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Abstract 36 

The red blood cell (RBC) storage lesion is a series of morphological, functional and metabolic 37 

changes that RBCs undergo following collection, processing and refrigerated storage for clinical 38 

use. Since the biochemical attributes of the RBC unit shifts with time, transfusion of older blood 39 

products may contribute to cardiac complications, including hyperkalemia and cardiac arrest. 40 

We measured the direct effect of storage age on cardiac electrophysiology and compared with 41 

hyperkalemia, a prominent biomarker of storage lesion severity. Donor RBCs were processed 42 

using standard blood banking techniques. The supernatant was collected from RBC units 43 

(sRBC), 7-50 days post-donor collection, for evaluation using Langendorff-heart preparations 44 

(rat) or human stem-cell derived cardiomyocytes. Cardiac parameters remained stable following 45 

exposure to ‘fresh’ sRBC (day 7: 5.9+0.2 mM K+), but older blood products (day 40: 9.7+0.4 mM 46 

K+) caused bradycardia (baseline: 279±5 vs day 40: 216±18 BPM), delayed sinus node 47 

recovery (baseline: 243±8 vs day 40: 354±23 msec), and increased the effective refractory 48 

period of the atrioventricular node (baseline: 77+2 vs day 40: 93+7 msec) and ventricle 49 

(baseline: 50+3 vs day 40: 98+10 msec) in perfused hearts. Beating rate was also slowed in 50 

human cardiomyocytes after exposure to older sRBC (-75+9%, day 40 vs control). Similar 51 

effects on automaticity and electrical conduction were observed with hyperkalemia (10-12 mM 52 

K+). This is the first study to demonstrate that ‘older’ blood products directly impact cardiac 53 

electrophysiology, using experimental models. These effects are likely due to biochemical 54 

alterations in the sRBC that occur over time, including, but not limited to hyperkalemia. Patients 55 

receiving large volume and/or rapid transfusions may be sensitive to these effects. 56 

 57 

New & noteworthy 58 

We demonstrate that red blood cell storage duration time can have downstream effects on 59 

cardiac electrophysiology, likely due to biochemical alterations in the blood product. 60 

Hyperkalemia and cardiac arrest have been reported following blood transfusions, but this is the 61 

first experimental study to show a direct correlation between storage duration and cardiac 62 

function. Infant and pediatric patients, and those receiving large volume and/or rapid 63 

transfusions may be sensitive to these effects. 64 

Keywords: red cell storage lesion, cardiac electrophysiology, hyperkalemia 65 
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Introduction 67 

More than 13 million whole blood and red blood cell units are transfused in the United States 68 

each year, with cardiac surgical procedures accounting for ~20% of all blood transfusions(2, 10, 69 

17, 33, 34, 51, 62). Many cardiac procedures mandate the use of blood and blood products in 70 

the preoperative, intraoperative and postoperative period, particularly with infant and pediatric 71 

patients for cardiopulmonary bypass circuitry priming(38, 62). Despite the frequency, transfusion 72 

of blood and blood products are not without risk(46, 58). Transfusion of red blood cells (RBC) in 73 

particular have been associated with increased morbidity and mortality, prolongation of hospital 74 

stay, and  several different cardiac complications(30, 35, 36, 42, 44, 46, 52, 58, 59). Many 75 

investigators have suggested that RBC transfusion complications are due to the transfusion of 76 

RBCs close to their expiration (42 days), wherein the effects of the red cell storage lesion can 77 

contribute to the pathobiology of adverse reactions(7, 8, 14, 26, 40, 42, 44, 53, 54, 67). These 78 

pathobiological changes include clearance of storage-damaged RBCs, aberration of nitric oxide 79 

metabolism, trapping of RBCs by macrophages resulting in oxidative damage and impaired 80 

oxygen delivery, and an increase in circulating non-transferrin bound iron(29, 48, 53, 73). 81 

Briefly, over time, stored RBCs are depleted of ATP which alters the RBC cell membrane, 82 

resulting in hemolysis, the formation of red cell microvesicles, release of intracellular iron, 83 

decreased non-transferrin bound iron and the release of free hemoglobin. Further, the pH and 84 

electrolyte composition of the RBC unit also changes due to continued anerobic metabolism and 85 

dysfunction of cation transporters. The latter includes impairment of Na+/K+ ATPase(69), which 86 

leads to a progressive increase extracellular [K+] in the RBC unit supernatant(5, 28). 87 

Consequently, rapid or large volume transfusions of RBC units with elevated potassium levels 88 

can predispose patients to hyperkalemia, conduction abnormalities and cardiac arrest(7, 8, 24, 89 

42, 54, 59). Although the incidence of transfusion-associated hyperkalemia is poorly defined 90 

and potentially underreported(42), Raza, et al. noted elevated K+ levels in >70% of adult trauma 91 

patients following transfusion(54), and Livingston, et al. observed hyperkalemia in 18-23% of 92 

pediatric trauma patients following transfusion(43). Transfusion-associated hyperkalemia 93 

resulting in cardiac arrest (TAHCA) is a recognized complication of massive transfusion in 94 

children, with a mean serum [K+] level of 9.2+1.8 mM in patients who experienced cardiac 95 

arrest(42). Some investigators suggest that the risk factors for TAHCA include the volume and 96 

rate of transfusion, storage age, and irradiation of RBCs – but the perceived risk and reason for 97 

such cardiac complications remains actively debated(4, 15, 28, 42). 98 

 99 
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Chronological storage age is one of the key factors that influences RBC quality and storage 100 

lesion severity(5, 12, 69). Despite this, blood banks often employ a “first-in, first-out” approach 101 

to reduce blood product waste and maintain an inventory supply to support emergency 102 

transfusions. Indeed, it is estimated that 10-20% of RBC units are transfused after 35-days of 103 

refrigerated storage, or near their 42-day expiration date(25). Some investigators have 104 

recommended a reduction in the maximum allowable storage time for RBCs due to quality 105 

concerns(29, 50, 53, 54, 61, 70, 71). Several clinical studies have raised concerns about the 106 

effects of the RBC storage lesion(8, 26, 37, 40, 42, 59, 75); however, the direct impact of RBC 107 

quality on cardiac health outcomes remains unclear. Identifying a mechanistic relationship 108 

between RBC quality and adverse cardiac endpoints has been hindered in the clinical setting by 109 

confounding factors, including disease diagnosis, age, rate/site of infusion, volume of 110 

transfusion per unit time, number of transfusions, bypass and cross-clamp time, secondary 111 

complications from surgery and concomitant medication administration. Recent randomized 112 

clinical trials have demonstrated that transfusion with fresh blood (1-10 days storage duration) 113 

does not decrease the risk of mortality compared with standard practice (2-3 weeks storage 114 

duration)(22, 27, 41, 63, 64). Although considerably less is known about the risk of transfusing 115 

RBCs near expiry (35-42 days), or the impact on secondary endpoints including cardiac 116 

complications(4, 39, 45, 55). 117 

We aimed to address clinical concerns of bradycardia and cardiac arrest by investigating the 118 

direct relationship between RBC storage age and myocardial function using experimental 119 

models. We hypothesized that electrical conduction would be impaired in cardiac models 120 

exposed to the supernatant of ‘old’ RBC (sRBC) units close to expiration as compared with 121 

‘fresh’ units, due in part to elevated extracellular potassium that can alter the myocardial resting 122 

membrane potential(3, 8, 21, 72). To test this hypothesis, electrophysiology parameters were 123 

measured using both an intact, isolated rat heart preparation and human stem-cell derived 124 

cardiomyocytes. Cardiac endpoints were measured at baseline, and again after exposure to 125 

sRBC collected from ‘fresh’ (day 7 post-donor collection), ‘old’ (day 30-40), or ‘expired’ units 126 

(day 50). We compared these results with those observed with hyperkalemia, a primary 127 

biomarker of RBC storage lesion severity(5, 12, 69).  128 

 129 

Materials and methods 130 

Red blood cell sample preparation 131 
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Red blood cell units (300 ± 50mL) from healthy donors were obtained from the American Red 132 

Cross or Children’s National Blood Donor Center.  All blood units were O-negative, sickle-133 

negative, non-irradiated, collected using standard single donor needle methods and stored in 134 

additive preservative solution (AS-1) according to standards of the American Academy Blood 135 

Banking requirements and the Food and Drug Administration(23). Single RBC units were 136 

aliquoted into small volume blood bags typically used for neonatal transfusion; each 100 mL 137 

aliquot was stored at 4-6ºC in a research-grade, temperature monitored refrigerator according to 138 

standards(23). RBC units underwent gentle centrifugation (4ºC, 20 min, 3700 rpm; 139 

Haemonetics) using accumulated centrifugal effect value of 6.5x107 to separate and collect the 140 

supernatant (sRBC) 7-50 days post-donor collection; sRBC samples were used for subsequent 141 

experiments. Experiments were designed to study the impact of RBC storage lesion on cardiac 142 

electrophysiology, by comparing endpoints after exposure to ‘fresh’ sRBC (7 days post-donor 143 

collection), ‘old’ sRBC (30-40 days), or ‘expired’ sRBC (50 days). 144 

 145 

General protocol and biochemical analysis 146 

Patients undergoing cardiac surgery or extracorporeal membrane oxygenation can receive large 147 

transfusion volumes equivalent to 60-70% of the patient’s total blood volume(19, 47). To mimic 148 

exposure, we estimated 10% supernatant volume exposure from reconstituted blood (½ volume 149 

packed RBCs [20-30% supernatant containing anticoagulant and 70-80% red blood cells] and ½ 150 

volume plasma). Accordingly, sRBC samples were diluted to 10% volume using Krebs-151 

Henseleit buffered media (denoted in mM: 118 NaCl, 3.29 KCl, 1.2 MgSO4, 1.12 KH2PO4, 24 152 

NaHCO3, 10 Glucose, 2 C3H3NaO3, 10 HEPES and 0.33 CaCl). Biochemical analyses were 153 

performed on each diluted sRBC sample, using an Epoc® point-of-care blood analysis system. 154 

Biochemical analyses were performed using a BGEM card (Seimens Diagnostics: 155 

SMNS10736382) to measure Na+, K+, Ca2+ and lactate levels. 156 

 157 

Intact, whole heart preparations 158 

Animal protocols were approved by the Institutional Animal Care and Use Committee of the 159 

Children’s Research Institute, and followed the National Institutes of Health’s Guide for the Care 160 

and Use of Laboratory Animals.  161 

Experiments were conducted using adult, female Sprague-Dawley rats (>8 weeks old, >200 g, 162 

Taconic Biosciences). Animals were housed in conventional rat cages in the Research Animal 163 
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Facility under standard environmental conditions (12:12 hour light:dark cycle, 64 – 78F, 30-70% 164 

humidity, free access to reverse osmosis water, corn cob bedding and food (2918 rodent chow, 165 

Envigo). Animals were anesthetized with 3-5% isoflurane, the heart was excised and then 166 

transferred to a temperature-controlled (37°C), constant-pressure (70 mmHg) Langendorff-167 

perfusion system for electrophysiology experiments (Figure 1). After isolating and transferring 168 

the heart to the perfusion system, excised hearts were perfused with Krebs-Henseleit buffer 169 

bubbled with carbogen (95% Oxygen, 5% CO2) throughout the duration of the experiment(31). 170 

Lead II electrocardiograms (ECG) were recorded continuously during sinus rhythm; ECG 171 

signals were analyzed to quantitate heart rate, atrioventricular conduction (PR interval), 172 

ventricular depolarization time (QRS width), ventricular repolarization (QTc) and arrhythmia 173 

incidence(32, 65). Biosignals were acquired in iox2 and ECG parameters were analyzed in 174 

ecgAUTO (emka Technologies).   175 

 176 

Electrophysiology measurements 177 

To further investigate cardiac electrophysiology, a pacing protocol was implemented using 178 

stimulation electrodes positioned on the right atrium and the apex of the left ventricle (Figure 179 

1)(32, 65, 66). A Bloom Classic electrophysiology stimulator (Fisher Medical) was set at a 180 

pacing current 1.5x the minimum pacing threshold (1-2 mA) with 1 msec monophasic pulse 181 

width. Sinus node recovery time (SNRT) was assessed by applying a pacing train of 150 ms 182 

(S1−S1) to the right atrium and measuring the time delay until the next spontaneous sinoatrial 183 

node-mediated activity. To determine the Wenckebach cycle length (WBCL), an S1-S1 pacing 184 

interval was applied to the right atrium; the pacing cycle length was decremented stepwise to 185 

pinpoint the shortest interval that resulted in 1:1 atrioventricular conduction. Next, an S1-S2 186 

pacing interval was applied to the right atrium to determine the atrioventricular nodal effective 187 

refractory period (AVNERP). An S1-S2 pacing interval was applied to the left ventricle to find the 188 

shortest coupling interval that resulted in 1:1 ventricular depolarization, signifying the ventricular 189 

effective refractory period (VERP).  190 

 191 

Experimental timeline and treatment groups 192 

Isolated, intact hearts were perfused with KH media for 30 min, followed by implementation of 193 

electrophysiology pacing protocols (‘baseline’). Hearts were then perfused for another 15-20 194 

min, with either KH media alone (control), media supplemented with 10% sRBC (7-50 days 195 
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post-donor collection), or media supplemented with elevated potassium concentrations (6-12 196 

mM KCl). Electrophysiology protocols were performed a second time to determine the effects of 197 

sRBC treatment or hyperkalemia on electrical conduction (Figure 1). This protocol allowed each 198 

animal to serve as its own control, and account for experimental or animal variability. 199 

 200 

Human cardiomyocyte preparation and microelectrode array recordings 201 

Human induced pluripotent stem cells differentiated into cardiomyocytes (hiPSC-CM; iCell 202 

cardiomyocytes) were plated onto fibronectin coated microelectrode arrays (Biocircuit MEA 24, 203 

Axion Biosystems), at a density of 30,000 cells per well. hiPSC-CM were maintained under 204 

standard cell culture conditions (37ºC, 5% CO2). hiPSC-CM formed a confluent contracting 205 

monolayer 2-4 days after plating (40-60 bpm) and MEA recordings were performed 7-10 days 206 

after plating to measure the spontaneous beating rate. hiPSC-CM were equilibrated in the MEA 207 

system for 15 min, and then the spontaneous beating rate was recorded (‘baseline’) using an 208 

integrated microelectrode array system (Maestro Edge, Axion) with temperature and gas control 209 

(37ºC, 5% CO2). Cardiomyocytes were then treated for 5 min with iCell maintenance media 210 

(control), media supplemented with 10% sRBC (7-40 days post-donor collection), or media 211 

supplemented with elevated potassium concentrations (9-12 mM). Spontaneous beating rate 212 

was also recorded 1 hr post-treatment and after washout. To account for cell plating variability, 213 

each treated cardiomyocyte monolayer was to baseline(11).  214 

 215 

Data analysis 216 

Results are reported as mean + standard error mean (n>3 per group). Data normality was 217 

assessed by Shapiro-Wilk testing (GraphPad Prism). A two-tailed paired t-test was performed to 218 

compare endpoints before and after treatment, within the same heart (control media or sRBC). 219 

For hyperkalemia studies with multiple doses, statistical analysis was performed using either 220 

one-way analysis of variance or Kruskal-Wallis nonparametric test, with a false discovery rate 221 

(0.1) to correct for multiple comparisons. Significance was defined as *p<0.05. 222 

 223 

Results 224 

Storage age effects the biochemical composition of sRBC 225 

The attributes of a stored blood product shifts as RBC quality declines, which can result in an 226 
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accumulation of potassium in the supernatant(5, 12, 69). To measure the effect of storage time 227 

on the electrolyte composition of blood units, sRBC samples were collected from RBC units on 228 

day 7-50 post-donor collection, samples were diluted to 10% volume using pH-buffered KH 229 

media, and then electrolyte-gas measurements were performed on the diluted end product 230 

(Figure 2). Extracellular potassium levels were elevated in ‘old’ units as compared to ‘fresh’ 231 

units (day 7: 5.9+0.2 vs day 40: 9.7+0.4, p<0.0001); but, there was variability between age-232 

matched units near expiry ranging from 8.5-11.9 mM [K+] in the 10% diluted end product (day 233 

30-50). Lactate levels were also elevated in ‘old’ vs ‘fresh’ blood units (day 7: 0.8+0.1 vs day 40: 234 

2.4+0.2 mM, p<0.0001).  235 

 236 

Storage age is associated with heart rate slowing and sinus node dysfunction 237 

Cardiac complications from RBC transfusion include an increased risk of bradycardia and 238 

cardiac arrest(42, 54, 59, 67). These adverse outcomes may be precipitated by elevated 239 

extracellular potassium, which diminishes the myocardial resting membrane potential(21, 72). 240 

Accordingly, we assessed the impact of sRBC exposure on spontaneous heart rate and sinus 241 

node function in Langendorff-perfused hearts. Heart rate remained stable throughout the study 242 

when perfused with control media containing 4.5 mM K+ (baseline: 297±10 msec vs 45 min: 243 

288±15 msec), and also remained stable when the perfusate was supplemented with 10% 244 

sRBC collected from RBC units aged 7-30 days (Figure 3). Similarly, sinus node function 245 

remained stable with control media perfusion (SNRT baseline: 223±14 vs 45 min: 238±9) and 246 

following perfusion with 10% sRBC collected from units aged 7-30 days (Figure 3). However, as 247 

RBC units neared expiration, sRBC exposure slowed the heart rate by 23% (baseline: 279±5 248 

msec vs day 40: 216±18 msec, p<0.005). Additionally, sRBC from day 40 units had a significant 249 

effect on sinus node function, delaying the recovery time by 46% (SNRT baseline: 243±8 msec 250 

vs day 40: 354±23 msec, p<0.005). In the latter, the perfusate media had a mean potassium 251 

concentration near 10 mM (Figure 2). To measure the direct effect of hyperkalemia on 252 

automaticity and sinus function, a dose-response study was performed. As the potassium 253 

concentration increased from 4.5 to 12 mM, heart rate slowed (linear regression R2=0.92, 254 

p=0.01) and SNRT was prolonged (R2=0.86, p=0.02).  255 

 256 

Storage age is associated with atrioventricular conduction slowing 257 

Electrochemical gradients across the cardiomyocyte membrane are essential for cardiac 258 
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excitation and electrical propagation. Atrial cardiomyocytes are particularly sensitive to 259 

deviations in these electrochemical gradients, and an increase in extracellular potassium can 260 

slow atrioventricular (AV) conduction(18, 21, 24). Atrioventricular conduction remained constant 261 

in hearts perfused with control KH media throughout the study (Figure 4), as determined by 262 

ECG parameters during sinus rhythm (PR time at baseline: 33±4 vs 45 min: 36±2). Similar 263 

results were observed before and after exposure to 10% sRBC samples collected from units 264 

aged 7-30, but significant slowing was observed after exposure to sRBC near or after expiration 265 

(PR time at baseline: 33±1 vs day 40: 41±3 msec, p<0.05; PR time at baseline: 37+1 vs day 50: 266 

53+8 msec, p<0.005). AV node refractoriness was further interrogated by implementing an atrial 267 

pacing protocol to measure WBCL (S1-S1 pacing) and AVNERP (S1-S2 pacing). These 268 

parameters remained unchanged in hearts perfused with control media (WBCL baseline: 79±2 269 

vs 45 min: 83±2; AVNERP baseline: 64±5 vs 45 min: 67±4) and hearts exposed to sRBC from 270 

‘fresh’ 7-day units (Figure 5,6). Exposure to day 30 sRBC resulted in a modest increase in AV 271 

node refractoriness, increasing WBCL by 9%. Effects on the AV node were more pronounced 272 

after exposure to day 40 sRBC which increased AVNERP by 21% (baseline: 77+2 vs day 40: 273 

93+7 msec, p=0.01) and WBCL by 19% (baseline: 90+1 vs day 40: 107+3msec, p<0.001). 274 

These effects were further exacerbated in units stored past expiration (78% increase in WBCL 275 

and 66% increase in AVNERP, baseline vs day 50 sRBC; Figure 5,6).  276 

 277 

As anticipated, a dose response relationship was observed when the potassium concentration 278 

was increased in the perfusate media, resulting in prolonged atrioventricular conduction time 279 

and increased AV node refractoriness. As the potassium concentration increased from 4.5 to 12 280 

mM, a progressive increase in PR duration (R2=0.85, p<0.05) was observed (Figure 4). At 10 281 

mM K+ (a concentration comparable to day 40 sRBC-supplemented media), a 51% increase in 282 

WBCL was observed (4.5 mM: 84+3 to 10mM: 127+13 msec, p<0.005), but changes in 283 

AVNERP were only observed at 12 mM K+ (4.5 mM: 71+3 to 12 mM: 151+21 msec, p<0.005; 284 

Figure 5,6). The latter suggests that other factors or substances in the RBC supernatant may 285 

also contribute to conduction slowing. 286 

 287 

Storage age increases ventricular refractoriness  288 

Severe hyperkalemia is associated with decreased sodium channel availability and slowed 289 

conduction velocity, which results in QRS widening and may precipitate ventricular 290 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted May 25, 2020. ; https://doi.org/10.1101/2020.05.22.111302doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.22.111302


Posnack, Storage lesion and cardiac electrophysiology 
 

10 

tachyarrhythmias(18, 21, 24). In our study model, exposure to sRBC-supplemented media did 291 

not significantly prolong the QRS duration (baseline: 26+2 msec vs day 40: 34+9 msec; Figure 292 

4), QTc duration (baseline: 169+9 vs day 40: 172+11 msec) or increase the incidence of 293 

ventricular tachyarrhythmias (data not shown). Further, we were not able to establish a trend 294 

toward QRS prolongation with increasing potassium concentration (R2=0.72, p=0.07), QTc 295 

duration (R2=0.67, p=0.67) or an increased incidence of ventricular tachyarrhythmias – which 296 

may be attributed to limitations in our model system. Indeed, ventricular activation and early 297 

repolarization can occur simultaneously in the rodent heart – which can influence the QRS 298 

complex and result in indistinct T-waves(6). Moreover, the rodent myocardium is less than ideal 299 

for assessing arrhythmia incidence due to its small size and resiliency to fibrillation(6). As 300 

another indicator of ventricular repolarization time, we implemented a pacing protocol to pinpoint 301 

ventricular refractoriness. A marginal increase in extracellular potassium can hasten 302 

repolarization and shorten action potential duration time – but severe hyperkalemia increases 303 

potassium channel conductance, lengthens action potential duration, and increases ventricular 304 

refractoriness(49, 72). As expected, control media perfusion resulted in stable VERP 305 

measurements throughout the study (VERP baseline: 45+5 vs 45 min: 46+2 msec). VERP 306 

measurements were unchanged in heart preparations exposed to sRBC from day 7-30 RBC 307 

units (Figure 7), but VERP increased by 96% following exposure to day 40 sRBC (baseline: 308 

50+3 vs day 40: 98+10 msec, p<0.0001) and 145% after exposure to expired units (baseline: 309 

51+8 vs day 50: 126+25 msec, p<0.0001). This increase in ventricular refractoriness may be 310 

explained, at least partly, by the increase in extracellular potassium levels. In dose response 311 

studies, increasing potassium concentration (4.5 to 12 mM) also resulted in a progressive 312 

increase in VERP (linear regression, R2=0.91, p=0.01).  313 

 314 

Human cardiomyocytes are susceptible to electrical disturbances  315 

Rodent models are frequently employed in cardiovascular research studies, although species-316 

specific differences in ion channel expression are established(20, 74). Accordingly, we 317 

performed a follow-up study using human cardiomyocytes (hiPSC-CM) to validate the effects of 318 

sRBC exposure. Using a microelectrode array (MEA) system, we noted an increase in the 319 

beating rate of hiPSC-CM over time when treated with day 7 sRBC (5min: 12+6% rate increase 320 

p=0.09 vs 60min: 33+5% p<0.005, Figure 8). Conversely, cardiomyocytes demonstrated 321 

bradycardia after exposure to ‘older’ sRBC products, which was more severe than reported in 322 

the whole heart experiments. The spontaneous beating rate of hiPSC-CM decreased by 47+7% 323 
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in day 35 samples and 75+9% in day 40 samples relative to baseline measurements 324 

(p<0.0001). Significant slowing in the spontaneous beating rate was also observed with 325 

increasing potassium concentrations (4.5-12 mM K+; R2=0.999, p=0.01). Notably, treatment did 326 

not appear to have a lasting effect on cardiomyocyte viability, as the beating rate quickly 327 

returned to normal after washing out the sRBC or hyperkalemic media (Figure 8). 328 

 329 

Discussion: 330 

Clinical case reports have documented transfusion-associated hyperkalemia, which can lead to 331 

conduction disturbances, ventricular tachycardias, and/or cardiac arrest(3, 7, 8, 24, 42, 54, 59). 332 

Further, studies suggest that transfusion-associated adverse events may be associated with the 333 

storage age of blood products, as RBCs undergo a cascade of morphological, biochemical and 334 

metabolic changes over time that are collectively termed the ‘RBC storage lesion’ or ‘metabolic 335 

aging’(7, 42, 54, 60). This study is the first to demonstrate that ‘older’ blood products may 336 

directly impact myocardial automaticity and electrical conduction, using experimental cardiac 337 

models. Importantly, we show that supernatant collected from ‘fresh’ RBC units (7 days post-338 

donor collection) had no effect on heart rate, sinus node function, atrial or atrioventricular 339 

conduction, or myocardial refractoriness in an isolated, whole heart model. A follow-up study in 340 

human cardiomyocytes revealed that supplementation with 10% sRBC from ‘fresh’ units (day 7) 341 

had a modest increased the spontaneous beating rate over time, which may be attributed to 342 

mild hyperkalemia (6.0+0.6 mM K+). In comparison, whole heart preparations exposed to 343 

supernatant from aged RBC units (>30 days post-collection) displayed bradycardia, slowed 344 

atrial and atrioventricular conduction, and an increase in the refractoriness of the ventricle and 345 

AV node. Notably, other groups have suggested that the maximal allowable red cell storage 346 

duration be reduced from 42 to 35 days, due to increased hemolysis and a sharp increase in 347 

nontransferrin-bound iron after 5 weeks in refrigerated storage(53). Although we did not 348 

measure either free iron or non-transferrin bound iron levels in this study, our results closely 349 

align with this conclusion, as electrophysiological disturbances were predominately observed in 350 

units stored 30+ days post-donor collection.  351 

 352 

Mechanistic links between RBC transfusion and adverse cardiac outcomes 353 

Blood transfusion complications include an increased risk of bradycardia and cardiac arrest, 354 

which may be precipitated by an elevated potassium level in the supernatant of RBC units(3, 8, 355 
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42, 59, 67). As extracellular potassium increases, electrochemical gradients are diminished and 356 

the cardiomyocyte resting membrane potential becomes less negative(18, 49, 72). Accordingly, 357 

mild hyperkalemia can enhance cardiomyocyte excitability – similar to our observation with day 358 

7 sRBC treatment in human cardiomyocytes. But, with more severe hyperkalemia, the change 359 

in resting membrane potential decreases the availability of voltage-gated sodium channels that 360 

are critical to depolarization and myocardial excitability(72). Accordingly, severe hyperkalemia is 361 

marked by sinus node dysfunction and sinus arrest(21). Similar observations were observed in 362 

our study when cardiac preparations were exposed to increasing potassium concentrations, a 363 

prominent biomarker of red cell storage lesion that can, at least in part, contribute to the 364 

electrical disturbances observed in this study. 365 

As described above, hyperkalemia shifts the resting membrane potential and reduces the 366 

availability of voltage-gated sodium channels. As the action potential upstroke slows, electrical 367 

conduction slows, which manifests as a prolongation of P-waves, PR interval and QRS interval 368 

time(18, 49, 72). Atrial cardiomyocytes are the most sensitive to elevated potassium 369 

concentrations – followed by the ventricular myocardium and then specialized conductive tissue, 370 

including the sinoatrial node and bundle of His(18, 49, 72). Accordingly, electrical disturbances 371 

attributed to high [K+] are initially observed as widened p-waves with shorter amplitudes, 372 

followed by atrioventricular and ventricular conduction delays as extracellular [K+] continues to 373 

increase. Instead of a gradual change in cardiac parameters, we observed a global depression 374 

in electrical conduction that was largely limited to sRBC samples near expiration and/or 10-12 375 

mM K+ perfusion. The latter may be attributed to the sensitivity of our model system(6), species-376 

specific differences in ion channel expression and electrophysiology(20, 74), and/or other 377 

attributes of the RBC storage lesion (e.g, lactate, free-iron, plasticizer leaching) that may have 378 

additional effects on cardiac electrophysiology(13, 14, 29, 32, 53). 379 

Although not investigated in the present study, phthalate chemical exposure is another potential 380 

contributor to heart rate slowing and sinus node dysfunction. Phthalate chemicals are frequently 381 

used as plasticizers in blood bags, and studies have shown that storage age is associated with 382 

an accumulation of harmful phthalate chemicals in the supernatant of stored RBC products (18-383 

fold increase, day 5 vs 42 post-donor collection)(13). Phthalate chemical exposure has been 384 

associated with bradycardia in in vivo(56), in vitro(57) and using an isolated heart model(1). 385 

Moreover, our laboratory previously reported that phthalate plasticizers can lead to sinus node 386 

dysfunction in an isolated heart model, delaying SNRT by 54% compared with control(32). 387 

Additional studies are needed to investigate the additive effects that may result from 388 
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hyperkalemia and phthalate chemical exposure. 389 

 390 

Clinical Implications 391 

In the current study, we focused our attention on hyperkalemia as a plausible mechanism for the 392 

electrophysiology disturbances observed in our model system after exposure to ‘old’ RBC 393 

samples. Hyperkalemia has been reported in >70% of adult trauma patients following 394 

transfusion(54), and observed in 18-23% of pediatric trauma patients following transfusion(43). 395 

Moreover, Smith, et al. reported that an increase in serum potassium levels (5.9-9.2 mEq/l) was 396 

associated with a higher risk of cardiac arrest(59), which is more likely to occur following rapid 397 

transfusion, large volume transfusion, or in cases of low cardiac output that impairs the 398 

redistribution of potassium(7, 42). Potential solutions to help mitigate the risk of hyperkalemia 399 

include prebypass filtering(16), washing RBCs(67) or limiting RBC storage duration(40, 42, 53, 400 

54, 59). Notably, longer blood storage duration has been associated with suboptimal outcomes 401 

in high-risk pediatric surgery cases(44) and cardiac operations(40, 52). Recent randomized 402 

controlled trials have indicated that transfusion of ‘fresh’ blood (e.g., 1-10 days) does not 403 

decrease the risk of mortality when compared to standard of care (e.g., 2-3 weeks)(22, 27, 41, 404 

63, 64). However, much less is known about the safety of prolonged RBC storage (e.g., 30-42 405 

days) or the impact of ‘old’ blood products on secondary cardiac endpoints(4, 55). Accordingly, 406 

expert panels have highlighted the lack of evidence-based data to reach consensus on the 407 

safety of RBC storage age in relation to critically ill children, including those undergoing surgical 408 

repair for congenital heart defects or those undergoing extracorporeal membrane 409 

oxygenation(9, 68). The presented study highlights the importance of studying the direct impact 410 

of RBC storage lesion on end-organ function, with an emphasis on cardiac electrophysiology 411 

given the sensitivity of the heart to electrolyte disturbances. 412 

 413 

Limitations: The scope of our study was limited to the effects of acute cardiac exposure to 414 

supernatant collected from RBC units. Whole heart and cardiomyocyte models were used to 415 

investigate the direct effects of sRBC-mediated biochemical disturbances on electrical activity. 416 

However, in vitro and ex vivo results may differ from those observed in vivo, with an intact 417 

vascular and autonomic nervous system. To mimic patient exposure following a large 418 

transfusion, we estimated 10% supernatant volume exposure from reconstituted blood – based 419 

on volumes reported in cardiac surgery and/or extracorporeal membrane oxygenation studies. 420 
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Additional studies are warranted to assess additional effects that may result from reconstituted 421 

blood containing aged RBCs, or the risk to sensitive populations including those with low 422 

cardiac output. 423 
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FIGURES  441 

Figure 1. Heart preparation and experimental timeline.  442 

(A) Isolated, intact rodent heart with retrograde Langendorff-perfusion via an aortic cannula. 443 
Pacing electrodes were attached to the right atria (RA) and apex of the left ventricle (LV) to 444 
perform an electrophysiology study (EP). (B) Experimental timeline included 30-min perfusion 445 
with KH-media, containing 4.5 mM K+ (control), which commenced with an EP protocol. 446 
Thereafter, the media remained unchanged (control), supplemented with 10% sRBC, or 447 
supplemented with increasing potassium concentrations. The EP study was repeated again 448 
after 15-20 min, and results were compared to baseline. 449 

 450 

  451 
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 452 

 453 

 454 

Figure 2. Biochemical composition of supernatant from red blood cell units (sRBC).  455 

Biochemical analyses of sRBC diluted to 10% volume in KH-buffered media. Storage age was 456 
associated with deviations in the electrolyte composition of sRBC samples. Mean + SEM, *p < 0.05 457 
relative to control (crystalloid KH perfusion buffer), n>3 per time point.   458 

 459 
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Figure 3. RBC storage age is associated with heart rate slowing and sinus node dysfunction 461 

(A) Biosignals recorded from isolated hearts perfused with media supplemented with 10% sRBC 462 
collected from a day 7 unit, or (B) day 40 unit. Electrocardiograms were recorded during sinus 463 
rhythm (RR interval highlighted), followed by train of atrial paces (black arrows denote pacing 464 
spikes). Each atrial pace results in a ventricular response. Sinus node recovery time (SNRT) was 465 
measured from the last pacing spike to resumption of sinus rhythm. (C) Stable heart rate following 466 
exposure to RBC units aged 7-30 days, but bradycardia observed with sRBC collected from units 467 
aged >40 days. (D) Heart rate slowing observed at highest potassium concentration tested (12 mM 468 
K+). (E) Exposure to day 40 or 50 sRBC resulted in slowed sinus node recovery. (F) Increased 469 
SNRT also observed at highest potassium concentration tested (12 mM K+). Mean + SEM, *p < 470 
0.05.   471 
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Figure 4. RBC storage age is associated with slowed atrioventricular conduction 472 

(A) Electrocardiograms recorded during sinus rhythm from isolated hearts perfused with control 473 
media (left), media supplemented with 10% sRBC collected from a day 7 unit (middle) or day 40 unit 474 
(right). PR interval time is denoted. (B) Atrioventricular conduction slows in the presence of day 40 475 
and day 50 sRBC, or 10-12 mM K+. (C) Exposure to sRBC units had no measurable effect on 476 
ventricular depolarization time (QRS) during sinus rhythm. Mean + SEM, *p < 0.05. 477 

 478 
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Figure 5. RBC storage age is associated with increased refractoriness of the AV node 480 

(A) Biosignals recorded with atrial pacing (S1-S1) to measure Wenckebach cycle length (WBCL) in 481 
isolated hearts in the presence of day 7 sRBC, (B) day 40 sRBC, or (C) 10 mM K+. (D) Slowed 482 
atrioventricular node conduction following exposure to sRBC from units 30-50 days old, but not 483 
‘fresh’ day 7 units. (E) Slowed atrioventricular conduction following exposure to 10-12 mM K+. 484 
Arrows denote ventricular response to atrial pacing at S1 (black) pacing cycle length. ≠ denotes 485 
failed conduction. Mean + SEM, *p < 0.05. 486 
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Figure 6. RBC storage age is associated with an increased AV node effective refractory 487 
period  488 

(A) Biosignals recorded with atrial pacing (S1-S2) to pinpoint atrioventricular node effective 489 
refractory period (AVNERP) in the presence of day 7 sRBC, (B) day 40 sRBC, or (C) 10 mM K+. 490 
(D) AVNERP did not change after exposure to day 7-30 sRBC, but increased with day 40 and 491 
day 50 sRBC exposure. (E) AVNERP increased with severe hyperkalemia. Arrows denote 492 
ventricular response to atrial pacing at S1 (black) or S2 (gray) pacing cycle length. ≠ denotes 493 
failed conduction. Mean + SEM, *p < 0.05.   494 
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Figure 7: RBC storage age is associated with increased ventricular refractoriness 495 

(A) Biosignals recorded with ventricular pacing (S1-S2) to pinpoint the ventricular effective refractory 496 
period (VERP) in isolated hearts perfused with media supplemented with 10% sRBC collected from 497 
a day 7 unit, (B) day 40 unit, or (C) 10 mM K+. (D) Ventricular refractoriness was unchanged after 498 
exposure to day 7-30, but increased with day 40-50 sRBC and (E) media supplemented with 8-12 499 
mM K+. Arrows denote ventricular response to pacing at S1 (black) or S2 (gray) pacing cycle 500 
length. ≠ denotes failed conduction. Mean + SD, *p < 0.05.   501 
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 502 

 503 

Figure 8. Reduced automaticity in human cardiomyocytes 504 

(A) Microelectrode array heat map shows 16-electrode recordings from cardiomyocytes treated with 505 
control media (4.5 mM K+), media with increasing potassium concentrations (9-12 mM K+) or 10% 506 
sRBC collected from RBC units aged 7-40 days. The heat map corresponds to the spontaneous 507 
beating rate. (B) Biosignals recorded from human cardiomyocytes show a decline in beating rate 508 
with elevated potassium concentrations. (C) Percent change in beating rate following treatment with 509 
elevated potassium concentrations, compared to baseline. (D) Biosignals show a decline in the 510 
beating rate with ‘older’ sRBC samples (day 35-40) but not ‘fresh’ sRBC samples (day 7). (E) 511 
Percent change in beating rate following sRBC treatment, compared with baseline. Mean + SEM, 512 
n>12, *Significantly different from baseline, p < 0.05.   513 
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