hispanic 4 

(ABCDH, n = 768) and ABCD African American (ABCDA, n = 1,257); and 5) a UKB British 5 

GWAS with subjects not present in previous GWAS25 (also removed the relatives of 6 

previous GWAS subjects, n = 15,214). See Supplementary Table 40 for a summary of 7 

these GWAS and demographic information of study cohorts. The raw dMRI, covariates 8 

and genetic data were downloaded from each data resource. We processed the dMRI 9 

data locally using consistent procedures via ENIGMA-DTI pipeline38,39 to generate 215 10 

mean and PC DTI phenotypes for 21 predefined white matter tracts (Supplementary 11 

Table 41). A full description of image acquisition and preprocessing, quality controls, 12 

ENIGMA-DTI pipeline, white matter tracts, principle component extraction, and 13 

formulas of DTI parameters are detailed in Supplementary Note. An overview of tract 14 

annotation and imaging procedures is shown in Supplementary Figures 24-26 and a few 15 

image examples are given in Supplementary Figures 27-30. For each continuous 16 

phenotype or covariate variable, we removed values greater than five times the median 17 

absolute deviation from the median value. The ancestry assignment in UKB was based 18 

on self-reported ethnic background (Data-Field 21000), whose accuracy was verified in 19 

Bycroft, et al. 52 For ABCD, we assigned ancestry by a combination analysis using 20 

self-reported ethnicity and ancestry inference results from SNPweights145, see 21 

Supplementary Note for details. 22 

 23 

Association discovery and validation. Genotyping and quality controls are documented 24 

in Supplementary Note. We estimated the SNP heritability by all autosomal SNPs in UKB 25 

British discovery GWAS data using GCTA-GREML analysis43. The adjusted covariates 26 

included age (at imaging), age-squared, sex, age-sex interaction, age-squared-sex 27 

interaction, imaging site, as well as the top 40 genetic principle components (PCs) 28 

provided by UKB52 (Data-Field 22009). The heritability estimates were tested in 29 

one-sided likelihood ratio tests. We performed linear mixed model-based association 30 

analysis using fastGWA146. The same set of covariates as in GCTA-GREML analysis were 31 

adjusted. To replicate previous findings, we also performed another UKB British GWAS 32 
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with subjects not present in previous GWAS25. In addition, GWAS were separately 1 

performed on European validation datasets UKBW, ABCDE, HCP, PING, and PNC using 2 

Plink147. In the five validation GWAS, we adjusted for age, age-squared, sex, age-sex 3 

interaction, age-squared-sex interaction, and top ten genetic PCs estimated from 4 

genetic variants. We also adjusted for imaging sites in ABCD analysis. The meta-analysis 5 

was then performed on these validation datasets using METAL148 with the sample-size 6 

weighted approach. 7 

 8 

We applied a few analyses to support the findings in UKB British discovery GWAS. First, 9 

the LDSC48 software (version 1.0.0) was used to estimate the pairwise genetic 10 

correlation between DTI parameter values in discovery GWAS and the meta-analyzed 11 

five European validation GWAS (n = 6,962). We used the pre-calculated LD scores 12 

provided by LDSC, which were computed using 1000 Genomes European data. We used 13 

HapMap3149 variants and removed all variants in the major histocompatibility complex 14 

(MHC) region. In addition, we performed another meta-analysis for the UKB British 15 

discovery GWAS and the five European validation GWAS to check whether the P-values 16 

became smaller after combining these results. Next, polygenic risk scores (PRS) were 17 

created on nine validation datasets using the BLUP effect sizes estimated from 18 

GCTA-GREML analysis of UKB British discovery GWAS. We used PLINK to generate risk 19 

scores in each testing data by summarizing across genome-wide variants, weighed by 20 

their BLUP effect sizes. We tried 17 P-value thresholds for variant selection using their 21 

marginal P-values from fastGWA: 1, 0.8, 0.5, 0.4, 0.3, 0.2, 0.1, 0.08, 0.05, 0.02, 0.01, 1 × 22 

10-3, 1 × 10-4, 1 × 10-5, 1 × 10-6, 1× 10-7, and 1 × 10-8. Then, we generated 17 polygenic 23 

profiles for each phenotype and reported the best prediction power that can be 24 

achieved by a single profile. The association between polygenic profile and phenotype 25 

was estimated and tested in linear models, adjusting for the effects of age, gender, and 26 

top ten genetic PCs. The additional phenotypic variation that can be explained by 27 

polygenic profile (i.e., the incremental R-squared) was used to measure the prediction 28 

accuracy.  29 

 30 

Genomic risk loci characterization and comparison with previous findings. We defined 31 

genomic risk loci by using FUMA (version 1.3.5e). We input the UKB British discovery 32 
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GWAS summary statistics after reweighting the P-values using functional information via 1 

FINDOR53. Specifically, FUMA first clumped partially independent significant variants, 2 

which were variants with a P-value smaller than the predefined threshold and 3 

independent of other significant variants (LD r2 < 0.6, default value). FUMA constructed 4 

LD blocks for these independent significant variants by tagging all variants in LD (r2 ≥	5 

0.6) with at least one independent significant variant and had a MAF ≥ 0.0005. These 6 

variants included those from the 1000 Genomes reference panel that may not have 7 

been included in the GWAS. Based on these significant variants, independent lead 8 

variants were identified as those that were independent from each other (LD r2 < 0.1). If 9 

LD blocks of independent significant variants were closed (<250 kb based on the closest 10 

boundary variants of LD blocks), they were merged to a single genomic locus. Thus, each 11 

genomic risk locus could contain more than one independent significant variants and 12 

lead variants. We performed functionally-informed fine-mapping by using SuSiE45 13 

method via PolyFun46 framework for risk loci. The summary statistics from UKB British 14 

discovery GWAS were used as input. As suggested, we estimated the LD matrix using 15 

our training GWAS individuals. To validate previous findings reported in Zhao, et al. 25, 16 

we estimated the pairwise genetic correlation between DTI parameter values in 17 

previous GWAS and the UKB British GWAS with subjects not included in previous GWAS. 18 

We also estimated the replication slope53 between two groups of standardized effect 19 

sizes. We focused on previously reported top (P < 1 × 10-6) independent SNPs after 20 

LD-based clumping (window size 250, LD r2 = 0.01). Independent significant variants and 21 

all their tagged variants were searched by FUMA in the NHGRI-EBI GWAS catalog 22 

(version 2019-09-24) to look for previously reported associations (P < 9 × 10-6) with any 23 

traits. In our UKB British discovery GWAS data, we performed voxel-wise association 24 

analysis to illustrate spatial maps for several selected pleiotropic variants. The same set 25 

of covariates used in the above tract-based GWAS analysis were adjusted in this 26 

voxel-wise analysis.  27 

 28 

Genetic correlation estimation and validation. We used LDSC to estimate the pairwise 29 

genetic correlation between DTI parameters and other complex traits. The summary 30 

statistics of DTI parameters were from the UKB British discovery GWAS and the 31 

summary statistics of other traits were collected from publicly accessible data resources 32 
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listed in Supplementary Table 18. To replicate the significant associations, we reran 1 

LDSC using the meta-analyzed summary statistics from the five European validation 2 

GWAS. In addition, we also constructed PRS for other complex traits on each of the five 3 

validation datasets and tested whether the PRS had significant association with DTI 4 

parameters. We used the LD-based pruning (window size 50, step 5, LD r2 = 0.2) 5 

procedure to account for the LD structure in this cross-trait PRS analysis. We also 6 

applied the 17 GWAS P-value thresholds for variants selection and reported the smallest 7 

P-value observed in validation data. We applied the LCV108 (version 2019-03-14) to 8 

explore the genetical causal relationships between DTI parameters and other complex 9 

traits. We used meta-analyzed GWAS summary statistics and the pre-calculated LD 10 

scores provided by LDSC.  11 

 12 

Gene-level analysis. We first performed gene-based association analysis in UKB British 13 

discovery GWAS for 18,796 protein-coding genes using MAGMA110 (version 1.07). 14 

Default MAGMA settings were used with zero window size around each gene. We then 15 

carried out FUMA functional annotation and mapping analysis, in which variants were 16 

annotated with their biological functionality and then were linked to 35,808 candidate 17 

genes by a combination of positional, eQTL, and 3D chromatin interaction mappings. We 18 

chose brain-related tissues/cells in all options and used default values for all other 19 

parameters. For the detected genes in MAGMA and FUMA, we performed lookups in 20 

the NHGRI-EBI GWAS catalog (version 2020-02-08) again to explore their previously 21 

reported associations. We also applied H-MAGMA115 (version 2019-11-29) to perform 22 

Hi-C coupled gene-based association analysis by integrating Hi-C profiles from fetal and 23 

adult brain tissues150,151.  24 

 25 

Biological annotations. We performed heritability enrichment analysis via partitioned 26 

LDSC121. Baseline models were included when estimating the enrichment scores for our 27 

tissue type and cell type specific annotations. Methods to prepare in-house chromatin 28 

data of three glial cell subtypes and two neuronal cell subtypes can be found in the 29 

Supplementary Note. We performed gene property analysis for the 13 GTEx124 v8 brain 30 

tissues via MAGMA. Specifically, we tested whether the tissue-specific gene expression 31 

levels can be linked to the strength of the gene-trait association. In addition, we treated 32 
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DTI associated genes in MAGMA, H-MAGMA or FUMA analysis as an annotation and 1 

tested whether the heritability of other complex traits was enriched in this DTI 2 

annotation. MAGMA and DEPICT (version 1 rel194) were separately used to explore the 3 

implicated biological pathways. MAGMA gene-set analysis examined 5,500 curated gene 4 

sets and 9,996 Gene Ontology (GO) terms from the Molecular Signatures Database152 5 

(MSigDB, version 7.0) and DEPICT tested 10,968 pre-constructed gene sets using GWAS 6 

summary statistics with P-value < 10-5 as input. All other parameters were set as default.  7 

 8 

Code availability  9 

We made use of publicly available software and tools listed in URLs. Other codes used in 10 

our analyses are available upon reasonable request.  11 

 12 

Reporting summary 13 

Further information on research design is available in the Nature Research Reporting 14 

Summary. 15 

 16 

Data availability  17 

Our GWAS summary statistics have been shared at https://github.com/BIG-S2/GWAS. 18 

The individual-level raw data used in this study can be obtained from five publicly 19 

accessible data resources: UK Biobank (http://www.ukbiobank.ac.uk/resources/), ABCD 20 

(https://abcdstudy.org/), PING (https://www.chd.ucsd.edu/research/ping-study.html), 21 

PNC (https://www.med.upenn.edu/bbl/philadelphianeurodevelopmentalcohort.html), 22 

and HCP (https://www.humanconnectome.org/). Our results can also be easily browsed 23 

through our knowledge portal https://bigkp.web.unc.edu/.  24 
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Figure 1: SNP heritability estimates of 215 DTI parameters (n = 33,292 subjects) and illustration of
the top five FA principal components (PCs) of external capsule (EC). a)a)a) The 110 mean DTI parameters
and 105 FA PC DTI parameters are displayed on the left and right panels, respectively. The x-axis lists the names
of white matter tracts. b)b)b) The functional principal component (PC) loading coefficients for the top five FA PCs of
EC.
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Figure 2: Number of independent significant variants identified in UKB British discovery GWAS
at 2.3 × 10−10 significance level (n = 33,292 subjects). The first three rows are the number of independent
significant variants identified in each white matter tract by a)a)a) any DTI parameters; b)b)b) any FA parameters; c)c)c) FA
PC parameters, respectively. The last row d)d)d) displays the proportion of FA-associated variants that can only be
identified by PC parameters.
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Figure 3: The genomic region and brain spatial map of voxel-wise effect size patterns for four
selected pleiotropic variants (n = 33,292 subjects). We labeled previously reported GWAS variants for
other complex traits in genomic regions influencing white matter microstructure (left). In spatial maps (right), we
illustrate voxel-wise effect sizes of pleiotropic variants in white matter tracts.
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Figure 4: Selected pairwise genetic correlations between white matter microstructure and other
complex traits (n = 40,254 subjects). We adjusted for multiple testing by the Benjamini-Hochberg procedure
at 0.05 significance level (215 × 76 tests), while significant pairs are labeled with stars. Sample size and detailed
information of complex traits can be found in Supplementary Table 18.
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a

b c

Figure 5: Partitioned heritability enrichment analysis (n = 33,292 subjects). a)a)a) Heritability enrichment
in regulatory elements across tissues and cell types. Brain tissues are labelled in x-axis. b)b)b) Heritability enrichment
in regulatory elements of two brain cell types (neuron and glia) sampled from 14 brain regions. c)c)c) Heritability
enrichment in regulatory elements of glial cell subtypes (non-neuron, including oligodendrocyte and microglia &
astrocyte) and neuronal cell subtypes (neuron, including GABAergic and glutamatergic neurons).
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