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ABSTRACT 
Diffusion MRI techniques are widely used to study in vivo changes in the human brain connectome. 
However, to resolve and characterise white matter fibres in heterogeneous diffusion MRI voxels re-
mains a challenging problem typically approached with signal models that rely on prior information 
and restrictive constraints. We have recently introduced a 5D relaxation-diffusion correlation frame-
work wherein multidimensional diffusion encoding strategies are used to acquire data at multiple 
echo-times in order to increase the amount of information encoded into the signal and ease the con-
straints needed for signal inversion. Nonparametric Monte Carlo inversion of the resulting datasets 
yields 5D relaxation-diffusion distributions where contributions from different sub-voxel tissue en-
vironments are separated with minimal assumptions on their microscopic properties. Here, we build 
on the 5D correlation approach to derive fibre-specific metrics that can be mapped throughout the 
imaged brain volume. Distribution components ascribed to fibrous tissues are resolved, and subse-
quently mapped to a dense mesh of overlapping orientation bins in order to define a smooth orienta-
tion distribution function (ODF). Moreover, relaxation and diffusion measures are correlated to each 
independent ODF coordinate, thereby allowing the estimation of orientation-specific relaxation rates 
and diffusivities. The proposed method is tested on a healthy volunteer, where the estimated ODFs 
were observed to capture major WM tracts, resolve fibre crossings, and, more importantly, inform on 
the relaxation and diffusion features along distinct fibre bundles. If combined with fibre-tracking 
algorithms, the methodology presented in this work may be useful for investigating the microstruc-
tural properties along individual white matter pathways.   
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MAIN TEXT  

1 INTRODUCTION 
For decades, neuroscience has focused not only on unravelling the function of brain areas (Brodmann, 
1909; Zilles & Amunts, 2010), but also on the communication between these areas (Sporns, Tononi, 
& Kötter, 2005). Brain function fundamentally depends on the effective transport of information 
(Passingham, Stephan, & Kötter, 2002), and inter-individual functional differences may well arise 
from differences in composition and structure of the physical connections (Alexander-Bloch, Giedd, 
& Bullmore, 2013). Studying the constituents of the white matter (WM) that form these connections 
is therefore of paramount importance to understanding brain function in health, disease and develop-
ment. 
The advent of diffusion MRI techniques, which can probe structures at much smaller scales than the 
imaging resolution by virtue of sensing the random motion of water molecules, has undoubtedly in-
creased the interest in studying WM in the living brain. The possibility to derive quantitative features 
sensitive to tissue microstructure (Basser & Pierpaoli, 1996; Le Bihan, 1995), and to virtually recon-
struct brain connections with fibre-tracking algorithms (Basser, Pajevic, Pierpaoli, Duda, & Aldroubi, 
2000; Mori, Crain, Chacko, & Van Zijl, 1999) led to the quick adoption of diffusion MRI in many 
clinical research applications (Barnea-Goraly et al., 2004; Lebel, Walker, Leemans, Phillips, & 
Beaulieu, 2008; Lim et al., 1999; Werring, Clark, Barker, Thompson, & Miller, 1999). More recently, 
tractometry techniques have been developed to tease out WM pathways and characterize their indi-
vidual tissue microstructure by mapping sets of diffusion-derived parameters along the extracted 
tracks (Bells et al., 2011; Chamberland et al., 2019; De Santis, Drakesmith, Bells, Assaf, & Jones, 
2014; Rheault, Houde, & Descoteaux, 2017; Yeatman, Dougherty, Myall, Wandell, & Feldman, 
2012). Fibre-tracking techniques typically rely on the estimation of a fibre Orientation Distribution 
Function (ODF) per voxel, which is a function on the unit sphere representing the fraction of fibres 
in each direction (Dell’Acqua & Tournier, 2019; Tournier, 2019). It should be noted that the influence 
of the fibre ODF is distinct from the orientation distribution of the diffusion signal, and its extraction 
relies on assessing how tissue microstructure influences the measured MRI signal. 
Diffusion MRI studies of WM commonly assume that the voxel-level microstructural features can be 
adequately represented by a single signal response function (Dell’Acqua & Tournier, 2019; Novikov, 
Fieremans, Jespersen, & Kiselev, 2019). Under this assumption, the measured signal is written as the 
convolution between the fibre ODF and a kernel describing the signal response of a set of fibres with 
a common orientation. The simultaneous unconstrained estimation of the ODF and the microstruc-
tural kernel, however, has shown to be notoriously challenging for the diffusion MRI protocols typi-
cally used for in vivo research studies (Jelescu, Veraart, Fieremans, & Novikov, 2016). The complex-
ity of this problem is commonly reduced by imposing a set of priors and constraints. Spherical de-
convolution of the diffusion MRI signal (Anderson, 2005; Dell’Acqua et al., 2007; Dell’Acqua & 
Tournier, 2019; Jian & Vemuri, 2007; Tournier, Calamante, & Connelly, 2007; Tournier, Calamante, 
Gadian, & Connelly, 2004), for example, determines an empirical kernel for the whole brain repre-
senting the signal response of a single-fibre population and subsequently solves for the ODF. For 
heterogeneous voxels containing not only WM but also unknown amounts of grey matter (GM), cer-
ebrospinal fluid (CSF), or pathological tissue, this approach can yield biased ODF estimates.  
Multi-tissue spherical deconvolution (Jeurissen, Tournier, Dhollander, Connelly, & Sijbers, 2014) 
has been proposed to simultaneously resolve sub-voxel tissue fractions and the fibre ODF. While this 
technique can be used to separate the sub-voxel signal contributions from WM, GM, and CSF, it still 
assumes a single kernel for all voxels of a given tissue type, which needs to be calibrated a priori 
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(Tax, Jeurissen, Vos, Viergever, & Leemans, 2014). Inaccuracies of the calibrated kernels can further 
bias the estimated fractions and fibre ODFs (Guo et al., 2019; Parker et al., 2013). Alternatively, the 
voxel-wise kernel can be estimated by first factoring out the ODF through the computation of rota-
tional invariants, and then fitting the data to signal models that set a pre-defined number of micro-
scopic environments with potentially constrained diffusion properties (Kaden, Kelm, Carson, Does, 
& Alexander, 2016; Novikov et al., 2019; Novikov, Veraart, Jelescu, & Fieremans, 2018). However, 
different fibre populations within a voxel likely exhibit different microstructural properties (Aboitiz, 
Scheibel, Fisher, & Zaidel, 1992; De Santis, Assaf, Jeurissen, Jones, & Roebroeck, 2016; Howard et 
al., 2019; Scherrer et al., 2016), which cannot be reflected with a single voxel-wise kernel. It should 
furthermore be noted that transverse relaxation time T2 differences between distinct tissue types are 
often ignored, which can further bias the quantification of tissue fractions with a single fibre response 
kernel. The possible existence of a variation of T2 in anisotropic structures with respect to the orien-
tation of the main magnetic field B0 (Lindblom, Wennerström, & Arvidson, 1977), well known in 
studies of cartilage structure (Henkelman, Stanisz, Kim, & Bronskill, 1994) and more recently re-
ported in in vivo human WM studies (Gil et al., 2016; Knight, Wood, Couthard, & Kauppinen, 2015; 
McKinnon & Jensen, 2019), would introduce an additional T2 dispersion and further complicate the 
quantification of sub-voxel signal fractions. The possible existence of T2 differences between distinct 
fibre bundles has motivated the recent development of methods allowing for the measurement of 
fibre-specific estimates of the transverse relaxation time (de Almeida Martins & Topgaard, 2018; 
Ning, Gagoski, Szczepankiewicz, Westin, & Rathi, 2020; Schiavi et al., 2019). 
Inspired by multidimensional solid-state NMR methodology (Schmidt-Rohr & Spiess, 1994; 
Topgaard, 2017), we have introduced a framework to quantify the composition of each voxel with 
joint distributions of effective transverse relaxation rates R2 = 1/T2 and apparent diffusion tensors D 
(de Almeida Martins et al., 2020; de Almeida Martins & Topgaard, 2018). Specifically, the inclusion 
of diffusion MRI data measured with multidimensional diffusion encoding schemes (Topgaard, 2017) 
and different echo times was observed to alleviate the constraints needed to resolve sub-voxel tissue 
heterogeneity (de Almeida Martins et al., 2020). Capitalizing on these acquisitions, we quantified 
sub-voxel compositions using 5D discrete R2-D distributions retrieved from the data using a nonpar-
ametric Monte Carlo inversion procedure. However, visualising the retrieved sub-voxel information 
is challenging because of the high dimensionality of the distributions.  
The challenge of visualizing the intricate and comprehensive information within diffusion MRI da-
tasets is an active area of research (Leemans, 2010; Schultz & Vilanova, 2019) and very well estab-
lished visualization strategies exist to either convey the tensorial properties of a single voxel-averaged 
D (Kindlmann, 2004; Pajevic & Pierpaoli, 2000; Westin et al., 1999) or to visualize a continuous 
ODF (Peeters, Prckovska, Almsick, Vilanova, & Romeny, 2009; Schultz & Kindlmann, 2010; 
Tournier et al., 2004; Tuch et al., 2002). However, such techniques are not immediately applicable to 
the discrete multi-component distributions retrieved with our 5D correlation framework. Previously, 
we converted the retrieved distributions to sets of statistical parameter maps derived from either the 
entirety or sub-divisions (‘bins’) of the distribution space (de Almeida Martins et al., 2020; Topgaard, 
2019). In ref. (de Almeida Martins et al., 2020), the R2-D space was divided into three bins capturing 
different ranges of D eigenvalues in order to separate the signal contributions from microscopic tissue 
environments with distinct diffusion properties. Even though bin-resolved maps of signal fractions 
and means were observed to be useful to map sub-voxel heterogeneity throughout the imaged brain 
volume, they do not provide information on orientation-resolved properties. In this contribution, we 
demonstrate how R2-D distributions can be used to derive and visualize fibre-specific relaxation and 
diffusion metrics. This is done by extending the binning procedure to the space of D orientations, and 
mapping discrete P(R2,D) components to a spherical mesh representing a dense set of orientation 
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bins. The attained orientation-resolved information is then conveyed as maps of ODF glyphs that are 
colour-coded according to the underlying relaxation and diffusion properties; this greatly facilitates 
the inspection and interpretation of the orientational variation of the 5D P(R2,D). The representation 
of the high-dimensional information as colour-coded ODFs is furthermore compatible with 
tractography algorithms which hence allows the extension to visualisation of longer-range properties 
in 3D. 

2 METHODS 

2.1 Estimation of 5D relaxation-diffusion distributions 
In diffusion MRI, heterogeneous tissues can be described as a collection of microscopic tissue envi-
ronments wherein water diffusion is modelled by a local apparent diffusion tensor D. Within this 
multi-tensor approach, the diffusion MRI signal is approximated as a weighted sum of the signals 
from the individual microscopic tissue environments (Jian, Vemuri, Özarslan, Carney, & Mareci, 
2007; Novikov et al., 2019; Westin et al., 2016). A similar heterogeneous description has also been 
used in R2 studies of intra-voxel brain tissue structure (Does, 2018; MacKay et al., 2006). The trans-
verse relaxation signal of water within tissues is typically expressed as a multi-exponential decay, 
given by the Laplace transform of a probability distribution of R2 values (Kroeker & Mark 
Henkelman, 1986; Whittall & MacKay, 1989; Whittall et al., 1997). Each coordinate of the relaxation 
probability distribution characterizes the signal fraction of the microscopic environment with the cor-
responding R2 rate. Combining the relaxation and diffusion descriptions, the detected signal S(tE,b) 
can be written as 

𝑆(𝜏E,b) = 𝑆0 ∫ ∫ 𝑃 (𝑅2,D) 𝐾(𝜏𝐸 ,b, 𝑅2,D) dD d𝑅2
 

Sym+(3)
,

+∞

0

 (1) 

where P(R2,D) is the continuous joint probability distribution of R2 and D, tE denotes the echo-time, 
b is the diffusion-encoding tensor, and S0 is the signal amplitude at vanishing relaxation- and diffu-
sion-weighting, i.e. S0 = S(tE = 0, b = 0). The integration of D spans over the space Sym+(3) of 
symmetric positive semi-definite 3×3 tensors. The kernel K(tE,b,R2,D) encapsulates the signal decays 
mapping the distribution onto the detected signal.  
Constraining the integral in Eq. (1) to the space of axisymmetric diffusion tensors, each D can be 
parameterized by its axial and radial diffusivities, D|| and D^, and by the polar and azimuthal angles, 
q and f, that define its orientation. The D|| and D^ eigenvalues can in turn be combined to define 
measures of isotropic diffusivity Diso = (D|| + 2D^)/3 and normalized diffusion anisotropy DD = (D|| 
- D^)/(3Diso) (Eriksson, Lasič, Nilsson, Westin, & Topgaard, 2015). Using the popular approach of 
approximating the signal from each microscopic environment as an exponential decay (Dell’Acqua 
et al., 2007; Does, 2018; Jian et al., 2007; Kaden et al., 2016; MacKay et al., 2006; Novikov et al., 
2018; Scherrer et al., 2016; Tuch et al., 2002; Veraart, Novikov, & Fieremans, 2018; Westin et al., 
2016), considering only axisymmetric b, and adopting the (Diso,DD,q,f) parametrization,  Eq. (1) can 
be expanded as (de Almeida Martins & Topgaard, 2018) 

𝑆(𝜏E,b)
𝑆0

= ∫ ∫ ∫ ∫ ∫ 𝑃 (𝑅2, 𝐷iso, 𝐷Δ, 𝜃, 𝜙)𝐾(… ) d𝜙 sin 𝜃 d𝜃 d𝐷Δd𝐷isod𝑅2

2𝜋

0

𝜋

0

1

−1/2 

+∞

0

+∞

0

 , (2) 
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with 

𝐾(… ) = exp(−𝜏E𝑅2) exp(−𝑏𝐷iso[1 + 2𝑏Δ𝐷Δ𝑃2(cos 𝛽)]) , (3) 

where b = Tr(b) is recognized as the traditional b-value and bD denotes the normalized anisotropy of 
the diffusion-encoding tensor (Eriksson et al., 2015). P2(x) = (3x2-1)/2 is the second Legendre poly-
nomial, and b is the shortest angle between the symmetry axes of D and b. Note that each diffusion 
orientation (q,f) is associated to its own set of microscopic properties (R2,Diso,DD) and that no over-
arching microstructural kernel or universal orientation structure is assumed. This means that Eq. (2) 
allows for fibre populations with distinct R2-D properties. 
For numerical implementation, Eq. (2) is discretized as s = Kw, where s is the column vector of signal 
amplitudes measured with M combinations of (tE,b) values, K is the inversion kernel matrix, and w 
is a vector containing the weights wn of N discrete (R2,n,D||,n,D^,n,q n,f n) configurations. The estima-
tion of w can then be cast as a constrained linear least-squares problem 

 w = arg min
w≥0

||s − Kw||2
2 . (4) 

In practice, the argument-minimum operator in Eq. (4) is replaced by a softer condition that searches 
for a solution within the noise variance. While seemingly straightforward, the problem of finding a 
solution whose residuals are compatible with the experimental noise is a poorly conditioned one. 
Indeed, multiple distinct solutions can be found to fit a single noisy dataset. This has motivated the 
development of several regularization strategies in order to improve the stability of the inverse prob-
lem (Daducci et al., 2015; Mitchell, Chandrasekera, & Gladden, 2012; Provencher, 1982; Whittall & 
MacKay, 1989). A common strategy is to incorporate a regularization term that promotes either a 
smooth (Benjamini & Basser, 2017; Provencher, 1982; Slator et al., 2019; Venkataramanan, Song, & 
Hurlimann, 2002) or a sparse (Benjamini & Basser, 2016; Berman, Levi, Parmet, Saunders, & 
Wiesman, 2013; Urbańczyk, Bernin, Koźmiński, & Kazimierczuk, 2013) w solution at the expense 
of a higher residual error. 
Monte Carlo algorithms have been used in the porous media field as an alternative to conventional 
regularized approaches (de Almeida Martins & Topgaard, 2016, 2018; de Kort, van Duynhoven, 
Hoeben, Janssen, & Van As, 2014; Prange & Song, 2009). These algorithms purposely explore the 
variability between solutions and estimate an ensemble of distributions consistent with the experi-
mental data. In this work, we use an unconstrained Monte-Carlo algorithm specially designed to han-
dle high-dimensional correlation datasets (de Almeida Martins & Topgaard, 2018; Topgaard, 2019). 
The algorithm can be broadly divided in two iteration cycles. In the first cycle, the proliferation cycle, 
a user-defined Nin number of points is randomly selected from the (log(R2),log(D||),log(D^),cosq,f) 
space, and the corresponding set of weights is found by solving Eq. (4) via a non-negative linear least-
squares algorithm (Lawson & Hanson, 1974); points with non-zero weights are stored and merged 
with a newly-generated random set. This procedure is repeated for a total of Np times, and Np random 
sets of (R2,n,D||,n,D^,n,q n,f n) components are sampled in order to find a configuration yielding suffi-
ciently low residuals. The resulting {(R2,n,D||,n,D^,n,q n,f n)} configuration is stored, duplicated, and 
its duplicate is then subjected to a small random perturbation. This initiates the second iteration cycle, 
named mutation cycle, wherein configurations compete with their perturbed counterparts on the basis 
of lowest sum of squared residuals. The mutation cycle comprises a number of Nm rounds, following 
which a possible solution is estimated by selecting the points with the N highest weights. In this work 
we sampled Nin = 200 points from the (0 < log(R2 / s-1) < 1.5, -11.3 < log(D|| / m2s-1) < -8.3, -11.3 < 
log(D^ / m2s-1) < -8.3, 0 < cosq < 1, 0 < f < 2p) space, and used Np = 20, Nm =20 , and N = 20. This 
inversion was performed voxel-wise and bootstrap with replacement was used in order to estimate 
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per-voxel ensembles of Nb = 96 solutions, each of which consisting of 20 (R2,n,D||,n,D^,n,qn,fn) com-
ponents, {(R2,n,D||,n,D^,n,q n,fn)}1£n£N=20, and their respective wn weights.  

2.2 Resolution of sub-voxel fibre components 
Spatially-resolved 5D R2-D distributions were estimated using the procedure described in the previ-
ous section. As the main brain components – white matter (WM), grey matter (GM), and cerebrospi-
nal fluid (CSF) – are characterized by clearly distinct diffusion properties, we expect most 
(R2,n,D||,n,D^,n,q n,f n) components to agglomerate within three distant regions of the diffusion space 
(Pierpaoli, Jezzard, Basser, Barnett, & Di Chiro, 1996). 
The idea that most P(R2,D) components will fall within three coarse regions has inspired the division 
of the R2-D space into three smaller subsets (‘bins’)  based on the diffusion properties of WM, GM, 
and CSF (de Almeida Martins et al., 2020). We then defined three bins named ‘thin’ (0.6 < log(D||/D^) 
< 3.5, –10 < log(Diso/m2s-1) < –8.7, –0.5 < log(R2/s-1) < 2), ‘thick’ (–3.5 < log(D||/D^) < 0.6, –10 < 
log(Diso/m2s-1) < –8.7, –0.5 < log(R2/s-1) < 2), and ‘big’ (–3.5 < log(D||/D^) < 3.5, –8.7 < log(Diso/m2s-

1) < –8, –0.5 < log(R2/s-1) < 2). The names of the different bins highlight the geometry of the D 
captured by each one of them. For each bootstrap realization nb (1 £ nb £ Nb), signal contributions 
from anisotropic tissues are resolved by selecting the set of P(R2,D) components that fall within the 
‘thin’ bin: 

ℇ!b
thin = #$R2,i,D∥,i,D',i, θi,ϕi,wi()i∈{nb,thin}

	. (5) 

The {(R2,i,D||,i,D^,i,q i,f i)}iÎ{nb,thin} configurations and {wi}iÎ{nb,thin} weights of ℇ𝑛b
thin are interpreted 

as representing the R2-D properties and signal fractions, respectively, of a discrete set of sub-voxel 
fibre populations. The binning and anisotropic selection processes are illustrated in panels A and B 
of Figure 1. 
 

2.3 ODF estimation 
 
The colour-coded 3D scatter plots of R2, Diso, and D||/D^ displayed in Figure 1 allow the visualization 
of the full set of properties of the voxel-wise ℇ𝑛b

thin components. Despite its usefulness, the scatter plot 
representation concentrates points corresponding to anisotropic components within a small region of 
the (R2, Diso, D||/D^) space, which in turn makes it difficult to evaluate their orientation properties in 
detail. For example, while Figure 1A clearly informs on the existence of two fibre populations ori-
ented along two different directions (red and green points), it does not provide unambiguous infor-
mation about the relative signal contributions of the two populations. To better inspect the orienta-
tional information of the underlying P(R2,D), it is helpful to convert the discrete set of fibre orienta-
tions to a continuous object informing on the R2-D probability density in each direction, which can 
then be visualized as a single glyph with an intuitive geometrical interpretation. To achieve that, we 
used a 1000-point triangle mesh on the unit sphere, created via an electrostatic repulsion scheme (Bak 
& Nielsen, 1997; Jones, Horsfield, & Simmons, 1999), to create 1000 orientation bins; the mesh 
vertices define the centres of (q,f) bins without clearly defined boundaries. The median angular 
distance between nearest-neighbouring mesh points (or bin centres) is approximately 7°. Afterwards, 
a smoothing kernel was used to map the weights of ℇ𝑛b

thin onto the dense set of (q,f) bins. The role of 
the smoothing kernel is to weight the influence of each bin according to the angular distance between 
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its centre and a given ℇ𝑛b
thin  component, and to distribute the contributions of each discrete 

{wi}iÎ{nb,thin} throughout various bins in order to define a smooth Orientation Distribution Function 
(ODF) Pnb(q,f) that can be straightforwardly visualized as a polar plot (Leemans, 2010; Schultz & 
Vilanova, 2019). 
In this work, the orientation binning and consequent estimation of Pnb(q,f) was performed through a 
convolution with a Watson distribution kernel (Mardia & Jupp, 2009; Watson, 1965):  

𝑃𝑛b
(𝜃, 𝜙) = ∑ 𝑤𝑖

𝑖∈ℇ𝑛b
thin

exp[𝜅(μ(𝜃, 𝜙) ⋅ u𝑖)2] , (6) 

where ui is the unit vector describing the orientation of the i-th discrete component and µ (q,f) is the 
unit mean direction vector of bin centre (q,f). The variable k denotes a concentration parameter that 
regulates the amount of dispersion about µ (q,f). Further insight onto the nature of the Watson distri-
bution kernel and the role of parameter k is attained by considering the small-angle approximation of 
the former  

exp[𝜅 cos2 b]  =
b→0

exp[𝜅] exp[−𝜅b2] , (7) 

where b is the shortest angle between unit vectors u and µ. Within this approximation, the Watson 
kernel is rewritten as a familiar Gaussian smoothing kernel whose standard deviation, s, defines an 
angular spreading that is directly related to the concentration parameter k, s = (2k)–1/2. The relation-
ship between k and s enables us to easily set a dispersion factor in relation to the angular distance of 
the various mesh points. To cover the minimum angular distance between mesh points, we set s to 
be 50% higher than the median angular distance between nearest-neighbouring mesh points, i.e. 
s = 10.5° or, equivalently, k = 14.9. The rationale behind our choice of k is elaborated upon in section 
3.1.  
Separate ODFs were calculated for each of the Nb = 96 bootstrapped P(R2,D) solutions; the final 
P(q,f) was then estimated as the median of the Nb independent ODFs: 

𝑃 (𝜃, 𝜙) = Med
𝑛b

[𝑃𝑛b
(𝜃, 𝜙)] . (8) 

As the orientation of each fibre solution is correlated to a given set of {R2,n,D||,n,D^,n} coordinates, 
we can assign any statistical descriptor of the (R2,Diso,DΔ) space to the various coordinates of P(q,f). 
In line with previous works (de Almeida Martins et al., 2020; Topgaard, 2019) where R2-D were 
converted into bin-resolved mean maps of R2, Diso, and DΔ2, we map mean values of R2, Diso, and DΔ2 
into the ODF mesh. The mean value of X = T2, R2, Diso, or DD2 per mesh orientation for each bootstrap 
nb, Ênb[X](q,f), is calculated as 

Ê𝑛b
[𝑋](𝜃, 𝜙) = 1

𝑃𝑛b
(𝜃, 𝜙) ∑ 𝑤𝑖𝑋𝑖

𝑖∈ℇ𝑛b
thin

exp[𝜅(μ(𝜃, 𝜙) ⋅ u𝑖)2] . (9) 

By mapping different descriptors of the R2-D distributions to specific ODF coordinates, we can vis-
ualize orientation-specific information on tissue composition and structure. As before, the final voxel-
wise Ê[X](q,f) is estimated as the median of the individual per-bootstrap Ênb[X](q,f) values: 
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Ê[𝑋](𝜃, 𝜙) = Med
𝑛b

[Ê𝑛b
[𝑋](𝜃, 𝜙)] ≡ Ê[𝑋]. (10) 

For compactness, we omit the explicit (q,f) dependence from the orientation-resolved means and 
simply denote them as Ê[X]. The Ê[DΔ2] metric provides orientation-resolved information on the 
underlying mean-diffusivity. The Ê[DΔ2] metric is the orientation-resolved counterpart of the mean 
DΔ2 descriptor (Topgaard, 2019), which is in turn similar to previously introduced anisotropy 
measures such as the microscopic anisotropy index (MA) (Lawrenz, Koch, & Finsterbusch, 2010), 
the fractional eccentricity (FE) (Jespersen, Lundell, Sønderby, & Dyrby, 2013), and the microscopic 
fractional anisotropy (μFA) (Lasič, Szczepankiewicz, Eriksson, Nilsson, & Topgaard, 2014). 
The mapping of P(R2,D) components to a dense mesh as described by equations (6)-(10) is a key 
result from this contribution, and provides the basis for extracting and visualizing orientation-re-
solved information from nonparametric R2-D distributions. Figure 1C illustrates how both Ê[X] and 
the associated orientation distribution can be conveniently represented by colour-coded ODF glyphs; 
the shape of the glyph reflects the P(q,f) distribution, while the colour informs on the Ê[X] values at 
the various (q,f) points. Functions used to compute the colour-coded ODFs have been incorporated 
in the multidimensional diffusion MRI toolbox (Nilsson et al., 2018): 
https://github.com/JoaoPdAMartins/md-dmri. In this work, maps of ODF glyphs were computed us-
ing those same functions and rendered with POV-Ray (http://www.povray.org/). 
The local maxima of the computed ODFs can be used to estimate “peaks” providing information on 
the main orientations of the sub-voxel diffusion pattern. The peaks provide a rough and easily acces-
sible measure of the orientation and R2-D properties of different ODF lobes and can consequently be 
used to assess the properties of the various fibre populations. Here, up to four peaks per voxel were 
determined by assessing the mesh points (q,f) for which P(q,f) is a local maximum and 
P(q,f)/max(q,f)[P(q,f)] ³ 0.1. The R2-D properties of the ODF peaks were estimated by calculating 
Ê[X] (see Eq. (9)) for each peak orientation.	 

2.4 In vivo data acquisition 
Multidimensional relaxation-diffusion MRI data were acquired using a prototype spin-echo diffusion 
weighted sequence with an echo-planar imaging (EPI) readout, customized for diffusion encoding 
with user-defined gradient waveforms (Lasič et al., 2014; Szczepankiewicz, Sjolund, Stahlberg, Latt, 
& Nilsson, 2019). Images were recorded with the following parameters: TR = 4 s, FOV = 
234×234×60 mm3, voxel-size=3×3´3 mm3, partial-Fourier = 6/8, and a parallel-imaging (GRAPPA) 
factor of 2. Diffusion encoding was performed with a set of five gradient waveforms yielding b-
tensors with four distinct “shapes” (bD =  -0.5, 0.0, 0.5, and 1) (Eriksson et al., 2015). The various 
waveforms were used to probe b-tensors of varying magnitude b, anisotropy bD, and orientation (q,f) 
at different echo-times tE; this procedure yields 5D relaxation-diffusion correlated datasets whose 
dimensions match those of the sought-for distributions. Readers interested in the sequence used in 
this work are directed to a public repository: https://github.com/filip-szczepankiewicz/fwf_seq_re-
sources. 
Figure 2 displays the waveforms used in this work and Table 1 summarizes the (tE,b) acquisition 
protocol. Besides the (tE,b) points detailed in Table 1, we additionally acquired b = 0 images with 
reversed phase-encoding blips at tE = 60, 80, 110, and 150 ms in order to correct for susceptibility-
induced distortions (Andersson, Skare, & Ashburner, 2003). The acquisition scheme comprised a 
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total of 686 (tE,b) acquired over an imaging session of ~45 mins. The asymmetric waveforms giving 
bD = -0.5, 0.0, and 0.5 were calculated with a MATLAB package (https://github.com/jsjol/NOW) 
that optimizes for maximum b (Sjölund et al., 2015) and minimizes the effects of concomitant mag-
netic field gradients (Szczepankiewicz, Westin, & Nilsson, 2019). Linearly encoded (bD = 1) data 
was acquired with two different gradient waveforms: a non-monopolar gradient waveform and a 
standard Stejskal-Tanner waveform (Stejskal & Tanner, 1965). The asymmetric gradient pulses from 
the non-monopolar waveform were manually designed with the aim of minimizing the differences 
between the spectral profile of that bD = 1 waveform and the spectral profile of the bD ¹ 1 waveforms 
(Lundell et al., 2019). The Stejskal-Tanner design was used to probe a shorter tE and higher b-values 
(b = 4·109 m-2s) than those achievable with the non-monopolar bD = 1 waveform. While the measured 
apparent diffusivities are known to be related to the frequency spectra of the gradient waveforms 
(Callaghan & Stepišnik, 1996; Lundell et al., 2019; Stepišnik, 1993), such a relationship is likely to 
have a negligible effect on healthy human brain data acquired with the limited range of frequency 
contents probed in this work (Szczepankiewicz, Lasič, et al., 2019) and no biases are expected to 
originate from the spectral differences of the bD = 1 waveforms. 
The protocol described above was implemented on a 3T Siemens MAGNETOM Prisma scanner (Sie-
mens Healthcare, Erlangen, Germany) and used to scan a healthy adult volunteer. This study was 
approved by the Cardiff University School of Psychology ethics committee, and informed written 
consent was obtained prior to scanning. 
 
Table 1 5D relaxation-diffusion correlation protocol used in this work. 

 tE (10-3 s) b-values (109 m-2s) #directions/b-value Number of 
points 

bD = 1, ST 60 0.0, 0.1, 0.7, 1.4, 2.0 6, 6, 12, 30 a 54 
bD = 1, ST 80 0.0, 0.1, 0.8, 2.0, 4.0 6, 6, 16, 50 a 78 
bD =  1 80, 110, 150 0.0, 0.1, 0.7, 1.4, 2.0 6, 6, 12, 30 a,b 162 
bD =  0.5 80, 110, 150 0.0, 0.1, 0.7, 1.4, 2.0 6, 6, 10, 16 a,b 114 
bD =  0 80 0.0, 0.3, 1.0, 2.0 6, 6, 6 c 108 
bD =  0 80, 110, 150 0.0, 0.1, 0.7, 1.4 4, 4, 4 b 36 
bD =  -0.5 80, 110, 150 0.0, 0.1, 0.7, 1.4, 2.0 6, 6, 10, 16 a,b 114 
a Directions generated using electrostatic repulsion on the half-sphere (Bak & Nielsen, 1997; Jones 
et al., 1999) 
b Repeated for all tE values 
c Repeated for six different permutations of the [Gx,Gy,Gz] components of the bD = 0 waveform 

 

2.5 Post processing 

The entire dataset was divided in tE-specific data subsets, which were denoised using random matrix 
theory (Veraart et al., 2016), and corrected for Gibbs ringing artefacts using the method described in 
(Kellner, Dhital, Kiselev, & Reisert, 2016). Signal drift correction was subsequently performed as 
detailed in ref. (Vos et al., 2017). The acquired data were further corrected for subject motion and 
eddy-current artefacts using ElastiX (Klein, Staring, Murphy, Viergever, & Pluim, 2009) with ex-
trapolated references (Nilsson, Szczepankiewicz, van Westen, & Hansson, 2015) as implemented in 
the multidimensional diffusion MRI toolbox (Nilsson et al., 2018); this procedure was performed 
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with the default settings of the toolbox to the entire (tE,b) dataset. Susceptibility-induced geometrical 
distortions were corrected using the TOPUP tool in the FMRIB software library (FSL) (Smith et al., 
2004), with the same settings being applied to the entire (tE,b) dataset. 
 

2.6 In silico datasets 
The angular resolution of our acquisition and analysis protocols was investigated using in silico data. 
We simulated a two-component system designed to mimic two fibres with similar diffusion features 
but distinct R2 rates: 

• Component 1: T2 = 1/R2 = 60 ms, Diso = 0.75·10–9 m2s–1, DD = 0.9, w = 0.5; 
• Component 2: T2 = 1/R2 = 100 ms, Diso = 0.75·10–9 m2s–1, DD = 0.9, w = 0.5. 

The orientation of component 1 was kept constant (q = 0, f = 0), while that of component 2 was 
varied in order to define four distinct crossing angles: (q = 25°, f = 0), (q = 30°, f = 0), (q = 35°, f = 
0), and (q = 40°, f = 0).  
The ground-truth signal data for the four fibre-crossing systems were generated using the (tE,b) ac-
quisition scheme indicated in Table 1 and computed from Equation (2). Gaussian distributed noise 
with an amplitude of 1/SNR was added to the ground-truth signals in order to simulate the effects of 
experimental noise. The experimental SNR, computed as the mean-to-standard-deviation-ratio of bD 
= 0 data acquired at b = 0.3·109 m–2s and tE = 80 ms (Szczepankiewicz, Sjolund, et al., 2019), was 
estimated to SNR = 72 ± 28 for WM regions. Consequently, we defined SNR = 70 for the in silico 
calculations, a value that is compatible with the SNR of the in vivo data. In line with a recent in silico 
study of the performance of the Monte Carlo algorithm in inverting multidimensional diffusion data 
(Reymbaut, Mezzani, de Almeida Martins, & Topgaard, 2020), we drew 100 independent noise con-
figurations and computed 100 different signal realizations for each of the four fibre-crossing systems. 
The various signal realizations were inverted using the Monte-Carlo algorithm described in section 
2.1, and the resulting solution ensembles were subsequently compared against the corresponding 
ground-truth systems. 

3 RESULTS & DISCUSSION 

3.1 Defining the dispersion factor of the Watson kernel 
As mentioned in section 2.3, the use of a Watson kernel introduces an artificial angular dispersion to 
the inverted ℇ𝑛b

thin components. The amount of angular dispersion is regulated by the user-defined pa-
rameter k, and is introduced to assure that the discrete {wi}iÎ{nb,thin} weights do not fade between the 
intervals of the µ (q,f) mesh. To understand the smoothing effects of the Watson kernel over a discrete 
mesh, it is instructive to consider the decay of the Watson function over a given angular distance Db : 
n = (exp[k cos2 Db ] - 1)/ (exp[k] - 1). Considering a 1000-point mesh and k = 14.9, the values used 
for the in vivo data analysis, the maximum distance between an arbitrary {q i,f i}iÎ{nb,thin} configura-
tion and the nearest mesh point is ~3.5°, a value for which the Watson kernel retains n = 0.95 of its 
maximal influence. The minimal decay of the Watson kernel over Db = 3.5° ensures that the set of 
ℇ𝑛b

thin discrete components is indeed mapped into the mesh. From Equation (7) it is additionally obvi-
ous that the choice of k is a trade-off between a sufficiently smooth ODF representation and the 
angular resolution of the ODF in disentangling different peaks. The question then arises whether 
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setting k = 14.9 may over-smooth the orientational information within the R2-D distributions. For 
instance, with k = 14.9 the Watson kernel will retain more than 50% (n = 0.64) of its maximum value 
over a distance of Db = 10°, meaning that 20° crossings cannot be resolved with our settings. To 
assess if the amount of k -generated dispersion is sufficiently low not to misrepresent the orientational 
information of the R2-D distributions, we investigated in silico the angular resolution of the Monte 
Carlo analysis.  
The angular resolution of our framework was assessed by inverting in silico data from two anisotropic 
components crossing at various angles (see section 2.6 for further details). The (R2,q) projections of 
the attained R2-D distributions are displayed in Figure 3A and inform that, at the SNR of the in vivo 
data, crossings of 30° or higher can be directly resolved in the Monte Carlo P(R2,D). Setting equal 
R2 (T2 = 1/R2 = 60 ms) properties for both anisotropic components or adding a third isotropic com-
ponent (T2 = 1/R2 = 500 ms, Diso = 2·10–9 m2s–1, DD = 0) with a total signal fraction of up to 0.2 did 
not affect the angular resolution of the 30° crossing, but lead to an underestimation of the signal 
fraction from the q = 30° fibre population. The accurate resolution of the 35° and 40° systems was 
unaffected by changes in component R2 or the introduction of the fast-diffusing component. The in 
silico results then suggest that the maximum achievable angular resolution of our experimental pro-
tocol is between 30° and 35°, and a conservative approach is to set k so that 35° crossings are not 
over-smoothed and obscured. Computing ODFs for the in silico distributions confirms that setting 
k = 14.9 is indeed sufficient to resolve a 35° crossing (see Figure 3B). While there is room to increase 
k without risking ℇ𝑛b

thin disappearing though the holes of the mesh, we observe that a significantly 
sharper Watson kernel leads to narrow ODF lobes that do not accurately portray the angular disper-
sion of the underlying R2-D distributions (compare panels A and B of Figure 3). Moreover, signifi-
cantly higher k values were tested in the in vivo dataset and observed to lead to non-smooth ‘spiky’ 
ODFs in voxels containing orientationally dispersed fibres. 
 

3.2 In vivo fibre orientations 
Previous work from our group (de Almeida Martins et al., 2020) has shown that pure component 
voxels containing either WM, GM, or CSF give rise to clearly distinctive R2-D distributions that 
accurately capture the main microscopic features of the various tissues – CSF: high isotropic diffu-
sivity Diso, low normalized diffusion anisotropy DΔ, low R2; WM: low Diso, high DΔ, high R2; GM: 
low Diso, low DΔ, high R2. Voxels comprising mixtures of GM, WM, and GM are in turn characterized 
by multimodal distributions that exhibit a linear combination of properties of the distributions from 
the individual components. Figure 1A displays the distribution obtained from a voxel containing both 
CSF and contributions from two WM tracts: the corpus callosum (CC) and the fornix. Three distinct 
tissue environments can be clearly discerned in the displayed distribution: an isotropic fast diffusing 
component attributed to CSF and two anisotropic slow diffusing components with different orienta-
tions corresponding to the WM tracts. By ascribing distribution points to one of the three bins dis-
cussed in the Methods section we were able to separate and quantify the signal contributions from 
distinct brain tissues. Indeed, as shown in Figure 1B, the signal fractions from the various bins follow 
the expected spatial distributions of WM, GM, and CSF. 
Figure 4 displays the ODFs computed from the components that fall within the ‘thin’ bin. The ODFs 
are displayed as directionally-coloured glyphs, superimposed on the sum of the signal fractions from 
the ‘big’ and ‘thick’ populations. Overall, the reconstructed ODFs are consistent with the expected 
WM arrangement of the healthy human brain. Major WM tracts such as the corticospinal tract (CST), 
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the CC, and the superior longitudinal fasciculus (SLF) are easily located in the displayed figure (see 
arrows in Figure 4), and multiple crossings can also be discerned. The zoomed panels show that the 
proposed method can capture the crossings in the ventral SLF – anterior-posterior fibres with left-
right fibres – and the crossings between the CST and the CC –superior-inferior fibres with left-right 
fibres. The dotted boxes show that three-fibre crossings present in the centrum semiovale are well 
captured by this technique, meaning that more than two fibre populations can be resolved. 
Voxels at the WM-CSF and WM-GM interfaces exhibit small-amplitude ODFs, consistent with lower 
signal fractions of fibrous tissue. The low amplitude of the ODF lobes found in those regions does 
not seem to bias their orientation; for example, CC voxels near the ventricles yield low amplitude 
lobes whose orientations follow the expected trend (fibres running left-right). These observations 
indicate that the estimated ODFs are robust to partial volume effects with CSF and that the proposed 
method can indeed resolve fibre orientations in heterogeneous voxels. In silico calculations show that 
an accurate ODF can be estimated as long as the contribution from CSF accounts for less than 75% 
of the total voxel-signal.  Low-amplitude ODF lobes can also be found throughout cortical GM re-
gions. These ODFs might be explained by the presence of anisotropic tissue components in cortical 
GM (Assaf, 2019), or interpreted as originating from low-amplitude WM partial volume effects 
caused by the large voxel-size used in this study. A more in-depth study than the one presented in 
this contribution is necessary in order to unambiguously discriminate between these two factors. 

3.3 In vivo orientation-resolved R2-D metrics 

The relaxation and diffusion features from different fibres can be investigated by using Eq. (9) to map 
R2-D metrics onto the ODF mesh and define orientation resolved means, Ê[X]. The estimated Ê[X] 
values are then visualized as colour-coded ODF glyphs such as the ones displayed in Figure 5, which 
inform on the correlations between D orientation and R2, Diso, or DD2. The displayed ODF maps 
capture the expected diffusion properties of healthy WM, namely a constant Ê[Diso] ~ 1´10-9 m2s-1 
and a high anisotropy Ê[DD2] ~ 0.7. The anisotropy metric Ê[DD2] is found to be unaffected by the 
presence of fibre crossings (see lower right panel of Figure 5); this is in contrast to the widely popular 
Fractional Anisotropy (FA) metric, which is highly dependent on the degree of orientational order 
(Basser & Pierpaoli, 1996). Significantly lower Ê[DD2] values are found at WM-GM interfaces, an 
observation that indicates the presence of tissue components with a lower diffusion anisotropy than 
that of components within pure WM voxels. Finally, we would like to note that glyphs close to ven-
tricles do not reveal an increased Diso or decreased R2, thus evidencing the successful resolution of 
signal contributions from distinct tissue components. 
Focusing on the Ê[R2]-coloured ODFs shown in the left side panels of Figure 5, we find a population 
of fibres with considerably high Ê[R2] values in the midbrain region (see dashed box in the top left 
map of Figure 5). The fast-relaxing ODFs can be attributed to the myelinated axons that traverse the 
globus pallidus, an iron-rich basal ganglia structure that is characterized by particularly high R2 val-
ues (Hasan, Walimuni, Kramer, & Narayana, 2012; Knight et al., 2015). Not accounting for their 
significantly different R2 would then lead to an underestimation of the signal fraction of those high-
R2 anisotropic components. Moreover, acquiring diffusion-weighted data measured at a single rela-
tively high tE could even obscure the presence of anisotropic tissues in the pallidum. 
To explore a possible angular dependence of the R2-D metrics from different fibre populations, we 
computed peak-specific Ê[X] values and compared them against their respective q coordinates. The 
results are displayed in Figure 6, where no clear relationship between Ê[X] and peak orientation was 
observed for any of the extracted metrics. This observation is in contrast with previous in vivo brain 
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MRI studies where a relationship between the R2 rates of myelinated fibres and their orientation rel-
ative to B0 (Gil et al., 2016; Knight et al., 2015; McKinnon & Jensen, 2019) has been reported. In 
particular, Gil and co-workers (Gil et al., 2016) have estimated an angular variation of DR2 ~ 1.5 s-1 
for healthy WM tissue. Figure 3A shows that the uncertainty of the Monte Carlo analysis procedure 
can introduce R2 differences of up to DR2 ~ 2.4 s-1 within a single fibre population; this suggests that 
a subtle R2 variation is very challenging to resolve with our minimally constrained approach and 
explains the approximately constant trend observed in Figure 6 for the Ê[R2] and Ê[T2] metrics. To 
better assess the minimum R2 uncertainty of our analysis protocol, we focused on individual CC 
voxels yielding single-lobe ODFs and computed the interquartile range of mean R2 values computed 
from different bootstrap ℇ𝑛b

thin components. Such procedure yielded interquartile ranges of 1.5–2.5 s-

1 for the various CC voxels, providing further evidence that the R2 uncertainty of a single fibre pop-
ulation determined through the Monte Carlo inversion is on the same order of magnitude as the R2 
orientational effects reported in ref. (Gil et al., 2016).  
Despite the fact that no global R2(q) behaviour could be teased out, the proposed method allowed the 
detection of relaxation differences between distinct WM tracts. As shown in Figure 7, these differ-
ences are best visualized in a T2 scale spanning a more constrained interval of values than the R2 scale 
used in Figure 5. Inspection of Figure 7 reveals that both the CST and the forceps major tracts are 
characterized by considerably higher Ê[T2] (lower Ê[R2]) values. These observations are in accord-
ance with the results of (Lampinen et al., 2020), where larger T2 times were consistently found in the 
CST. The higher T2 of the CST is also observed in voxels containing fibre crossings, with Ê[T2] 
differences being discerned between the ODF lobes corresponding to the CST and the lobes that 
capture fibre populations from other tracts (see bottom right panels of Figure 7). While the exact 
mechanisms driving the high T2 values found in the CST and the forceps major are still unclear, it is 
worth mentioning that these tracts are known to feature higher-than-average fractions of both myelin 
water (Coelho, Pozo, Jespersen, & Frangi, 2019) and large axons (Dell’Acqua et al., 2019). 
While useful for visualization purposes, the colour-coded glyphs derived in this work are however 
impractical for quantifying the dispersion of R2-D descriptors within a given ODF lobe. For example, 
the in silico distributions from Figure 3A demonstrate that a single fibre population may comprise a 
dispersion of T2 values that cannot be accounted for by simply computing the Ê[T2] value of the 
associated ODF peak. In this regard, we suggest using the ODFs and corresponding peaks as a guide 
to define additional bins in the (q,f) space and to subsequently assign the voxel-wise ℇ𝑛b

thin compo-
nents into the various orientation-resolved bins. Once the orientation bins have been defined and the 
ℇ𝑛b

thin components assigned, orientation-specific statistical metrics and uncertainty measures can be 
estimated by exploring the variability of components within a given (q,f)-bin. An illustration of this 
procedure is presented in Figure 8 for an SLF voxel comprising two crossing fibres. There, the (q,f)-
space was divided into four quadrants centred around the extracted ODF peaks; average and disper-
sion measures were then calculated as the median and interquartile range of the ℇ𝑛b

thin components 
falling within each quadrant.  
The procedure depicted in Figure 8 showcases the potential of using P(R2,D) distributions to extract 
the average and variance of fibre-specific metrics. In a preliminary work (Reymbaut, de Almeida 
Martins, et al., 2020), we combine the presented ODF framework with density-based clustering algo-
rithms (Rodriguez & Laio, 2014) in order to sort ℇ𝑛b

thin into different fibre populations and then calcu-
late fibre-specific statistical metrics from the clustered P(R2,D) components. 
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4 CONCLUSION 
 
This work presents analysis protocols to estimate and visualize orientation-resolved R2-D metrics in 
the living human brain. We build on a recently developed 5D relaxation-diffusion correlation frame-
work where sub-voxel heterogeneity is resolved with nonparametric P(R2,D) distributions (de 
Almeida Martins et al., 2020), and convert the retrieved distributions to ODF glyphs informing on 
the relaxation-diffusion features along different orientations by mapping discrete P(R2,D) compo-
nents to a dense mesh of (q,f) bins. Directionally-coloured ODFs estimated in such way were ob-
served to capture fibre crossings in major WM tracts such as the CC, the CST, or the SLF. Similarly, 
arrays of T2-, R2-, Diso-, and DΔ2-coloured ODF glyphs were observed to facilitate a clean and compact 
visualization of the R2-D properties of anisotropic tissues. Maps of relaxation-coloured ODF also 
enabled the identification of fast-relaxing anisotropic components in the globus pallidus and the ob-
servation of long T2 times in the CST and the forceps major. 
The proposed framework relies 5D R2-D distributions that provide a clean 3D mapping of the signal 
contributions from different sub-voxel tissue environments and allow the estimation of relaxation or 
diffusion differences between distinct fibre populations. Moreover, the P(R2,D) are retrieved from 
the data without the need to a priori fix signal response functions or formulating assumptions about 
the number of microscopic tissue components. This is in contrast with traditional (Anderson, 2005; 
Dell’Acqua et al., 2007; Dell’Acqua & Tournier, 2019; Jian & Vemuri, 2007; Tournier et al., 2007; 
Tournier et al., 2004) or multi-tissue (Jeurissen et al., 2014) spherical deconvolution approaches, 
which assume a single response function for WM tissue and do not accommodate for microstructural 
differences across fibres. The caveat is that the proposed method hinges on signal acquisition in a 
high dimensional space in order to better capture the signal contrast between environments with dif-
ferent MR properties (Topgaard, 2019); a comprehensive sampling of such space in turn introduces 
acquisition times that are longer than the ones currently used in spherical deconvolution protocols. 
However, there is potential to reduce the scan time either by using multi-band acquisition schemes 
(Barth, Breuer, Koopmans, Norris, & Poser, 2016) or designing more abbreviated acquisition proto-
cols. Recent advances in nonparametric protocol optimization (Bates, Daducci, & Caruyer, 2019; 
Song & Xiao, 2020) are expected to facilitate a reduction of the measured data points while keeping 
a good performance of the Monte Carlo inversion procedure. Protocol optimization strategies can 
additionally be used to maximise the angular coverage of the acquisition scheme and hopefully in-
crease the angular resolution of the retrieved distributions (Caruyer et al., 2011). 
The information retrieved with the presented methodology can serve as an input for fibre tracking 
algorithms and used to extract individual WM pathways. If combined with tractometry frameworks 
(Bells et al., 2011; Chamberland et al., 2019; De Santis et al., 2014; Rheault et al., 2017; Yeatman et 
al., 2012), the correlations across the R2-D space would allow a comprehensive inspection of the 
relaxation and diffusion properties along a given WM tract. Since no universal signal response kernels 
are assumed, microstructural differences between tracts can be investigated and teased out. This fea-
ture is particularly promising for clinical research studies (Fornito, Zalesky, & Breakspear, 2015) 
where the 5D R2-D correlation framework could be used to investigate pathology induced changes 
along specific WM bundles.  
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FIGURES 

 
Figure 1. Resolution of sub-voxel fibre-like components and subsequent estimation of the associated 
colour-coded Orientation Distributions Functions (ODFs). (A) R2-D distribution obtained for a voxel 
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containing both CSF and two crossing WM populations. The 5D P(R2,D) is reported as a 3D loga-
rithmic scatter plot of R2, isotropic diffusivities Diso, and axial-radial diffusivity ratios D||/D^, with 
circle area proportional to the weight of the corresponding R2-D component, w. Colour coding is 
defined as: [R,G,B] = [cosf sinq, sinf sinq, cosq] × |D||-D^|/max(D||, D^), where (q,f ) gives the orien-
tation of each axisymmetric D. The R2-D space is divided into three coarse bins named ‘big’ (blue 
volume), ‘thin’ (red volume), and ‘thick’ (green volume). Components falling in the ‘thin’ bin are 
singled-out and interpreted as fibres. (B) Spatial distribution of per-bin signal contributions. The mid-
dle map shows the fractional populations in the ‘big’ (blue), ‘thin’ (red), and ‘thick’ (green) bins as a 
colour-coded composite image. The rightmost map focuses on the signal contributions from compo-
nents within the ‘thin’ subset, fthin, the complement of which, (1- fthin), gives the signal fraction from 
all components not used for ODF calculation. The crosses locate the voxel whose distribution is 
shown in panel (A). (C) Scheme for calculating colour-coded ODFs. The R2-coloured circles denote 
the ‘thin’ components from a bootstrap solution of the voxel signalled in panel (B). Circle area is 
proportional to w, while the [x,y,z] circle coordinates are defined as either [cosf sinq, sinf sinq, cosq] 
(left) or [cosf sinq, sinf sinq, cosq] × w (middle and right). In the left plot, the discrete R2-D compo-
nents are displayed on a unit sphere represented by a 1000-point (q,f ) mesh. The weights of the 
P(R2,D) components are first mapped to the mesh through Eq. (6), creating an ODF glyph whose 
radii inform on the R2-D probability density along a given (q,f ) direction (middle). Following the 
ODF estimation, Eq. (9) is used to assign mean values of R2, Diso, or DΔ to each mesh point and define 
the colour the ODF glyph (right).  

 

 
Figure 2. Set of gradient waveforms used in this study. The ST acronym identifies a standard 
Stejskal-Tanner waveform whose spectral profile (Callaghan & Stepišnik, 1996; Lundell et al., 2019) 
is distinct from those of the non-monopolar waveforms. The waveforms yielding bD = -0.5, 0, and 
0.5 were optimized according to the numerical procedure described in refs. (Sjölund et al., 2015) and 
(Szczepankiewicz, Westin, et al., 2019). The displayed waveforms were inserted within a spin-echo 
sequence with an EPI readout. To clarify the locations of the spin-echo radio-frequency pulses and 
the EPI block, we divide each waveform in two components: G1(t) and G2(t). The 90° pulse is exe-
cuted at t = 0, before the G1(t) component, while the 180° pulse is applied after a time t = tE/2 and is 
bracketed by the G1(t) and G2(t) components. Signal readout starts shortly after the conclusion of 
G2(t), with the EPI block being centred at the echo-time tE. Relaxation-weighting is enforced by 
varying tE while keeping constant the location of G1(t) and G2(t) relative to the 180° pulse.   
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Figure 3. R2-D distributions and Orientation Distribution Functions (ODF) retrieved for in silico 
fibre-crossing datasets. (A) 5D P(R2,D) distributions displayed as 2D scatter plots of log(R2) and q, 
the polar angle defining D orientation. Circle area is proportional to the weight of the corresponding 
component and colouring is defined as [R,G,B] = [cosf sinq, sinf sinq, cosq] × |D||-D^|/max(D||, D^), 
where D|| and D^ denote the axial and radial diffusivities, respectively, and f is the azimuth angle of 
D. The yellow crosses identify the ground-truth values. (B) ODF glyphs estimated from the distribu-
tions in panel (A), using Watson kernel with different orientation dispersion factors (see Eq. (6) for 
further details). The ODF colouring follows a conventional directional scheme: [R,G,B] = 
[µxx,µyy,µzz], where µii are the elements of the unit vector µ (q,f) defining the orientation of mesh-
point (q,f). 
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Figure 4. Per-voxel Orientation Distribution Functions (ODF), P(q,f), estimated from R2-D distribu-
tion components ascribed to the ‘thin’ bin defined in Figure 1. The voxel-wise P(q,f) were computed 
by using Eq. (6) to map the weights of the bin-resolved discrete P(R2,D) components into a 1000-
point spherical mesh. Here, each ODF is represented as a 3D polar plot with a local radius given by 
P(q,f) and colour-coded according to [R,G,B] = [µxx,µyy,µzz], where µii are the elements of the unit 
vector µ (q,f) (see Eq. (6)) for further details). In the left and top-right panels, the sets of ODF glyphs 
are superimposed on a grey-scaled map that shows the signal contributions from non-fibre-like com-
ponents (1- fthin), i.e., signal fractions from the ‘big’ and ‘thick’ populations. The zoom-ins in the 
lower-right panel offer a more detailed look into selected fibre crossing regions (continuous line 
boxes) and three-fibre crossing voxels (dashed line boxes) found in the centrum semiovale. The var-
ious arrows identify fibre tracts mentioned in the main text. 
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Figure 5. Orientation Distribution Function (ODF) maps coloured according to orientation-resolved 
means, Ê[X], of R2, isotropic diffusivity Diso, and squared normalized diffusion anisotropy DD2. All 
Ê[X] were calculated using Eq. (9) and are displayed on a linear scale. The lower panel displays a 
zoom into a region containing fibre crossings between the corpus callosum and the corticospinal tract. 
The dashed-line box in the top-left map identifies the high-R2 fibres found in the pallidum. 

 
Figure 6. Peak-specific means, Ê[X], of T2, R2, isotropic diffusivity Diso, and squared normalized 
diffusion anisotropy DD2 plotted as a function of q, the polar angle describing the orientation of the 
various peaks relative to the laboratory frame of reference. The peaks were estimated from local 
maxima of the smooth ODF, as described in the Methods section. The q angles were sorted into 30 
different bins. The solid grey, solid black, and dashed grey lines represent the 75th, 50th (or median), 
and 25th percentile, respectively, of each angle bin. The shaded grey region illustrates the interquartile 
range of each angle bin. 
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Figure 7. Orientation Distribution Function (ODF) maps coloured according to the orientation-re-
solved means of T2, Ê[T2]. The Ê[T2] values are displayed on a linear colour scale. The left and top-
right panels display the sets of ODF glyphs superimposed on a grey-scaled map showing the signal 
fractions from the ‘big’ and ‘thick’ bin populations (1- fthin) (non-fibre-like components). The zoom-
ins in the lower-right panel offer a more detailed look into selected regions (continuous line boxes) 
and voxels (dashed line boxes) containing crossing between fibre populations with distinct Ê[T2]. The 
observed high-T2 components are assigned to the forceps major (yellow boxes) and the corticospinal 
tract (magenta boxes).   

 

 
Figure 8. Orientation-resolved metrics estimated for a two-fibre-crossing voxel in the superior lon-
gitudinal fasciculus. (A) Orientation Distribution Function (ODF) estimated for the selected voxel. 
The black points identify the two peaks of the displayed ODF, peaks A and B. (B-C) Fibre-specific 
R2-D metrics. The (q,f) orientation space was divided into four quadrants centred on A, B, and their 
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corresponding antipodes; ‘thin’ R2-D components, ℇ𝑛b
thin, were then assigned to either fibre population 

A or fibre population B depending on their (q,f) coordinates (e.g. ℇ𝑛b
thin components falling into the 

quadrant centred on peak A, are assigned to fibre population A). For each orientation bin and each 
bootstrap, we estimate the mean signal fraction, R2, isotropic diffusivity Diso, squared normalized 
diffusion anisotropy DD2, and orientation, thus obtaining a set of 96´5 scalars: 96 different estimates 
of five distinct parameters. (B) Ensemble of fibre-resolved orientations displayed on the unit sphere. 
The colouring of the sphere identifies the (q,f) space assigned to each fibre population. The coloured 
lines indicate the peak orientation of fibres A (green) and B (red), while the black lines indicate the 
[x,y,z] coordinates. (C) Boxplots displaying the average and dispersion of the fibre-resolved signal 
fractions, R2, Diso, and DD2. The average was estimated as the median, while dispersion was assessed 
as the interquartile range. The whiskers identify the maximum and minimum estimated values.  
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