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Abstract 
The months between birth and age 2 are increasingly recognized as a period critical for neuro-
development, with potentially life-long implications for cognitive functioning. However, little 
is known about the growth trajectories of brain structure and function across this time period. 
This is in large part because of insufficient approaches to analyze infant MRI scans at different 
months, especially brain segmentation. Addressing technical gaps in infant brain segmentation 
would significantly improve our capacity to efficiently measure and identify relevant infant 
brain structures and connectivity, and their role in long-term development. In this paper, we 
propose a transfer-learning approach based on convolutional neural network (CNN)-based im-
age segmentation architecture, QuickNAT, to segment brain structures for newborns and 6-
month infants separately. We pre-trained QuickNAT on auxiliary labels from a large-scale da-
taset, fine-tuned on manual labels, and then cross-validated the model’s performance on two 
separate datasets. Compared to other commonly used methods, our transfer-learning approach 
showed superior segmentation performance on both newborns and 6-month infants. Moreover, 
we demonstrated improved hippocampus segmentation performance via our approach in pre-
term infants.  

Keywords: Transfer Learning, Infant Brain Segmentation, QuickNAT, Deep Neural Networks, 
Hippocampus, Preterm.  

1 Introduction 
Human brain development from birth to ~2 years of age is dynamic and increasingly recognized as 
crucial for establishing cognitive abilities and behaviors that last a lifetime, as well as risk for neuro-
psychiatric disorders, e.g., autism and schizophrenia [1]. Thus, it is crucial to understand and quantify 
typical neurodevelopmental trajectories from which deviant maturation indicative of developmental 
delay and/or disorders can be identified, as early and precisely as possible. Despite their importance, 
little is known about trajectories of structural and functional brain development during this sensitive 
period, and even less is known about how deviations in these trajectories relate to emerging cognition 
and behavior or predict later developmental outcomes. This significant scientific gap is partially due 
to current technical limits on the rigorous and valid quantification of brain structure and functioning in 
infants via MRI. MRI is an important, non-invasive approach for the study of developmental neuro-
science. However, there are insufficient approaches available for accurate and automated (i.e., time-
efficient) segmentation of early brain structural MRIs - a process that is vital for virtually all quantita-
tive analyses across MRI modalities, e.g., diffusion MRI, functional MRI. Without accurate and au-
tomated segmentation, infant MRI analysis is prone to systematic errors and is labor-intensive, limit-
ing both sample sizes, reliability, and reproducibility. Addressing the challenges of first-year devel-
opmental infant brain segmentation will significantly advance efforts toward early identification of 
developmental delays and/or developmental disorders and monitoring the effects of interventions. 
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As opposed to MRI scans from adults for which various automated pipelines are effective (e.g., 

FAST[2], SPM, FreeSurfer[3]), in infants, the segmentation step is by far the most difficult to imple-
ment. Compared with adults, infant brains 1) have a much lower contrast-to-noise ratio due to the 
relative lack of myelination and shorter scan times; 2) lower resolution due to the smaller overall vol-
ume of the brain; 3) reversal of gray matter (GM)/ white matter (WM) voxel intensity values before 6 
months of age due to the transiently lower intensity of unmyelinated WM fibers relative to GM; and 
4) similar GM/WM intensity values between 6-9 months, which reach adult values by 1 year of age. 
Another difficulty in applying a standardized approach is that the early infant brain experiences dra-
matic shifts in brain development over months. This creates difficulty in adapting extant infant tissue 
atlases, generally limited to a single age, to guide segmentation of scans acquired at other, even prox-
imal ages. 

In response to these challenges, various methods and pipelines have been attempted to segment the 
early infant brain MRI scans, e.g., DrawEM[4], iBEAT[5], MANTiS[6]. However, the smooth inte-
gration of these methods into a typical infant research workflow has been found challenging in differ-
ent aspects. First, these methods often only work at fixed ages, such as newborns and 1 year old. Se-
cond, these methods are computationally demanding and time-consuming. Lastly, good comparability 
with manual segmentation by an expert neuroanatomist has yet to be achieved when applying these 
methods into an independent infant MRI dataset. 

Convolutional neural network (CNN)-based methods have been introduced for infant brain seg-
mentation in the last few years. In the most recent six-month infant brain segmentation challenge, the 
top-ranked team achieved good segmentation accuracy via adapted CNN architectures[7]. However, 
the number of training and testing subjects are small (N=10); therefore, their trained models may not 
be applicable to the infant scans acquired from different ages, sites, scanners or imaging protocols 
based on limited annotated data. A recent adaptation of a deep CNN called QuickNAT [8] has been 
documented to yield good accuracy and reproducibility on a large variety of adult neuroimaging da-
tasets with 20-seconds-per-subject speed.    

In this paper, we propose to pre-train QuickNAT on a large-scale neonatal MRI dataset with auxil-
iary labels (Dataset I: n=473; ages 0.8 ± 0.7 months) generated from existing neonatal brain segmen-
tation software. Subsequently, in a transfer-learning approach, we fine-tune and cross-validate the pre-
trained model on manual labels from two independent infant MRI datasets with significant different 
age distributions (Dataset II: n=10; ages 1.1 ± 0.2 months; Dataset III: n=10; ages 6 ± 0.5 months). 
Third, we assess the segmentation performance of our strategy compared with other commonly used 
approaches in term-born infant and preterm infants.  

 

2 Materials and Methods 
2.1 Imaging Datasets 
We used three independent, publicly available infant datasets to train and test our deep learning mod-
els. Of note, these datasets come from different MRI scanners and used different imaging protocols 
(Table 1), which we leveraged to optimize the training and testing of the model. We resampled MRI 
scans from Dataset II and Dataset III to match the imaging dimension and voxel resolutions of Da-
taset I. Because of the higher tissue contrast in T2-weighted images, we only used T2w structural 
scans for the automatic segmentation. 
Dataset I: Developing Human Connectome Project (dHCP) comes from an ongoing large-scale 
collaborative project. We used 473 subjects from the second dHCP data release. More details about 
the imaging parameters and preprocessing procedures can be found in the original work [9]. Auxiliary 
labels (87 regions and 9 tissues) used for the pre-training CNN model were generated by the dHCP 
structural minimal processing pipeline.  
Dataset II: Melbourne Children’s Regional Infant Brain (M-CRIB), consists of 10 neonatal sub-
jects. Imaging parameters and preprocessing procedures are described in [6]. The M-CRIB dataset 
was manually annotated with 100 regions labels by an experienced neuroanatomist.   
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Dataset III: iSeg-2017 is a subset of the 2017 6-month infant MRI brain segmentation MICCAI chal-
lenge dataset. Imaging parameters and preprocessing procedures can be found in [7]. Manually anno-
tated 3 tissue labels were released along with this dataset.   

Table 1. Demographics, MRI Imaging Protocols, and Labels for Three Datasets 
 Dataset I Dataset II Dataset III 
Subject Number 473 10 10 
Age at scan (months) 0.8 ± 0.7 1.1 ± 0.2 6.0 ± 0.5 
Gender    

F 207 4 5 
M 266 6 5 

MRI Scanners 3T Philips 3T Siemens 3T Siemens 
MRI Image Dimensions 290×290×203 304×304×157 144×192×256 
MRI Voxel Resolution 0.5×0.5×0.5mm 0.63×0.63×0.63mm 1×1×1mm 
Training/Test Slices 96,019 1,570 2,560 
Ages are presented as mean ± standard deviation. 

 
2.2 QuickNAT Architecture 
QuickNAT is based on a fully convolutional neural network for the segmentation of whole-brain 
neuroanatomy via adult T1-weighted MRI scans. Technically, QuickNAT is a modified version of U-
Net with skip connections, enhanced by unpooling layers, which makes the architecture more capable 
of segmenting small subcortical structures. Also, QuickNAT introduces dense connections in both 
encoder and decoder blocks to aid gradient flow from the shallower to deeper layers and to promote 
feature re-usability. This is essential given the limited amount of training data in the field of infant 
brain research. To simplify our work, in this paper, we only used the axial slices of two-dimensional 
(2D) T2 weighted MRI data as input images and output segmented images with multi-class labels 
(including tissues and anatomical regions). We chose multi-class segmentation classifiers over binary 
classifiers because we aimed to evaluate the model's performance for differentiating adjacent tissues. 
A detailed explanation of QuickNAT can be found in [8].  

2.3 Performance Analysis 
In this paper, we ran three deep learning experiments with hyperparameter fine-tuning and segmenta-
tion performance evaluation. We also made a comparison between our transfer-learning approach and 
other commonly used approaches.  
• Cross-Validation: In experiment 1, we validated our model in the holdout 20% Dataset I. In ex-

periments 2 and 3, we performed a leave-one-out cross-validation across the entire Datasets II and 
III.  

• Hyperparameter fine-tuning: We trained each model for 50 epochs with 9 different pre-defined 
learning rates (see supplemental materials) and chose the optimal learning rate based on segmenta-
tion accuracy on the test dataset. Batch size is set to 8, limited by the 24GB RAM of NVIDIA 
Geforce Titan RTX GPU.  

• Dice Score and Accuracy: Model performance was evaluated with both accuracy and Dice Score.  
For accuracy, we calculated the intersection area of true labels (A) and predicted labels (B) divided 
by the area of the predicted label [Equation 1], where A and B denote the segmentation labels gen-
erated manually and computationally, respectively. Dice Score is 2 * the area of intersection of the 
true labels and predicted labels divided by the sum of the area of predicted labels and true labels 
[Equation 2]. Since the models are multi-class, we did the same calculation for each label in each 
experiment. 

Accuracy =
|���|

|�|
         (1) 

Dice Score = 
�|���|

|�|�|�|
         (2) 
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Other common segmentation approaches: In addition, we compared segmentation accuracy de-
rived from our transfer-learning segmentation approach with other commonly used infant segmen-
tation methods, including DrawEM, iBEAT, MANTiS, and FAST. 

 

3 Experiments and Results 
3.1 Experiment 1: Baseline model on Dataset I with auxiliary labels 
In this experiment, we randomly split Dataset I into two parts:  80% of subjects with 2D axial slices 
for training (76,815) and the other 20% subjects (19,204) for testing the performance of the model. 
We trained this baseline model with hyperparameter tuning, including learning rates, epochs, and 
batch sizes. The optimal learning rate is 5×10-5. We tested the model's performance by calculating the 
Dice Score and the accuracy on the test dataset for 87 regions and 9 different types of tissues separate-
ly (see supplemental materials). The goal of experiment 1 was to output an optimized baseline model 
with pre-trained weights. Our baseline model showed an average 88% accuracy and Dice Score for 
region segmentation and 95% accuracy and Dice Score on tissue segmentation (Table 2). 

Table 2. Baseline Model Performance from Experi-
ment 1 

 Multi-region  
Segmenta-

tion 
(N=87) 

 

Multi-tissue  
Segmenta-

tion 
    (N=9) 

Mean Dice Score  0.88 ± 0.05 0.95 ± 0.03 
Mean Accuracy 0.88 ± 0.06 0.95 ± 0.03 
Values are presented as mean ± standard deviation. 

 
3.2 Experiment 2: Transfer pre-trained baseline model to Dataset II  

Motivated by the superior performance of our baseline model (see 3.1), we applied the baseline model 
to Dataset II, which has a similar age distribution as Dataset I. We trained the model in two stages. In 
stage I, we took the initial weights of the baseline model from experiment 1 and modified the classifi-
er in last layer to make the architecture compatible with the number of tissue/region labels in Dataset 
II. Then, we unfroze the last classifier layer and ran it for 15 epochs. In stage II, we unfroze the re-
maining layers and trained the entire model for 50 epochs. The optimal learning rate is 1×10-4, and 
details can be found in supplemental materials. 

The confusion matrix is provided in Fig.1A. Overall, predicted labels from the proposed approach 
achieves 90%  Dice Score. For each tissue, the mean accuracy of each epoch is calculated across all 
subjects after 10 iterations. Mean accuracy over epochs  

Fig. 1 Transfer learning approach on multi-class tissue segmentation for Dataset II. 
A) confusion matrix, B) mean accuracy over epochs for each tissue, C) A zoom view 

of hippocampus segmentation from our approach over manual labels. 
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is plotted in Fig.1B, and no overfitting sign is observed. Of note, our transfer learning approach is 
capable of segmenting small subcortical structures such as the hippocampus in term-born infants, 
shown in Fig.1C.  

3.3 Experiment 3: Transfer pre-trained baseline model to Dataset III 

To test our proposed approach on segmenting infant brain structures across difference ages, we 
adapted similar training and testing procedures as experiment 2 on Dataset III, which has an average 
age of six months. The optimal learning rate is 1×10-4 , and details can be found in supplemental mate-
rials. The confusion matrix is provided in Fig.2A. Overall, predicted labels from our proposed ap-
proach achieves 85% Dice Score. Confusion occurs most for adjacent classes of WM and GM. For 
each tissue, the mean accuracy of each epoch is calculated across all subjects after 10 iterations. Mean 
accuracy over epochs is plotted in Fig.2B, and no overfitting sign is observed. We also inspected the 
performance of segmenting sulcal area (red arrow) and found good results (Fig.2C). 

 

Fig. 2 Transfer learning approach to six-month infant brain segmentation (Dataset III). A) confusion 
matrix, B) mean accuracy over epochs for each tissue, C) A zoom view shows the comparable perfor-

mance of our proposed in segmenting sulci with manual labeling.  

3.4 Comparing with other commonly used methods 

For both Dataset II and Dataset III, we calculated and compared segmentation performance as well 
as the computational speed by our transfer learning approaches with other methods, e.g., DrawEM, 
iBeat, MANTiS, and FAST.  

Relative to other commonly used approaches or pipelines, our transfer learning approaches 
achieves highest Dice Score on both newborn (Fig.3A) and 6-month infant (Fig.3B) brain segmenta-
tion. In addition, our approach segments whole brain in 4 seconds, which is an order of magnitude 
faster than other approaches, see Fig. 3C.  
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Fig. 3 Segmentation performance comparisons on A) Dataset II, B) Dataset III.  C) Segmentation 
speed for our proposed approach, FAST, MANTiS, iBeat, and DrawEM. 

3.5 Clinical and research utility for precise  hippocampus segmentation in preterm infants.  
 
In the above experiments, we observed that our approach provide accurate segmentation of the infant 
hippocampus. This could have significant value in clinical research because the hippocampus is a 
structure critical for learning, memory, and emotion regulation[10]. Moreover, atypical development 
of the hippocampus is posited to be related to several neuropsychiatric disorders including 
ADHD[11], schizophrenia[12], depression[13], and anxiety[14]. Lastly, the hippocampus is sensitive 
to early environmental insults such as preterm delivery[15, 16], where early moritoring of hippocam-
pal maturation could help inform future interventions and precision medicine[17, 18]. To further ex-
plore this possibility, we investigated hippocampal segmentation accuracy via our transfer-learning 
approach in an infant prematurely born at 34 weeks obtained from the dHCP dataset. As shown in Fig. 
4, our method provided greater accuracy than DrawEM segmentation. 
  

 

Fig. 4 Hippocampus segmentation in one preterm infant. A) the 82nd axial slice, B) manual polygon red 
contour with ITK-SNAP around left hippocampus, C) DrawEM segmentation (blue color), D) segmenta-

tion from our transfer learning approach (green color). 

4 Discussion 
In this paper, we proposed a transfer-learning approach based on the QuickNAT architecture, which 
can transfer the knowledge of auxiliary labels learned from a large-scale public dataset to better seg-
ment brain neuroanatomy for infants at different ages from independent sources. Compared to other 
commonly used infant MRI processing methods, our approach significantly improved the accuracy 
and speed of segmenting brain structures for newborns and 6-month old infants, suggesting the poten-
tial for extending our work to diverse ages of infants. Moreover, via our transfer-learning approach, 
hippocampus segmentation accuracies improved in both preterm and term-born infants, indicating 
potential clinical and research utility for studying hippocampus development in prematurely born in-
fants. 
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