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Abstract 

Perceptual decision making, as a process of detecting and categorizing information, has been studied 

extensively over the last two decades. In this study, we investigated the neural characterization of 

the whole decision-making process by discovering the information processing stages. Such that, the 

timing and the neural signature of the processing stages were identified for individual trials. The 

association of stages duration with the stimulus coherency and spatial prioritization factors also 

revealed the importance of the evidence accumulation process on the speed of the whole decision-

making process. We reported that the impact of the stimulus coherency and spatial prioritization on 

the neural representation of the decision-making process was consistent with the behavioral 

characterization as well. This study demonstrated that uncovering the cognitive processing stages 

provided more insights into the decision-making process. 

Keywords: perceptual decision making, neural and behavioral characterizations, cognitive 

processing stages 

1 Introduction 
In daily work, people often encounter situations to select an action based on noisy sensory inputs. 

The process of choosing an action based on noisy sensory information is called perceptual decision 

making. Different cognitive processing stages are needed to receive the sensory information, 

accumulate perceptual evidence, and map to motor actions to accomplish the decision-making 

process in the brain [1, 2]. Various computational models have been proposed to describe the 

decision-making process at the behavioral level based on reaction time (RT) and response accuracy 
[3-6]. Accumulating the noisy perceptual evidence over time to reach the decision boundary prior to 

the response execution is the common idea across these models. Since this process is inherently 

noisy, the decision-making system needs some time to collect enough evidence to make a decision 

[7]. Recently, several researchers investigated the neural basis of the decision-making process. Initial 

analysis using single set recordings in monkeys during a random dot motion task discovered the 

neurons involved in this cognitive process [8-10]. These studies, inspired by the mathematical 

models of decision-making, demonstrated that neurons at the parietal and prefrontal cortex 

contributed to the decision-making process. These neurons integrate the information received from 

the sensory area, and the evidence accumulation is continued up to the fixed decision boundary.  
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Later approaches describe the decision-making process at both behavioral and physiological levels 

on human subjects with more complex tasks. The non-invasive imaging of human subjects, such as 

functional magnetic resonance imaging (fMRI) and magneto/electroencephalography (M/EEG), 

provided more extensive brain networks involved in the decision-making process compared to the 

single set recording of animal subjects. These approaches provided the possibility to characterize the 

decision-making process at a whole-brain level and clarified the neural correlate of decision making 

parameters with the physiological data [11, 12]. 

The studies in this area investigated the association between decision making parameters with fMRI 

and EEG data. The fMRI data with the high spatial resolution was employed to discover the brain 

regions that were functionally involved in the decision-making process [13-25]. Whereas, the EEG 

data with higher temporal resolution characterized this process with millisecond precision [21, 26-

33]. The research on the fMRI data reported regions, such as the left dorsolateral prefrontal cortex 

[13], lateral occipital cortex [14], anterior Insula [15-17], inferior frontal sulcus [16], right Insula 

[18], right inferior frontal gyrus [19, 20], medial frontal gyrus [19], posterior-medial frontal cortex 

[21], and dorsomedial prefrontal cortex [20], responsible for evidence accumulation. Other studies 

reported the neural correlate of the decision boundary by changing the speed and accuracy tradeoff. 

They found that regions including the premotor area [22, 24, 25], striatum [24, 25], basal ganglia, 

thalamus, dorsolateral prefrontal [22], and dorsal anterior cingulate [23] had higher activations 

when preparing for speed rather than accurate decisions. 

On the other hand, studies on the EEG data discovered the centro-parietal positivity (CPP) [26-29] 

and posterior parietal positivity [21] with gradually growing until response execution as the sensory 

accumulation process. Additionally, it was disclosed that the power of the parietal theta oscillations 

[30] and the beta oscillations of the motor cortex [31] covaried with the evidence accumulation. The 

studies of the neural basis of the decision boundary revealed that the power activity of the medial 

prefrontal cortex at theta frequency band associated with the value of decision boundary [32, 33].  

While the decision-making process comprised of multiple processing stages, the previous research 

only described part of this process at the neural level. They sought to bridge the gap between brain 

and behavior by discovering the association between physiological data and components of the 

decision-making process, such as evidence accumulation. Characterizing the timing and neural 

signature of all the processing stages is necessary to provide a complete description of this process.  

Recently some mathematical models were introduced to uncover the processing stages of the 

memory retrieval process [34, 35]. These approaches characterized the timing and neural signature 

of the processing stages of memory retrieval. However, in these studies, the memory retrieval 

process was described just at the physiological level. In our study, we take a similar approach to 

characterize the decision-making process at the physiological level and additionally clarify the 

association between the neural and behavioral characterizations. Using this approach, one can test 

the impact of a specific condition on the whole process of decision-making. 

In this study, we utilized a recently published dataset of perceptual decision making [36], including 

both behavioral and physiological data. We employed a new approach to describe the decision-

making process at both levels of brain and behavior and to uncover the relationships between them. 

Using this approach, we estimated the timing and brain signature of the processing stages. We 

assessed the effect of the internal subject state (spatial prioritization) and external world state 

(stimulus coherency) on the decision-making process at both behavioral and physiological levels. 
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Finally, the relationships between brain and behavior were characterized in the decision-making 

process. 

2 Materials and Methods 

2.1 Experimental Design 
In this study, a recently published decision-making dataset [36] was employed. This dataset includes 

both the physiological (EEG and fMRI) and behavioral (RT and response correctness) data from 

seventeen members of healthy adults aged 20-33 years. Participants categorized objects in a 2×2 

factorial design task with the internal subject state (spatial prioritization) and external world state 

(stimulus coherency) factors (Figure 1). At each trial, the scrambled image of a car or a face was 

presented on the right or left visual hemifield for 200ms. Participants were asked to categorize 

objects as quickly and as accurately as possible by pressing their right or middle finger for selection 

in each category. For the first factor of the task design, the visual informativeness of the stimulus was 

manipulated by altering the phase of the images at the low and high coherency levels. For the 

prioritization factor, a cueing arrow indicating the visual hemifield of the stimulus was shown for 

1000ms before the stimulus presentation on half of the trials. On the other half of the trials, a two-

sided cueing arrow was presented for 1000ms. After the disappearing cueing arrow, the stimulus was 

presented randomly on each visual hemifield. These two factors created four different conditions: 

high coherency – prioritized (HCP), high coherency - not prioritized (HCNP), low coherency – 

prioritized (LCP), and low coherency – not prioritized (LCNP). For more information please refer to 

[36]. 

2.2 Data Acquisition 
The data acquisition inside the magnetic resonance (MR) scanner with simultaneous recording of 

EEG and fMRI included 90 trials for each condition with an intertrial interval of 10 to 12 seconds. 

These 90 trials were split into five separate experimental sessions. All EEG data were acquired with 

a 64-channel MR compatible EEG system. The scalp electrodes on the EEG cap follow the 10-20 

system in naming and placement, which include two additional channels, one for recording the 

electrocardiogram (ECG) and the other for recording the electrooculography (EOG).  

2.3 Data Preprocessing 
We employed the re-referenced and MR-related artifact-free version of EEG data, which was 

provided by the owners. The EEG data was downsampled to 500Hz. Further data preprocessing was 

performed in this study using the Fieldtrip toolbox [37]. EEG data was bandpass filtered (a zero-

phase, two-pass, and fourth-order Butterworth filter) from 1HZ to 70HZ followed by band-stop 

filtering (a zero-phase, two-pass, and fourth-order Butterworth filter) from 48HZ to 52HZ. The 

significant artifactual EEG sections were selected visually and were ignored before further analysis. 

The eye movement and muscle artifacts were removed using an independent component analysis 

(ICA) algorithm. The artifactual components were selected visually and rejected from the 

components set, and the artifact-free data was obtained by reconstructing the refined ICA 

components. The stimulus-lock epochs with the length of RT were extracted from EEG data and were 

baseline corrected using the 200ms pre-cue baseline (the time interval between 1200ms to 1000ms 

pre-stimulus). Of the initial total of 16 participants (one subject did not have behavioral data) with 

five sessions for each subject, four subjects were removed from further analysis because of the 

significantly poor EEG data quality. From the remaining subset, a total of 13 sessions were rejected 

as well.  
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Figure 1: Task protocol overview. A 2×2 factorial design task with spatial prioritization and stimulus coherency factors. 
At each trial, the scrambled image of a car or a face was presented on the right or left visual hemifield for 200ms. For the 
coherency factor, the visual informativeness of the stimulus was manipulated by altering the phase of the images at low and 
high coherency levels. For the prioritization factor, a cueing arrow indicating the visual hemifield of the stimulus was shown 
for 1000ms before the stimulus presentation on half of the trials. 

2.4 Behavioral Data Analysis 
The drift-diffusion model (DDM) as a most discussed model for evidence accumulation process, was 

employed to analyze the decision-making process at the behavioral level. The DDM views decision 

making as a process of noisy accumulation of evidence over time (Figure 2), which is parameterized 

by a set of three parameters, i.e., drift rate, decision boundary, and bias. The average rate of 

accumulating the noisy evidence was called drift rate, v, which models the efficiency of the evidence 

accumulation. Such that, more efficient evidence accumulation leads to higher drift rates [38]. The 

higher drift rate is also associated with a faster decision-making process [7].  In this model, the 

sensory evidence from perception accumulated over time until it reached a decision boundary, a, for 

each choice. The decision boundary shows the amount of evidence is needed to be accumulated after 

stimulus encoding until response onset. Models sometimes include a bias parameter, z, when there 

is some prior knowledge about the task. This model can separate the decision component from non-

decision ones, such as stimulus encoding and response execution [7, 39]. These non-decision 

components together have a mean-time, 𝑡𝑒𝑟, which is called non-decision time. The decision 

component is also characterized by the drift rate parameter. 

In this study, we evaluated the decision-making performance under different conditions. The 
hierarchical DDM (HDDM) [40] was employed to estimate model parameters v, a and 𝑡𝑒𝑟. Markov 
chain Monte Carlo (MCMC) sampling was employed to approximate the posterior probability of the 
model parameters at the individual and group levels. We initialized the HDDM with 10000 posterior 
samples and discarded the first 1000 samples as burn-in. To show the effect of the coherency and 

spatial prioritization on the decision-making performance, the parameters of the HDDM were 
estimated separately for different conditions (HCP, HCNP, LCP, and LCNP). A two-way repeated 
measure ANOVA was then employed to test the effect of stimulus coherency and spatial prioritization 
on the decision and non-decision components of the DDM. 
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Figure 2: The diffusion decision model. Noisy evidence is accumulated from the starting point, z, over time (during  𝑡𝑑 
ms) with the average drift rate, v, until it reaches the decision boundary, a. The non-decision components such as encoding 
and response output have a mean time called non-decision time, 𝑡𝑒𝑟. Thus, total RT includes non-decision time, 𝑡𝑒𝑟 , and 
decision time, 𝑡𝑑. 

2.5 EEG Data Analysis 
As mentioned before, the decision-making process consists of some processing stages, i.e., encoding, 

decision making, and response execution. At the behavioral level, the encoding and response 

execution together were considered as a single non-decision component, which was characterized 

by the non-decision time parameter. The decision stage was also viewed as an evidence accumulation 

process that was described by the drift rate parameter. Uncovering the timing and the neural basis 

of these processing stages provides more insight into this process. In this study, we characterized the 

decision-making building blocks by employing the HSMM-EEG method [34] at the physiological level. 

This method is based on a hidden semi-Markov model that assigns each sample to one stage and 

determines the timing of the transition between the stages (Figure 3). Using this method, each stage 

is characterized by duration and signature parameters. To reduce the model complexity and to 

preserve the temporal profile of the EEG data to the HSMM, instead of EEG samples, the windowed 

EEG signal naming snapshot was employed in this model. For more details please see [34]. Finally, 

the HSMM-EEG was fitted using the denoised low dimensional representation of the snapshots. The 

dimensionality reduction was performed by a principal component analysis (PCA), which 

accommodated 98% of the variance of the data.   
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Figure 3: Information processing stages extraction using HSMM-EEG analysis. a. Shows windowing EEG signals to 
create snapshots. b. The snapshots are preprocessed to reduce dimensionality. The preprocessed snapshots are fed to the 
HSMM-EEG to separate decision-making stages. The results of the HSMM-EEG on the snapshots are shown with three colors 
for encoding (green), decision (blue), and response (red). c. Illustration of the HSMM-EEG stage transition with encoding, 
decision, and response stages. 

Using a snapshot length of 160ms with 101 PCA components, which accounted for 98% of the total 

data variance, the data was analyzed to uncover three stages of the decision-making process. The 

two-way repeated measure ANOVA was then employed to test the association between coherency 

and prioritization factors and the duration of the stages. Relationships between behavioral and 

neural levels were also investigated using Pearson’s correlation analysis.  

3 Results 

3.1 Decision-making characterization at the behavioral level 
The coherency of the stimulus was changed at two different levels to influence the amount of sensory 

evidence. The spatial prioritization factor was also applied to change the internal subject state. The 

participants were asked to categorize cars versus faces under the combination of these factors. The 

response time and response accuracy were analyzed to check the influence of these two factors on 

decision-making performance. The results of the two-way repeated measure ANOVA revealed the 

significant main effect of the coherency factor on the response time (𝐹(1,31) = 41.61, p < 0.001) and 

response accuracy (𝐹(1,31) = 130.23, p < 0.001). Such that, increasing the coherency level of the 

stimulus provided faster and more accurate responses (Figure 4). The spatial prioritization had also 

a significant main effect on the response time (𝐹(1,31) = 5.48, p = 0.025), and marginally significant 

effect on the response accuracy (𝐹(1,31) = 3.92, p = 0.056).   
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Figure 4: mean response time and response accuracy across subjects. a. demonstrates the mean response time across 
subjects for each condition. The two-way repeated measure ANOVA revealed the significant main effect of the coherency 
(𝐹(1,31) = 41.61, p < 0.001) and spatial prioritization factors (𝐹(1,31) = 5.48, p = 0.025) on the response time. b. illustrates the 

mean response correctness across subjects for each condition. The results show a significant main effect of coherency 
(𝐹(1,31) = 130.23, p < 0.001) and a marginally significant main effect of spatial prioritization (𝐹(1,31) = 3.92, p = 0.056) on the 

response accuracy. The sign ‘***’ and ‘*’ symbolize p-value < 0.001 and p-value < 0.05. 

To further characterize the influence of the coherency and spatial prioritization on the decision-

making process, the decision and non-decision components of this process were estimated using 

DDM. We hypothesized that the decision component of the process was the only processing stage 

associated with stimulus coherency and spatial prioritization factors. We also showed that the 

coherency factor had a stronger relationship with evidence accumulation than the prioritization 

factor.  

To test this hypothesis at the behavioral level, the drift rate and non-decision time parameters of the 

DDM were estimated for each condition (HCP, HCNP, LCP, and LCNP). These two parameters 

characterized the decision and non-decision components of the process, respectively. The results of 

the statistical test demonstrated that coherency significantly affected the drift rate parameter, as 

determined by two-way repeated measure ANOVA (𝐹(1,31) = 294.65, p < 0.001) (Figure 5). Moreover, 

we found a marginally significant effect of the prioritization factor on the drift rate (𝐹(1,31) = 4.09, p = 

0.052). As expected, the results revealed the major impact of the coherency factor on the efficiency 

of evidence accumulation rather than the spatial prioritization factor. Additionally, we checked 

whether the coherency and spatial prioritization were associated with the non-decision component. 

As depicted in Figure 5, the two-way repeated measure ANOVA disclosed no significant main effect 

of the stimulus coherency (𝐹(1,31) = 0.62, p = 0.44) and spatial prioritization (𝐹(1,31) = 0.08, p = 0.78) 

factors on the non-decision time parameter.  

Overall, the results demonstrated that among the different processing stages of decision making, only 

the evidence accumulation covaried with stimulus coherency. The spatial prioritization had a 

marginally significant impact on the decision stage as well. Since the non-decision component was 

not associated with factors of interest, the efficiency of the decision-making process was more 

dependent on the evidence accumulation stage.  

a b 
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Figure 5: The predicted drift rate and non-decision time. a. Illustration of the mean of the drift rate parameter across 
subjects for different conditions (HCP, HCNP, LCP, and LCNP). The significant main effect of the coherency factor was 
reported by two-way repeated measure ANOVA (𝐹(1,31) = 294.65, p < 0.001). Moreover, a marginally significant difference 

was found by the prioritization factor by two-way repeated measure ANOVA (𝐹(1,31) = 4.09, p = 0.052). b. Presentation of 

the mean of the non-decision time parameter across subjects for each condition. There was no significant main effect of 
coherency (two-way repeated measure ANOVA, 𝐹(1,31) = 0.62, p = 0.44) and prioritization factors (two-way repeated 

measure ANOVA, 𝐹(1,31) = 4.09, p = 0.052) on this parameter. Error bars represent standard error of the mean. The sign ‘***’ 

symbolizes p-value < 0.001. 

3.2 Decision-making characterization at the neural level 
Next, we investigated whether we could characterize the decision-making process in more detail by 

estimating the timing and neural signature of the individual processing stage. With the benefit of EEG 

data with millisecond temporal resolution and the use of the HSMM-EEG method, we extracted the 

timing of each processing stage for each condition, i.e., HCP, HCNP, LCP, and LCNP (Figure 6). Since 

the sequences of the stages were the same for all conditions, the conditions were analyzed jointly 

with HSMM-EEG. Using the duration of the processing stages, we tested the previous hypothesis and 

checked whether coherency and spatial prioritization were only associated with decision stage 

duration. As shown in Figure 6, the two-way repeated measure ANOVA found no significant main 

effect of stimulus coherency (𝐹(1,31) = 0.61, p = 0.44) and spatial prioritization (𝐹(1,31) = 0.9, p = 0.36) 

factors on the encoding stage duration. As expected, the coherency had a significant main effect on 

the duration of the decision stage as determined by two-way repeated measure ANOVA (𝐹(1,31) = 

24.28, p < 0.001). However, the two-way repeated measure ANOVA disclosed no significant effect of 

spatial prioritization (𝐹(1,31) = 2.48, p = 0.13) on the duration of this stage. The response execution 

stage was also analyzed by the two-way repeated measure ANOVA to find the impacts of coherency 

and prioritization on the duration of this stage. The results of the statistical test revealed no 

significant association between coherency (𝐹(1,31) = 3.96, p =0.06) and spatial prioritization (𝐹(1,31) = 

0, p = 0.95) factors on response duration.  

The investigation of the decision-making process at the physiological level also confirmed the 

findings of behavioral analysis. The results demonstrated that decision making is affected by the 

coherency factor rather than spatial prioritization. Changing the coherency level of the stimulus had 

only association with the decision stage duration. It might be because stimulus coherency affected 

the input sensory evidence quality. Therefore, lower stimulus coherency needed more time to reach 

the decision boundary, which was characterized by the evidence accumulation process. 

a b 

  
 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted May 25, 2020. ; https://doi.org/10.1101/2020.05.23.104620doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.23.104620


 

Figure 6: Estimated processing stages duration. Illustration of the mean timing of decision-making stages, i.e., encoding, 
decision, and response for individual condition (HCP, HCNP, LCNP, and LCNP). The two-way repeated measure ANOVA 
found no significant main effect of coherency (𝐹(1,31) = 0.61, p = 0.44) and spatial prioritization (𝐹(1,31) = 0.9, p = 0.36) on 

the duration of the encoding stage. The significant effect of the coherency was found by the two-way repeated measure 
ANOVA on the decision stage duration (𝐹(1,31) = 24.28, p < 0.001). However, there was no significant association between 

the decision stage and the prioritization factor (𝐹(1,31) = 2.48, p = 0.13), as determined by ANOVA. Finally, no significant 

effect of coherency (𝐹(1,31) = 3.96, p =0.06) and prioritization (𝐹(1,31) = 0, p = 0.95) was found by the two-way repeated 

measure ANOVA on the response duration. Error bars represent standard error of the mean. The sign ‘***’ symbolizes p-
value < 0.001. 

To further characterize the decision-making process, the signature of the states were computed by 

taking the weighted average of the snapshots across trials. The weight of each snapshot was the 

probability of belonging that snapshot to each state which was estimated by the HSMM-EEG. The 

resulted signatures are illustrated in Figure 7. As shown in this figure, the occipital negativity was 

observed at the encoding stage. It was consistent with previous findings that the posterior visual 

N200 component of the event-related potential (ERP) was associated with the sensory processing 

[41-43]. At the next two stages, the encoded evidence accumulated over time to reach the decision 
boundary and finalize the response execution. The signature of the decision and response stages 

revealed the increase at the CPP at the decision and response execution stages. Previous research 

also disclosed the increasing of the CPP with incoming evidence that peaked at the time of response 

execution [26, 29]. The neural basis of response execution clarifies the positivity of the left motor 

cortex as well. It might be because as most of the subjects are right-handed (9 of 11 subjects), the 

activity of the left motor cortex was increased at the response execution stage. 

 

 

Figure 7: Signature of the processing stages. The signatures were created by taking the weighted average of the 
snapshots across trials. a. The signature of the encoding stage disclosed the negativity of the visual areas. b and c illustrate 
the decision and response stages, respectively. The signature of these two stages demonstrated the increase of CPP until 
response execution. The positivity of the left motor cortex was also depicted at the response execution stage. 
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3.3 Brain-behavior relationships 
We investigated the association between behavioral and neural representations of the decision-

making process. At the behavioral level, the DDM considers the drift rate and non-decision time 

parameters as a measure to describe the decision and non-decision stages of the process. 

Additionally, the HSSM-EEG method decomposes the decision-making process into its components 

at the physiological level by estimating the timing of each processing stage. To probe the 

relationships between decision-making characterization at the physiological and behavioral levels, 

we examined the association between DDM parameters and the duration of the information 

processing stages.  

As reported with previous research, the faster decisions associated with a higher drift rate [7]. Thus, 

we investigated whether the drift rate parameter had a negative interaction with the duration of the 

decision stage at the physiological level. Figure 9a indicates the estimated drift rate and duration of 

the decision stage for each condition. A significant negative correlation (r = -0.47, p = 0.001, Pearson’s 

correlation) was found between the physiological and behavioral characterizations of the decision 

stage, which was consistent with the previous findings [7]. Additionally, we checked whether the 

non-decision parts of the decision process had any interaction between brain and behavior 

representations. Figure 9b shows the non-decision time parameter estimated by the DDM and the 

sum of the duration of encoding and response stages resulted from the HSSM-EEG model for each 

condition. The results demonstrated a significant positive interaction (r = 0.78, p < 0.001, Pearson’s 

correlation) between behavioral and physiological representations of the non-decision component.  

We further examined the relationships between physiological representation of the decision-making 

process and the RT. We hypothesized that the duration of the whole decision-making process 

depended more on the decision stage rather than the non-decision stages. To test this hypothesis, the 

interaction between each stage duration with the RT was estimated using Pearson’s correlation 

across subjects and conditions (Figure 9). A significant interaction was found between the duration 

of the decision stage and RT (r = 0.99, p < 0.001, Pearson’s correlation). The correlation analysis 

revealed no significant interactions between RT and duration of the encoding (r = 0.25, p = 0.11, 

Pearson’s correlation) and response (r = 0.29, p = 0.06, Pearson’s correlation) stages. The results 

disclosed that the most important factor in RT is the duration of the evidence accumulation process. 

The faster accumulation process led to shorter reaction times.  
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Figure 8: Association between behavioral and physiological representations of the decision-making process. a. 
Shows the interaction between the drift rate parameter of the DDM and the decision stage duration of the HSMM-EEG model 
for each condition. The significant negative interaction (r = -0.47, p = 0.001, Pearson’s correlation) was found between these 
parameters. b. Illustrates the non-decision time and sum of encoding and response stages duration for each condition. The 
results clarified a significant positive correlation (r = 0.78, p < 0.001, Pearson’s correlation) between these parameters. 

 

 

Figure 9: Relationships between reaction time and decision stages duration. Panels a, b, and c depict the mean value 
of the RT and the encoding, decision, and response duration respectively for each subject and condition. A significant 
interaction was found between the RT and duration of encoding (r = 0.25, p = 0.11, Pearson’s correlation), decision (r = 
0.99, p < 0.001, Pearson’s correlation), and response (r = 0.29, p = 0.06, Pearson’s correlation) states. 

4 Discussion 
The classical model of the decision-making process encompasses three distinct processing stages, i.e., 

encoding, decision, and response execution. Here we shed light on the decision-making process by 

characterizing/linking this process at both neural and behavioral levels. At the neural level with the 

aim of EEG data with a high temporal resolution, the timing and neural signature of the processing 

stages of the decision-making process (encoding, decision, and response execution) were estimated. 

Taken together, the relationship between the behavioral data and different stages of the decision-

making process on EEG segments provides insights into the underlying process.  

Using the HSMM-EEG model, the stages of the decision-making process were extracted with each 

associated with the duration and neural signature parameters (Figure 6 and Figure 7). The duration 

of the encoding stage depicted in Figure 6a revealed that the time needed for sensory inputs to be 

encoded was nearly 190ms. This is consistent with the previous study, which clarified that the latency 

of the N200 component of the ERP reflected the time of sensory encoding [43]. The previous animal 

studies also revealed that the lateral inter-parietal (LIP) neurons started to accumulate the 

a b 

  
 

a b c 
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perceptual evidence about 200ms after stimulus presentation [8]. During the encoding stage, the 

occipital negativity was observed in the early visual area as well (Figure 7a). As reported by recent 

studies [41-43], in line with our result, the N200 component at the visual area associated with 

perceptual processing. The MEG study on the frequency domain also disclosed the gamma band 

activity on the visual cortex as the stimulus encoding [2]. 

Next, the encoded sensory inputs were accumulated over time to reach the decision boundary at the 

decision stage. The neural signature of the decision stage revealed the increase of the CPP decision 
and response stages (Figure 7b,c). Similarly, previous studies found that CPP was associated with the 

evidence accumulation process with a pick at the time of response execution [26-29], which 

confirmed the resultant signatures.  

When the accumulated perceptual evidence reached the decision boundary, the motor execution 

initiated. As shown in the signature of the response stage (Figure 7c), besides increasing the CPP, the 

positivity of the left motor cortex was observed as well. It was because most of the participants were 

right-handed (9 of 11 subjects). The processing at the motor execution stage, on average, lasted about 

190ms, as depicted in Figure 6c. The study on the MEG data was also revealed that event-related 

desynchronization (ERD) peaked about 170ms before response execution over the sensorimotor 

area contralateral to the response side [44]. 

Furthermore, we hypothesized that the efficiency of the decision-making process was more 

dependent on the decision stage rather than on non-decision ones. Since the characterization of the 

decision-making process at the neural level provided the timing of the processing stages, we tested 
this hypothesis at both neural and behavioral levels. The statistical analysis on the physiological level 

disclosed that changing the coherency level of the stimulus associated with the decision stage 

duration. Such that, the higher coherent stimulus led to a shorter decision stage. Furthermore, the 

behavioral analysis provided similar results and revealed the significant interaction of stimulus 

coherency with the drift rate parameter, that confirmed the role of the drift rate as a perceptual input 

quality measure, as explained by the DDM [45]. The analysis of the single set recording also 

supported this finding and showed that faster responses were associated with the rapid build-up of 

LIP activity [8]. We also analyzed the relationships between the duration of processing stages and RT 

(Figure 9). The significant association between RT and the duration of the decision stage 

demonstrated the importance of this stage on the speed of the decision-making process.  

According to the similar operation of the neural and behavioral representations of the decision-

making process under task conditions, we test whether there was a relationship between these two 

levels (Figure 8). Consequently, we hypothesized that the drift rate parameter that characterizes the 

efficiency of the evidence accumulation process has an interaction with the duration of the decision 

stage at the physiological level. Such that, higher drift rates provide shorter decision stages. Similarly, 

we test whether the duration of the combination of the encoding and response stages have any 

interaction with the non-decision time of the DDM. To test these hypotheses, Pearson’s correlation 

was conducted, and the results confirmed the significant association between physiological and 

behavioral levels. The DDM also considered the drift rate as a speed of evidence accumulation. Such 

that faster decisions related to the higher drift rates [7]. These findings verified the results of this 

study, as well.  
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5 Conclusion 
In this study, we sought to bridge the gap between neural and behavioral representations of the 

decision-making process. Neural characterization of the decision-making process was uncovered 

through information processing stages. We showed that these two representations had a similar 

manner under different stimulus coherency levels. Additionally, the results at both neural and 

behavioral levels revealed the importance of the decision stage on the efficiency of the whole 

decision-making process. The significant association between processing components at both neural 

and behavioral levels was also a validation for the neural characterization of the decision-making 

process. Overall results demonstrated that this representation provides more insight into the 

decision-making process by providing both the duration and neural signature of the cognitive stages.  
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