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Abstract 

Large independent analyses on cancer cell lines followed by functional studies have 

identified Schlafen 11 (SLFN11), a putative DNA/RNA helicase, as the strongest 

predictor of sensitivity to DNA-damaging agents. However, its role as a prognostic 

biomarker is undefined, partially due to the lack of validated methods to score 

SLFN11 in human tissues. Here, we implemented a pipeline to quantify SLFN11 in 

human cancer samples. By analyzing a cohort of high-grade serous ovarian 

carcinoma specimens prior platinum-based chemotherapy treatment, we 

demonstrate that SLFN11 is expressed by infiltrating innate and adaptive immune 

cells. We show, for the first time, that SLFN11 density in both the neoplastic and 

microenvironmental components was independently associated with favorable 

outcome. Transcriptomic analyses suggested the presence of a hitherto modulation 

of the cancer-immunity cycle orchestrated by SLFN11. We propose SLFN11 as a 

dual biomarker capturing simultaneously interconnected immunological and cancer-

cell-intrinsic functional dispositions associated with sensitivity to DNA damaging 

agents.  
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Introduction 

The putative DNA/RNA helicase Schlafen11 (SLFN11) was independently reported 

by us(Zoppoli et al, 2012) and others to be the top correlating transcript, amongst 

more than 20,000, with the response of cancer cells to DNA damaging agents (DDA) 

with different modes of action such as topoisomerase I (e.g. topotecan and 

irinotecan)(Barretina et al, 2012; Coussy et al, 2020), topoisomerase II inhibitors 

(e.g. epirubicin) and bulk alkylating or alkylating and crosslinking-like agents (e.g. 

cyclophosphamide or platinum salts, respectively)(Conteduca et al, 2020; Iwasaki et 

al, 2019; Stewart et al, 2017). Subsequently, a positive association between SLFN11 

and sensitivity to Poly (ADP-ribose) polymerase inhibitors (PARPi) was also 

described(Lok et al, 2017; Murai et al, 2016; Pietanza et al, 2018; Stewart et al., 

2017). After our discovery, several studies confirmed the causal role of SLFN11 in 

the process of cell death upon DDA challenge in cell lines(Murai et al, 2018; Murai et 

al, 2020), organoids(Conteduca et al., 2020) and xenografts(Coussy et al., 2020; 

Iwasaki et al., 2019; Stewart et al., 2017) from different tumor types. Moreover, 

SLFN11 has been recently studied in relation with the immune system(Mezzadra et 

al, 2019; Stewart et al., 2017), especially in breast cancer(Isnaldi et al, 2019), and for 

its potential role as an endogenous inhibitor of viral replication(Li et al, 2012) and 

translation of DNA damage response proteins(Li et al, 2018). Taken together, the 

available literature suggests that SLFN11 may play a so far not completely 

understood role in an intertwined process of cancer and immune response to DDA-

based chemotherapies. Indeed, it has been shown that SLFN11 is strictly correlated 

with immune-related transcripts in breast cancer(Isnaldi et al., 2019), and its 

expression is regulated by interferon signaling in primary human cells(Li et al., 2012; 

Puck et al, 2015) and, possibly, also in neoplastic cells(Mezzadra et al., 2019; 

Stewart et al., 2017). Moreover, SLFN11 is associated with early interferon-response 

genes in neoplastic cells(Stewart et al., 2017), hence pointing toward an exogenous 

regulation of its levels by the tumor-infiltrating immune milieu. One of the human 

cancers whose standard-of-care (SoC) treatment relies upon DDA, and which are 

considered particularly sensitive to such category of chemotherapeutics, is high-

grade serous ovarian carcinoma (HGSOC). HGSOC is the most common histologic 

subtype of ovarian cancer, accounting for three quarters of newly diagnosed 

cases(Lisio et al, 2019). Initial SoC treatment for advanced stage HGSOC (the most 
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frequent presentation stage for this poor-prognosis disease) consists of a platinum 

salt-taxane chemotherapy (CT) combination regimen, interposed or preceded by 

surgical debulking(Lheureux et al, 2019). In spite of macroscopically complete 

resection (R0) and upfront chemotherapy, most HGSOC patients will eventually 

progress and die from their disease. In this context, several studies have shown that 

tumor-infiltrating lymphocytes (TILs), especially CD3+ and CD8+ TILs, may have a 

role as a prognostic biomarker, but their clinical utility is still unclear(Stanske et al, 

2018). In this study, our main aim was to determine whether SLFN11 transcript and 

protein could be accurately and reproducibly measured in two different serous 

ovarian cancer cohorts, one internal and another one from TCGA, considering the 

following aspects: a) the sensitivity of HGSOC to DDA, b) the need for clinically 

useful prognostic biomarkers for chemotherapy treatments, c) the potential 

connection between SLFN11 and TILs, and, d) the potential shown by SLFN11 

modulation in preclinical models. We explored how SLFN11 protein is expressed in 

cancer cells and their surrounding microenvironment and, most importantly, whether 

SLFN11 could represent a relevant prognostic biomarker to platinum-based 

treatment response in advanced stage HGSOC patients. 

 

Results  

1. Demographics. The clinico-pathological features of HGSOC cases selected for 

the present analysis, as detailed in the Methods section, are reported in Table 1 and 

Supplementary Table 1. The proportions of advanced stage HGSOC patients were 

balanced between platinum- resistant (PR, N = 13) patients, defined as progressing 

within six months from the end of first CT, and platinum-sensitive (PS, N = 15) ones 

(85% and 87% respectively), as was the median number of completed cycles (seven 

in both groups). Median progression-free interval (PFI) was 4 months (95% CI = 2 – 

6) in PR patients and 11 months (95% CI = 9 – not reached) in PS ones. The 

patients had a median age of 62.4 years (95% CI = 56.8 – 66.9). In the studied 

cohort, PR cases were on average older than PS ones (65.7 vs. 58.2 years, p-value 

= 0.0026).   

 

2. SLFN11 levels are precisely defined by both transcript and protein levels in 

HGSOC samples. To assess SLFN11 in HGSOC cases, we evaluated both the 
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transcript levels by quantitative real-time polymerase chain reaction (qRT-PCR) as -

ΔΔCt, and the protein levels by immunohistochemistry (IHC) as H-score, blindly 

measured by HALO (CW) in formalin-fixed, paraffin-embedded (FFPE) samples (see 

Supplementary Table 1 and Figure S1). Transcript and protein levels showed a 

strongly significant correlation (ρ = 0.52, p-value = 0.0051, see Figure 1A). This 

suggests that independent methods to measure SLFN11 in FFPE tissues yield 

comparable results, and that assessing either SLFN11 transcript or protein are both 

acceptable ways to analytically quantify the tissue levels of SLFN11 gene products. 

We next sought to test whether SLFN11 H-scores, blindly evaluated by a trained 

pathologist (JR) in cancer cells, could be consistently reproduced by digital 

pathology software such as HALO, which allows high content imaging assessment, 

and can provide quantitative measures on both cancer and non-cancer cells, as well 

as the two combined measures (“overall H-score”). Indeed, we found that the 

correlation between pathology-assessed and HALO-assessed H-scores in cancer 

cells was highly significant (ρ = 0.88, p-value < 0.0001, see Figure 1B), with excellent 

reliability(Koo & Li, 2016) (intraclass correlation coefficient – ICC – for agreement = 

0.88 and ICC for consistency = 0.90, see Figure 1C), no relevant bias, and a very 

slight trend towards higher H-scores given by HALO for higher means, as evaluated 

with the Bland-Altman limits of agreement method (see Figure 1D). Taken together, 

these results established the analytical validity of our IHC approach to SLFN11 

measurement in tumor specimens.      

 

3. Total and intratumoral infiltrating lymphocytes contribute to SLFN11 levels 

in HGSOC. Since several studies have reported on the role of TILs in the prognosis 

of ovarian cancer (Goode et al, 2017; Hwang et al, 2012; Li et al, 2017; Sato et al, 

2005), and SLFN11 has been shown to be expressed in primary human T-

lymphocytes(Puck et al., 2015), we evaluated TIL infiltration by CD3 and CD8 

staining (analysis performed by FG), both in terms of total number/mm (total CD3+ 

and CD8+ TILs) and as a measure of TILs in direct contact with cancer cells, without 

stroma interposition (intratumoral CD3+ and CD8+ TILs) in HGSOC(Stanske et al., 

2018). Using HALO, we then calculated SLFN11 overall H-scores in the studied 

cohort, as well as H-scores in cancer and non-cancer cells separately (see 

Supplementary Table 1). H-scores measured in non-cancer cells showed the 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 26, 2020. ; https://doi.org/10.1101/2020.05.22.110593doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.22.110593
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

6 

strongest correlations with TILs, whereas the H-scores in cancer cells exhibited a 

non-significant negative association with TIL counts (see Figure 2A and 

Supplementary Table 2). In particular, non-cancer H-score correlations with total 

CD3+ and CD8+ TILs were moderate at 0.41 (false discovery rate - FDR = 0.0723, 

see Figure 2B) and 0.39 (FDR = 0.0852, see Figure 2C) respectively. Indeed, 

SLFN11 protein assessment in the clinical specimens revealed its localization in both 

cancer cells and stromal cells of various origins (see Figure 2D for representative 

images of stroma SLFN11-high and tumor SLFN11-high or SLFN11-low pictures). 

Taken together, these results indicate that, in addition to TILs, other cell populations 

contribute to SLFN11 protein levels in tumor tissues. Of interest, a moderate 

association between cancer and non-cancer SLFN11 levels could be observed (ρ = 

0.50, FDR = 0.0208).  

   

4. SLFN11 in cancer and non-cancer cells independently predicts response to 

platinum-based chemotherapy in HGSOC. We next sought to explore whether 

higher SLFN11 protein levels associate with better outcome in platinum-treated 

advanced stage in our HGSOC cohort. First, we evaluated the impact of SLFN11 

overall H-score, H-score in cancer and non-cancer cells, as well as stage, age, and 

TIL infiltration on PFI by univariable statistics. Overall and non-cancer SLFN11 H-

scores were strongly associated with a better prognosis (HR = 0.50, 95%CI = 0.33 – 

0.75, p-value = 0.0009, and HR = 0.54, 95%CI = 0.36 – 0.81, p-value = 0.0028 

respectively). Among the other variables with possible prognostic impact assessed in 

our cohort, older age was associated with shorter PFI (hazard ratio – HR = 1.83, 

95% confidence interval – 95%CI = 1.19 – 2.82, p-value = 0.0062), whereas higher 

total CD3+ TILs were associated with longer PFI (HR = 0.55, 95%CI = 0.34 – 0.90, 

p-value = 0.0180). A borderline significant association with shorter PFI was observed 

for stage IVa vs. IIIc cancer (HR = 3.19, 95%CI = 0.89 – 11.46, p-value = 0.0758), 

whereas an opposite, trend be found for higher total CD8+ TIL count (HR = 0.67, 

95%CI = 0.41 – 1.09, p-value = 0.1040) and SLFN11 H-score assessed in cancer 

cells only (HR = 0.62, 95%CI = 0.38 – 1.02, p-value = 0.0620).  With an H-score cut-

off of 60, obtained by maximizing the accuracy to classify PR versus PS cases in our 

cohort, overall SLFN11 protein levels had an accuracy = 0.78, with sensitivity = 0.93 

and specificity = 0.62 (see Figure 3A). The association of overall SLFN11 H-score as 
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a binary variable with PFI was indeed significant, with an HR = 0.17 (95%CI 0.06 – 

0.45, p-value = 0.0004, see Figure 3B). When the most significant measure of 

SLFN11, i.e. the overall H-score, and the other variables with a p-value ≤ 0.1 were 

entered in a stepwise forward-backward multivariable Cox’s regression model, 

overall SLFN11 protein levels retained their independent prognostic value (adjusted 

HR = 0.56, 95%CI = 0.37 – 0.85, p-value = 0.0073), together with age and stage 

(see Figure 3C). Albeit exploratory in nature, these results were surprising in several 

regards. First, the independent prognostic value of overall SLFN11 H-score suggests 

that SLFN11 levels in both cancer and non-cancer cells may play a role in response 

to platinum-containing regimens in HGSOC. Indeed, dichotomized SLFN11 cancer 

(see Supplementary Figures 2A and 2B) and non-cancer (see Supplementary 

Figures 2C and 2D) levels were also prognostic by univariable analysis (even though 

with smaller significance than overall SLFN11, see Supplementary Table 3). 

Moreover, both cancer and non-cancer SLFN11 retained their independent role in 

stepwise multivariable models starting from the same set of variables as the one 

including overall SLFN11 (see Supplementary Figures 2E and 2F and 

Supplementary Table 3). An extremely interesting finding is that, when overall 

SLFN11 or non-cancer SLFN11 are considered together with the other covariates to 

generate a multivariable model, CD3+ TILs lost their independent prognostic role. On 

the other hand, when cancer SLFN11 H-score is used to generate a multivariable 

model, that measure is independently significant together with CD3+ TILs (see 

Supplementary Figure 2E). This observation strengthens the hypothesis that 

SLFN11 expressed in cancer cells, as observed in other studies, is directly linked 

with neoplastic cell sensitivity to alkylating agents independently of immune 

infiltration, whereas the prognostic relevance of non-cancer SLFN11 may instead 

underlie an “active” tumor immune milieu. In turn, these findings would explain why 

overall SLFN11 H-score is a stronger prognostic biomarker than either cancer or 

non-cancer SLFN11 measured separately.     

 

5. SLFN11 is expressed by cells of the innate and adaptive immune system 

infiltrating HGSOC. As our results indicated, SLFN11 plays a role in the response 
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to platinum-based treatment in HGSOC, due to its expression in both cancer and 

non-cancer (immune-related) cells. Moreover, non-cancer SLFN11 H-score shows 

only a moderate correlation with TILs, and they retain an independent prognostic 

value in HGSOC, thus suggesting that other cell subpopulations contribute to the 

overall levels of SLFN11 in tissues. Hence, we sought to better define these 

populations. With this aim, we estimated cancer cellularity in a second HGSOC 

cohort from The Cancer Genome Atlas (TCGA N = 302 cases) with 

ESTIMATE(Yoshihara et al, 2013), and we inferred leukocyte subpopulations using 

CIBERSORTx, a well-established method for characterizing the immune cell 

composition of tissues from their gene expression profiles(Newman et al, 2015). We 

first correlated the obtained values with SLFN11 transcript levels (see 

Supplementary Table 4). Of interest, not only adaptive immune system cells (CD4+, 

CD8+ T-cells as well as B cells), but also macrophages and Natural Killer (NK) cells 

showed a significant association with SLFN11 (FDR < 0.05). In fact, amongst 

immune cell subpopulations, macrophages showed the strictest correlations with 

SLFN11, and such observation was transversally confirmed for validation purposes 

by single sample gene set enrichment analysis (ssGSEA, correlation between 

enrichment score for macrophages and SLFN11 = 0.27, p-value < 0.0001, see 

Supplementary Figure 3A). Moreover, publicly available RNA-sequencing data from 

sorted leukocyte subpopulations (GEO accession GSE60420) corroborated our in 

silico findings: higher SLFN11 levels were observed in monocytes, followed by NK 

cells, CD8+ T-cells, B- cells and CD4+ T-cells, whereas - as in our results - the 

lowest SLFN11 transcript could be observed in neutrophils (see Supplementary 

Figure 3B). Cancer cellularity showed a negative correlation with SLFN11 expression 

in HGSOC TCGA OVCAR (ρ = -0.30, FDR < 0.0001, see Supplementary Figure 4A). 

This observation, independently confirmed in our cohort (ρ = -0.42, p-value = 0.0276, 

see Supplementary Figure 4B), could be explained by hypothesizing that HGSOC 

cases with lower cancer cellularity would, in general, have higher tumor immune cell 

infiltration, with consequently higher SLFN11 levels. To explore this hypothesis, we 

performed principal component analysis (PCA), including cancer cellularity together 

with immune cell subpopulations correlating with SLFN11 with FDR < 0.05 (see 

Figure 4A). PCA is a dimensionality reduction method enabling the identification and 

visualization of correlations and patterns between variables without aprioristic 
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assumptions about their mutual relationships. As anticipated, all immune 

subpopulations are represented as lying in opposition to cancer cellularity, in 

particular M1 macrophages, CD4+ memory resting T-cells and CD8+ T-cells. 

Moreover, the SLFN11 expression vector is lying close to those of the immune 

subpopulations it is more closely correlated to, such as T-cells and macrophages. 

Overall, PCA substantiates our hypothesis that high immune infiltration is driving the 

negative correlation of SLFN11 with cancer cellularity and that specific immune 

subpopulations are closely associated with high SLFN11 expression in HGSOC.  

 

6. SLFN11 is independently prognostic in the TCGA HGSOC data set. Finally, 

we validated the prognostic role of SLFN11 in TCGA HGSOC patients. To do so, we 

selected stage IIIc/IV cases with histological grade 3 and at least 28 days of 

progression-free interval (PFI - 221 cases with 157 progression events). SLFN11 

was associated with PFI (HR = 0.68, 95%CI = 0.49 – 0.95, p-value = 0.0233, see 

Figure 4B), and remained independently significant (adjusted HR = 0.67, 95%CI = 

0.47 – 0.94, p-value = 0.0222), together with age and specific immune cell 

subpopulations, in a multivariable Cox’s proportional hazards model with variables 

selected by lasso regularization (see Figure 4C). Of relevance, B and T-cell 

subpopulations were independently prognostic of an extended PFI, whereas 

monocytes, M2 (but not M1) macrophages, and activated NK cells were associated 

with poorer prognosis (for univariable survival analyses of immune cell subpopulation 

in the TCGA data set, see Supplementary Table 5). This result is in line with SLFN11 

correlations with immune cell subpopulations, in that B-cells and NK resting cells 

were associated with higher SLFN11 transcript, while NK activated cells were not. 

The surprisingly negative association between NK and prognosis might be related to 

imbalance of different NK cell subsets associated with diverse immune-modulatory 

properties. Monocytes and macrophages exhibited heterogeneous behavior in 

regard with prognosis when assessed in a multivariable fashion. We did not, 

however, try to model the interactions of SLFN11 with those subpopulations, due to 

the interpretational complexity of results in the absence of functional experiments, as 

well as the limited numerosity of the TCGA HGSOC dataset for such a purpose. 

Likewise, we wished to avoid the overinterpretation of an exploratory analysis which 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 26, 2020. ; https://doi.org/10.1101/2020.05.22.110593doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.22.110593
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

10 

would, anyway, be derived from in silico deconvolution methods not devoid of the 

potential for error propagation.       

 

7. SLFN11 protein localization with immune cell subpopulations is confirmed 

in tonsil and HGSOC tissues.  SLFN11 protein localization in a subset of cells in 

the immune cell compartment could be confirmed in tonsil and HGSOC (Figure 5) 

tissues from our cohort. In the tonsil, SLFN11 positive cells could be mainly found in 

the germinal center and the paracortical zone, and less in the mantle zone, of the 

lymphoid follicle. The germinal center is enriched in naïve and memory B-cells 

(CD20+) and monocyte/macrophages (CD68+), whereas the paracortical zone is 

mostly composed of T-cells (e.g. CD3+ and CD8+) (Figure 5A and supplementary 

figure 5). In HGSOC tissues we could observe high SLFN11 protein in those immune 

cell subtypes, particularly in monocytes/macrophages (Figure 5B, C for 

representative HGSOCs with varied SLFN11 protein in cancer cells). However, we 

also noted SLFN11 in other, to be defined, stromal cell subtypes. Taken together, we 

confirm that SLFN11 is expressed in macrophages, TILS and B-cells, but also in 

other still to be defined stromal cell types in HGSOC.  

 

8. High SLFN11 expression is associated with immune activity signatures in 

HGSOC. After demonstrating, in silico and through immunohistochemical analysis on 

an independent case cohort, that SLFN11 is not only expressed in cancer cells, but 

also in TILs, in macrophages, and other immune cell subpopulations, we wondered 

how SLFN11 expression in HGSOC is correlated with biologically selected, well-

established immune signatures representing hallmarks of immune activity, such as 

interferon α and γ signaling and STAT1 activation(Thorsson et al, 2018) (Liberzon et 

al, 2015; Teschendorff et al, 2010), MHC I and MHC II upregulation(Rody et al, 

2009; Rody et al, 2011) , antigen presenting machinery(Senbabaoglu et al, 2016) , 

immune xonstant of rejection(Bedognetti et al, 2016; Hendrickx et al, 2017)  and 

immunogenic cell death(Garg et al, 2016) . To do so, we correlated SLFN11 with 

those signatures in the HGSOC TCGA RNA-seq dataset (N=302 cases). All the 

aforementioned signatures showed extremely significant positive correlations with 

SLFN11 expression, with close reproducibility among signatures of similar meaning 

generated by different authors (see Figure 6). In particular, the two top correlating 
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signatures with SLFN11 in HGSOC were the immunogenic cell death signature (FDR 

= 5.44 x 10) and the interferon γ response hallmark signature (FDR = 1.23 x 10). 

Taken together, these findings are suggestive of a close, hitherto scarcely 

investigated link between SLFN11 and cancer immunity in HGSOC. 

  

Discussion  

Since the discovery of the human SLFN isoform SLFN11 in 2009(Bustos et al, 

2009), SLFN11 has been reported to play a role in the native immune response such 

as viral infections and interferon(Li et al., 2012; Puck et al., 2015), as well as a 

potential role in adaptive immunity in cancer(Isnaldi et al., 2019; Stewart et al., 

2017). In addition, work from various groups confirmed SLFN11 as being a 

determinant of sensitivity to a  broad range of DDAs with different modes of 

action(Barretina et al., 2012; Conteduca et al., 2020; Coussy et al., 2020; Deng et al, 

2015; Iwasaki et al., 2019; Stewart et al., 2017; Zoppoli et al., 2012), as well as 

PARP inhibitors(Lok et al., 2017; Murai et al., 2016; Pietanza et al., 2018; Stewart et 

al., 2017), in different, mainly preclinical, cancer settings. An understanding how 

SLFN11 modulates the response to chemotherapy in patients is of paramount 

importance for both basic biology and clinical viewpoints and is currently missing.  

The assessment of SLFN11 as a clinical biomarker is hindered by the lack of 

validate algorithms to score it in human tissues. By implementing analytic pipelines 

in clinical material, we demonstrate that SLFN11 in both the neoplastic and 

microenvironmental compartments of tumor specimens modulates the response to 

platinum-containing regimens in HGSOC patients. Our proposed working model, 

based by integrating our data with current knowledge, is as follows (Fig. 7): SLFN11 

expression might be controlled by endogenous (i.e. methylation) and exogenous 

factors (i.e., interferon gamma produced by tumor-reactive T cells). SLFN11 high 

cancer cells are more prone to undergo immunogenic cell death spontaneously or 

following platinum or other DNA damaging agent’s administration(Garg et al, 2017). 

Accordingly, T-cells are recruited and activate the interferon signaling cascade with 

consequent upregulation of MHC I and MHC II molecules, and induction of the 

cancer-immunity cycle. SLFN11 in cancer cells may directly contribute to immune 

system activation by inducing tumor necrosis factor- and innate immune response 
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pathways(Murai et al., 2020) and interferon signaling may directly and indirectly 

prompt cytotoxicity in cancer cells(Mezzadra et al., 2019).   

SLFN11 has been shown to predict response to DDA in different cancer 

models(Conteduca et al., 2020; Coussy et al., 2020; Deng et al., 2015; Iwasaki et al., 

2019; Shee et al, 2019; Zoppoli et al., 2012), but to our knowledge we describe here 

for the first time that SLFN11 has more predictive power when its expression in the 

stromal non-cancer compartment is taken into account. These results are important 

in several regards. First, they support overall SLFN11 profiling in clinical tissues, and 

we provide evidence that levels of SLFN11 can be precisely measured by both 

transcript and protein analyses. Second, these findings point out that SLFN11, which 

is only expressed in humans and some primates, should be best assessed in clinical 

tissues, rather than xenograft- or in vitro cancer tissues, to understand its relevance 

in a clinical setting. 

For the first time we confirm SLFN11 expression in tumor infiltrating innate 

(macrophages and NK cells) and adaptive immune cells (CD4+, CD3+ and CD8+ 

lymphocytes and B-cells). Our results support and add to recent findings, where it 

has been proposed that SLFN11 plays a role not only in the innate immune response 

such as defense mechanisms against viruses(Li et al., 2012) or damaged DNA(Mu 

et al, 2016; Murai et al., 2018; Murai et al., 2020), but also in adaptive immunity to 

combat cancer(Isnaldi et al., 2019; Stewart et al., 2017). Accordingly, Isnaldi et al. 

(2019) described an association of SLFN11 with TILs in breast cancer. Our results 

indicate high SLFN11 expression in macrophages and monocytes, in line with a 

previous report(Puck et al., 2015), whereas low expression was observed in 

neutrophils. SLFN11 protein localization was confirmed in macrophages, CD3+ and 

CD8+ TILs and naïve and memory B-cells in HGSOC tissues. Macrophages, when 

polarized to a M1 phenotype, are important to sustain a cytotoxic T cell 

response(Sica & Mantovani, 2012). However, we also noted SLFN11 presence in 

other stromal cell types that remain to be identified. Moreover, as SLFN11 is 

expressed in several infiltrating immune cells, it holds promise as a potential 

biomarker for immune infiltration and for response to immunotherapy drugs, although 

this warrants further investigations. 

In our analyses, we demonstrate that SLFN11 in cancer and immune cells is 

independently a predictor of response to chemotherapy in HGSOC. These 
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observations are in agreement with recent findings. Accordingly, in two other studies 

SLFN11 has been shown to be a predictive biomarker of longer survival in 

chemotherapy-treated ovarian cancer patient cohorts(Shee et al., 2019; Zoppoli et 

al., 2012). The concept that the immune-infiltrating milieu can modulate cancer 

prognosis is not new: multiple studies have reported on the role of TILs in the 

prognosis of ovarian cancer and HGSOC(Goode et al., 2017; Hwang et al., 2012; Li 

et al., 2017; Sato et al., 2005) and Liu et al. (2020) expanded this notion by looking 

at other leukocyte subpopulations(Liu et al, 2020). In analogy with these studies, we 

found that SLFN11 and TILs were associated with a better prognosis in our HGSOC 

cohorts. Similar trends were noted for naïve B-cells and macrophages of type 1; on 

the contrary, macrophages of type 2 were associated with poorer prognosis. We also 

noted that SLFN11 is correlated with well established, biologically selected, immune 

signatures (Fig. 6) in HGSOC. All together, these observations hint at the potential 

presence of interactions between SLFN11 and the immune system in cancer. 

Potential interactions between SLFN11 and the immune system were 

proposed in literature. For example, SLFN11 has been described to be an IFN-

stimulated gene in human blood mono-nuclear cells (PBMC)(Li et al., 2012) and 

primary human immune cells (monocytes and monocyte-derived dendritic 

cells)(Puck et al., 2015), and possibly also in cancer cells, fostering further 

investigations. Increased cancer SLFN11 (modulated by other factors like promoter 

demethylation(Nogales et al, 2015)), has been proposed to activate immediate early 

genes to stimulate interferon signaling in response to replication stress and DNA 

damage(Murai et al., 2020). In a different study, SLFN11 was identified as a 

sensitizer of tumor cells to T cell- and IFN-ɣ-mediated cytotoxicity.(Mezzadra et al., 

2019) Accordingly, following IFN-ɣ exposure SLFN11 has been shown to couple 

interferon-ɣ receptor (IFNGR) signaling to the induction of DNA damage and cell 

death in tumor cells in a context-dependent fashion. Taken together, these results 

point at a complex interplay between SLFN11 in cancer cells and the immune 

system in cancer, which merits enticing further investigation. 

We are aware of the limitations of our study. Among them, the retrospective 

nature of the analysis is unavoidable. The second limitation is the small sample size 

of our clinical cohort. Nevertheless, the fact that our observations are translated to a 

larger HGSOC cohort from TCGA, is assuring. Thirdly, even though SLFN11 
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expression in different leukocyte subpopulations could be confirmed in serial 

sections of tonsil and HGSOC tissues, these observations remain to be further 

validated by a multiplexing IHC approach. Nonetheless, to our knowledge, we show 

here for the first time in an in silico effort and in direct measurement SLFN11 

presence and localization in tumor- and the tumor infiltrating milieu, in HGSOC 

patients. 

In summary, the current study shows that SLFN11 in both cancer cells and a 

multitude of immune cells and potentially other (to be defined) cell types is 

associated with a better survival of HGSOC patients treated with platinum-containing 

regimens. Our findings add important information on the action of SLFN11 beyond its 

recently described role hence, we propose SLFN11 as a dual biomarker capturing 

simultaneously interconnected immunological and cancer-cell-intrinsic functional 

dispositions associated with sensitivity to DNA damaging agents. 

 

Patients and methods 

Study design. The objective of this study was to identify the association of SLFN11 

with immune infiltration and prognosis in advanced high-grade serous ovarian 

carcinoma (HGSOC) patients undergoing neoadjuvant chemotherapy containing 

platinum. SLFN11 transcript was evaluated by RT-PCR and SLFN11 protein and 

immune infiltration localization by IHC. SLFN11 transcript and protein from non-

cancer and cancer cells were correlated with progression-free interval (PFI, defined 

as the time elapsing from the end of first treatment to clinical and/or radiological 

progression) to assess the value of SLFN11 as a biomarker of response to first-line 

platinum-containing chemotherapy regimens in HGSOC. Results were validated with 

a larger HGSOC cohort from TCGA. 

 

Patients. Patients receiving a diagnosis of HGSOC, treated with neoadjuvant 

platinum-based chemotherapy at Léon Bérard Cancer Center, Lyon FR, from 

January 2008 to June 2014, and meeting the following criteria, were retrospectively 

included, in a consecutive fashion, for the reported analyses: written informed 

consent for biobanking and use of samples for research purposes according to the 

Hosting Institution, histologically confirmed HGSOC (grade 3 according to the AJCC 

TNM stage(Amin et al, 2017), radiological and/or surgical classification as stage 
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IIIc/IVa (FIGO classification)(Berek et al, 2018) at diagnosis, Eastern Cooperative 

Group (ECOG) performance status 0-1 at diagnosis, postmenopausal status at 

diagnosis, platinum-based neoadjuvant treatment at diagnosis followed by surgery, 

availability of a formalin-fixed, paraffin-embedded (FFPE) pre-chemotherapy tumor 

block from diagnostic biopsy, availability of clinical information concerning treatment 

and response duration and disease status at the time of sample collection. Cases 

were excluded: if they had primary debulking surgery followed by chemotherapy, if 

they were stage IVb, if they had received a previous or concomitant diagnosis of 

neoplasia (with the exclusion of carcinoma in situ of the cervix or skin basalioma) or 

if patients had received previous chemotherapies for any reason. Patients were 

divided into platinum-sensitive and platinum-resistant groups as previously 

described(Friedlander et al, 2011; Wilson et al, 2017). The presented research was 

conducted according to the ethical considerations and in compliance with the 

principles of the Declaration of Helsinki, approved by Regione Liguria Ethics 

Committee with registration number 347/2018 (approved 19/06/2019).  

 

RT-PCR. SLFN11 transcript quantification by q-RT-PCR was performed as 

previously described(Garutia et al, 2014). In brief, three membrane glass slides 

(PEN Membrane Glass slides, Arcturus® Bioscience Inc. CA, USA), loaded with 8-

µm thick sections were cut from FFPE-embedded pre-treatment diagnostic biopsies. 

One section of each sample was hematoxylin/eosin-stained and examined to assess 

tumor cellularity. Samples with a < 70% cellularity were subjected to microdissection. 

Upon RNA extraction and retro-transcription, RNA was quantified by Q-RT-PCR 

using a SLFN11-specific InvitrogenTM TaqMan® assay (Invitrogen Inc. CA, USA) on 

an Applied Biosystems Inc. HT-7900 instrument. Samples were analysed in 

triplicate, using RPLP0, GAPDH and GUS as housekeeping (HK) genes. The mean 

PCR cycle thresholds (Ct) of the three HK genes was subtracted from the Ct value of 

SLFN11 for each sample, expressed as log2 (ΔCt) and, in turn, the median of ΔCts 

from the dataset was subtracted from ΔCts of single samples and inverted, to obtain 

a normally distributed, zero-centered semi-quantitative value for each sample (-

ΔΔCt), as previously described(Barretina et al., 2012). 
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RNA-sequencing profiling of human leukocyte subpopulations. RNA-

sequencing results for SLFN11 in sorted leukocyte subpopulations from patients with 

immune-associated diseases, as further described by Linsley PS et al(Linsley et al, 

2014), were obtained from the Gene Expression Omnibus (GEO, accession number 

GSE60424).  

 

Immunohistochemistry (IHC) and image analysis for SLFN11, CD3, CD8, CD20 

and CD68. SLFN11 IHC was performed on 4 µM thick sections of formalin fixed 

paraffin embedded (FFPE) tissues and carried out on Bond RX (Leica Microsystem) 

using ER1 (pH6, Leica) antigen retrieval. Slides were stained with primary rabbit 

polyclonal anti-SLFN11 antibody (Abcam ab121731) at 2.5 µg/ml. Detection was 

performed with anti-rabbit poly-HRP-IGG, DAB refine and DAB enhancer (Leica, 

polymer refine detection kit, Leica). Digital slide images were acquired with the 

Aperio AT2 scanner (Leica) using a 20x objective. A HALO (Indica Labs) cytonuclear 

image analysis algorithm was optimized and run alongside different tissue classifiers 

and annotations, to capture the percentage of cancer, non-cancer and overall 

(cancer + non-cancer) nuclei with strong (3+), moderate (2+), weak (1+) or negative 

staining to calculate SLFN11 H-scores as  [(%1+ cells) + (%2+ cells * 2) + (%3+ cells 

* 3)] in each sample. Samples were H&E stained to identify cancer cells. The same 

algorithm was used across all specimens and the analysis was blindly performed. All 

samples were in addition manually evaluated by a pathologist for cancer SLFN11 H-

scores. CD3 and CD8 IHC was performed on full thick sections of FFPE tissues and 

carried out on Ventana Benchmark Ultra (Ventana Medical Systems) using heat-

based antigen retrieval. Slides were stained with primary rabbit monoclonal anti-CD3 

antibody (clone 2GV6 at 2.5 µg/ml) and primary rabbit monoclonal anti-CD8 antibody 

(clone SP57 at 2.0 µg/ml), both from Ventana Medical Systems. Slides were 

evaluated by a pathologist for total and intratumoral CD3 and CD8 by calculating 

mean CD3 and CD8 values from three high power field regions per sample. To 

confirm spatial resolution of SLFN11 protein in immune infiltrating cells, 4µm serial 

FFPE sections of human tonsil tissue or HGSOC specimens were taken. Sections 

were IHC stained for CD3, isotope control, SLFN11, CD8, CD20 and CD68 with 

BOND RX using ER1 (CD8 and CD20) or ER2 (CD3, IGG, SLFN11 and CD68) 

antigen retrieval. Primary antibodies used were as following: anti-SLFN11 as 
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described above, anti-isotype control (ab172730, Abcam, at 2.5 µg/ml), anti-CD3 

(clone 2GV6, Roche, at 0.4 µg/ml), anti-CD8 (clone C8/144 B, Dako, at 157 µg/ml), 

anti-CD20 (clone L26, Abcam, at 33.3 µg/ml) and anti-CD68 antibodies (clone PG-

M1, Dako, at 0.3 µg/ml). Detection was performed with poly-HRP-IGG, DAB refine 

and DAB enhancer (polymer refine detection kit, Leica). Digital slide images were 

acquired with the Aperio AT2 scanner (Leica) using a 20x or 40x objective. 

 

Statistical analyses. Correlations between continuous variables were calculated 

using the Spearman’s rank coefficient and represented using scatter plots (package 

CNtu(Desmedt et al, 2016)), whereas differences in continuous distributions were 

calculated using the Wilcoxon test without continuity correction. Intraclass correlation 

coefficients (ICCs) were calculated to assess the consistency and agreement of IHC 

assessments (package psy(Shrout & Fleiss, 1979)), and visually inspected for bias 

and trend using dot plots and Bland-Altman plots. Correlation matrices and 

correlograms of IHC and TILs were generated using the package corrgram(Friendly, 

2002), and multiple tests for association were adjusted using the Benjamini-

Hochberg method. Univariable Cox’s proportional hazards regression models were 

used for associations with PFI, after log2 transformation and scaling of continuous 

measures. HR, 95%CI and p-values according to the Wald statistics were reported. 

For multivariable Cox’s regression, variables with a p-value < 0.1 were entered in a 

stepwise forward-backward model minimizing the Akaike Information Criterion 

(package MASS(Venables & Ripley, 2002)). “Optimal” (quoted because considerable 

as such only in the examined case set) cutoffs to dichotomize continuous variables 

were obtained using binary class labels (i.e. NR vs PR patients) and maximizing the 

accuracy to correctly classify those classes with the package cutpointr(Thiele, 2019). 

Forest plots representing adjusted HR and 95%CIs were generated with the package 

survminer(Kassambara et al, 2019). To estimate the relative abundances of cell 

types in gene expression mixtures from the Cancer Genome Atlas high-grade 

ovarian cancer data (OVCAR) - processed and normalized as described in Roelands 

J, et al.,(Roelands et al, 2019) the count matrix was analyzed using 

CIBERSORTx(Newman et al, 2019) on the dedicated web tool available at the URL 

https://cibersortx.stanford.edu/. The following parameters were set for the analysis: 

impute cell fractions, signature file LM22.update-gene-symbols.txt, batch correction 
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enabled, batch correction mode B-mode, disable quantile normalization true, run 

mode absolute, permutation number 1,000. The job was performed on March 6, 

2020. To derive cancer cellularity, we used ESTIMATE(Yoshihara et al., 2013) with 

default parameters, after log2 transformation and offsetting count data by a value = 

1. Single sample gene set enrichment analysis for selected immune phenotypes, 

gene, and hallmark immune signatures was obtained as previously described(Bindea 

et al, 2013; Liberzon et al., 2015; Roelands et al., 2019; Thorsson et al., 2018). For 

univariable analysis of correlations between SLFN11 expression and cell fractions, 

we calculated the Spearman’s correlation coefficient. P-values were adjusted for 

multiple testing using the Benjamini-Hochberg method. For multivariate analysis of 

CIBERSORTx cell fractions and SLFN11 expression in the HGSOC TCGA dataset, 

we included variables with FDR < 0.05 for correlation with SLFN11, including cancer 

cellularity, after normalizing vectors as follows: we first removed near-zero variance 

variables (caret package(Kuhn et al, 2020)), then we pseudo-normalized data using 

the Tukey’s ladder of power transformation method (rcompanion 

package(Mangiafico, 2020)), finally we centered and scaled them. The relationship 

between variables was represented using a variable correlation plot, with SLFN11 

expression as a supplementary quantitative variable(Lê et al, 2008). For survival 

analyses, we selected TCGA OVCAR (HGSOC) cases with the following 

characteristics: stage IIIc/IV, histologic grade III, and with PFI > 28 days. SLFN11 

was considered “high” when in the top two tertiles of expression, and “low” 

otherwise. Univariable Cox’s regression and Kaplan-Meier curves were used as 

described above. For multivariable Cox’s regression, we first transformed bimodal 

CIBERSORTx cell fractions into binary factors (“present” vs. “absent”) if the 

Hartigan’s dip test for unimodality was rejected with p-value < 0.01. We then 

performed feature selection starting from stage, age, SLFN11 transcript, and 

CIBERSORTx variables. To do so, we fitted the Cox’s regression model by 

regularizing it with a lasso penalty, using the package glmnet(Friedman et al, 2010) 

with default options (α = 1, 10-fold cross-validation), and iterating it 1,000 times to 

obtain the minimum average error of the regularization parameter lambda for 

variable selection. Finally, selected variables were entered in a Cox’s multiple 

regression model to report HR point estimates and 95% CI. The dendrogram of 

similarity between immunologic signatures was built through hierarchical clustering 
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using the Ward’s criterion agglomeration method and Euclidean distance between 

variables(Murtagh & Legendre, 2014) .  

 

Power considerations. The sample size for the present study was meant to identify 

a clinically significant difference in SLFN11 expression between platinum-resistant 

(PR) patients, defined as relapsing within six months from the end of chemotherapy, 

and platinum-sensitive (PS) ones (i.e. relapsing beyond six months from the end of 

treatment). The suggested size of the collected cohort was based on our previous 

findings of a very significant hazard ratio in terms of overall survival between 

“SLFN11-high” and “SLFN11-low” HGSOC patients, with SLFN11 levels deemed so 

if being above or below the median for the considered cohort(Zoppoli et al., 2012). 

The required sample size would be of 24 patients, equally allocated in two groups of 

12 PR and 12 PS ones, assuming a proportion of “SLFN11-high” patients of 10% in 

the first group and 70% in the second groups, with two-tailed α = .05 and 1 - β = .9 (z 

test family, G*Power 3.1.4). Assuming that 20% of samples could not be analyzed 

due to failure in sample processing or testing, it was estimated that 28 samples were 

a sufficient number needed to test the aforementioned hypothesis. 
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Figure legends:  
 
Figure 1: SLFN11 transcript and protein levels in HGSOC. Panel A: Scatterplot 

representing SLFN11 transcript by qRT-PCR as -ΔΔCt (y axis) as a function of its 

protein assessment by IHC as H-score (x axis) in non-cancer and cancer nuclear 

cells from HGSOC specimens; ⍴ is the Spearman’s correlation coefficient, the least 

squares regression is represented by the red line, whereas dots are measurements 

of SLFN11 by qRT-PCR and IHC in individual samples. Panel B: Scatterplot 

representing SLFN11 protein levels in HGSOC cancer cells. X axis: pathologist’s 

assessment; y axis: H-score measured by HALO Digital Pathology (DP) software. 

Panel C: Dot plot illustrating cancer-cell H-scores in individual samples (y axis), 

ordered by increasing DP-assigned values (x axis), highlighting the excellent 

consistency of intraclass correlation coefficients (ICC) between the two methods. 

Each dot represents a score assigned by either the DP software (HALO) or the 

pathologist performing the assessment. Panel D: Bland-Altman plot displaying the 

difference between HALO and pathologist’s H-scores for cancer cells (y axis) by the 

increasing mean of value couples for individual samples (x axis). All points lie within 

1.96 standard deviations (SD - dotted green horizontal lines) from the mean 

difference (dashed horizontal black line), indicating no relevant bias between raters, 

and an insignificant trend toward higher H-scores for HALO as the mean values 

increase. The red line represents a smoothed regression (loess) fit of the actual 

mean scores. 

 

Figure 2: SLFN11 protein levels in HGSOC and their correlation with TILs. 

Panel A: Correlogram of TILs and SLFN11 H-scores, assessed in overall, cancer 

and non-cancer cells. In the lower triangle of the graph, boxes represent pairwise 

correlations colored by direction (blue for negative correlations and red for positive 

ones) and strength (intensity of shading) of the correlation itself. In the upper 

triangle, circles use the same scaled colors, but fill an area proportional to the 

absolute value of the correlation, and are filled clockwise for positive values, anti-

clockwise for negative values. Panels B and C: Scatterplots representing total CD3+ 

cells – panel B – and total CD8+ cells  – panel C – (y axes, cells/mm) as a function 

of SLFN11 H-score in non-cancer cells (x axis); ⍴ is the Spearman’s correlation 

coefficient, the least squares regression are represented by the red lines, whereas 
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dots are measurements of immune cell counts by H-scores in individual samples. 

Panel D: Representative images of SLFN11 IHC in HGSOC specimens. Left, stroma 

SLFN11 high and tumor SLFN11 low and right, stroma and tumor SLFN11 high, for 

the indicated cancers. The insets highlight nuclear SLFN11 protein localization in 

tumor cells and different stromal cell subtypes. Scale bars, 50 μm. The insets show a 

3x magnification of the representative image.  

 

Figure 3: SLFN11 protein levels measured in cancer and non-cancer cells are 

independently prognostic in HGSOC. Panel A: Waterfall plot showing SLFN11 

overall protein levels (i.e., measured in cancer and non-cancer cells) in individual 

cases, colored by platinum sensitivity: SLFN11 protein is reported as H-score (y 

axis), whereas cases are reported by increasing values (x axis) and colored in red if 

platinum-refractory (PR) or light blue if non-refractory (NR). Panel B: Kaplan-Meier 

plot showing progression-free interval (PFI) stratified by SLFN11 overall protein 

levels (“high” if H-score > 60, “low” if < 60). The progressed fraction of patients (y 

axis) is plotted against time expressed in months from the end of first-line 

chemotherapy, censored at 24 months (x axis). Numbers at risk are reported below 

the plot. P-value in the bottom left of the plot is from the Wald statistics for the 

univariable Cox’s regression. Panel C: Forest plot of hazard ratios (x axis, in log 

scale) for variables retained in the final multiple Cox’s regression model. Point HR 

estimates are reported below each variable together with 95% confidence intervals 

(95%CI) in parentheses, whereas adjusted p-values for each variable are on the 

right side of the plot. Filled black squares represent HR estimates, with relative 

95%CI shown as horizontal lines with brackets.      

 

Figure 4:  SLFN11, immune cell subpopulations and prognosis in the TCGA 

serous ovarian carcinoma dataset. Panel A: Variable correlation plot of the 

principal component analysis including SLFN11 transcript, cancer cellularity, and 

CIBERSORTx immune cell subpopulations significant by univariable correlation at 

FDR < 0.05. The two axes represent the first principal components explaining the 

greatest fraction of the variance of the analysed dataset, with percent of explained 

variability in parentheses. The relative position of the variables towards each other 

explains their relative correlation, whereas their distance from the intersect accounts 
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for their contribution to the components. SLFN11 is represented with a thick red 

arrow for sake of clarity.  Panel B: Kaplan-Meier plot showing progression-free 

interval (PFI) stratified by SLFN11 transcript (“high” if above the lower tertile of 

expression in the dataset, “low” if below). The progressed fraction of patients (y axis) 

is plotted against time expressed in months from the end of first-line chemotherapy, 

censored at 60 months (x axis). Numbers at risk are reported below the plot. P-value 

in the bottom left of the plot is from the Wald statistics for the univariable Cox’s 

regression. Panel C: Forest plot of hazard ratios (x axis, in log scale) for variables 

retained in the lasso-selected multiple Cox’s regression model. Point HR estimates 

are reported below each variable together with 95% confidence intervals (95%CI) in 

parentheses, whereas adjusted p-values for each variable are on the right side of the 

plot. Filled black squares represent HR estimates, with relative 95%CI shown as 

horizontal lines with brackets. 

 

Figure 5: SLFN11 is expressed in a subset of immune-related cells in tonsil 

and HGSOC tissues. Panel A: Representative images of CD3, CD8, SLFN11, 

CD20 and CD68 IHC on serial sections of tonsil tissue. Shown is a lymphoid follicle 

with the round- to oval shaped germinal center, the surrounding mantle zone and, at 

the outer layer of the lymphoid follicle, the paracortical zone. SLFN11 is mainly 

expressed in the germinal center, which is mostly composed of B-cells (CD20+) and 

macrophages/monocytes (CD68+), as well as in the T-cell rich (CD3+/CD8+) 

paracortical zone. Panels B and C: Representative images of CD3, CD8, SLFN11, 

CD20 and CD68 IHC on serial sections of tumor SLFN11 high- (Panel B) and low 

(Panel C) and stroma SLFN11 high cancers. The insets show nuclear SLFN11 in 

cytosolic/membrane-based CD3, CD8, CD20 and CD68 positive cells (indicated by 

arrows in Panel B and C). Scale bars, 100 μm (Panel A) and 50 μm (Panel B). The 

insets show a 3x magnification of the representative images. 

 

Figure 6: SLFN11 expression is associated with immune signatures in HGSOC. 

Left: Dendrogram representing the similarity between different immunologic 

signatures calculated in the TCGA ovarian cancer dataset (N = 302 cases). x axis 

represents the Ward’s D2 distance. Signature names have superscript numbers to 

denote the publication they are derived from: 1: Senbabaoglu Y et al., 
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2016(Senbabaoglu et al., 2016); 2: Rody A et al., 2009(Rody et al., 2009); 3: Rody A 

et al., 2011(Rody et al., 2011); Garg AD et al., 2016(Garg et al., 2016); Teschendorff 

AE et al., 2010(Teschendorff et al., 2010); if not specified, signatures are from 6: 

Thorsson V et al., 2018(Thorsson et al., 2018). Right: lollipop plot of correlations 

between SLFN11 and the aforementioned signatures. x axis represents the 

Spearman’s correlation coefficient between SLFN11 expression in the TCGA ovarian 

cancer dataset and the investigated signatures, whereas individual dots are coloured 

by -log10 of the FDR of the correlation. 

 

Figure 7: Proposed model for the SLFN11-cancer immunity cycle. Clockwise 

from bottom left: SLFN11 can be upregulated in cancer cells and tumor infiltrating 

immune cells by interferon signaling and possibly by other factors, such as SLFN11 

promoter demethylation. SLFN11 high cancer cells are more prone to undergo 

immunogenic cell death spontaneously or following platinum or other DNA damaging 

agent’s treatment(Garg et al., 2017). This, in turn, recruits T cells, which activate the 

interferon signaling cascade and consequently stimulate the upregulation of the 

MHC I and MHC II complexes, and induction of the cancer-immunity cycle. 

Increased SLFN11 in cancer cells may directly contribute to immune system 

activation(Murai et al., 2020) and interferon signaling may directly and indirectly 

induce cytoxicity in cancer cells(Mezzadra et al., 2019).  Dashed arrows indicate 

relations that were not assessed in the present manuscript but derived from other 

publications. 

 

 

 

 

 

 

 

 

 

 

 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 26, 2020. ; https://doi.org/10.1101/2020.05.22.110593doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.22.110593
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

29 

 

 

Table 1: Cohort demographics 

 PR PS p-value 

Stage (n, percent) 

IIIc 

IVa 

 

11 (85) 

2   (15) 

 

13 (87) 

2   (13) 

 

1.000 

Cycles (number, IQR) 7 (6 – 8) 7 (6 – 9) 1.000 

    

PFI (months, 95% CI) 4 (2 – 6) 11 (9 – n.r.) n.c. 

Age at diagnosis (years, 

IQR) 

65.7 (64.3 – 69.8) 58.2 (54.7 – 61.5) 0.0026 

 

PR = platinum-resistant, PS = Platinum-sensitive, IQR = interquartile range, PFI = 

progression-free interval, n.r. = not reached, n.c. = not calculated. 
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Supplementary figure legends:  
 

Figure S1: Frequency distribution of SLFN11 H-scores in the analyzed HGSOC 

case set. Nuclear SLFN11 protein in cancer and non-cancer cells was blindly 

assessed with automated image analysis by Halo and quantified as an H-score in all 

nuclear cells (panel A), cancer cells (panel B), and non-cancer cells (panel C). y 

axis: frequency of samples within each H-score bin; x axis: H-score values, 

subdivided into increasing 30-unit bins. 

 

Figure S2: SLFN11 is independently prognostic in HGSOC also when assessed 

in cancer or non-cancer cells only. Panels A and C: Waterfall plot showing 

SLFN11 protein levels in cancer (panel A) and non-cancer (panel C) cells, colored by 

platinum sensitivity: SLFN11 protein is reported as H-score (y axis), whereas cases 

are reported by increasing values (x axis) and colored in red if platinum-refractory 

(PR) or light blue if non-refractory (NR). Panels B and D: Kaplan-Meier plots 

showing progression-free interval (PFI) stratified by SLFN11 cancer protein levels 

(“high” if H-score > 5, “low” if < 5, panel B) and non-cancer protein levels (“high” if H-

score > 110, “low” if < 110, panel B). The progressed fraction of patients (y axis) is 

plotted against time expressed in months from the end of first-line chemotherapy, 

censored at 24 months (x axis). Numbers at risk are reported below the plots. P-

values in the bottom left of the plots are from the Wald statistics for the univariable 

Cox’s regression. Panels E and F: Forest plots of hazard ratios (x axis, in log scale) 

for SLFN11 protein in cancer (panel E) and non-cancer (panel F) cells together with 

variables retained by the multivariable model generated for overall SLFN11. Point 

HR estimates are reported below each variable together with 95% confidence 

intervals (95%CI) in parentheses, whereas adjusted p-values for each variable are 

on the right side of the plot. Filled black squares represent HR estimates, with 

relative 95%CI shown as horizontal lines with brackets. 

 

Figure S3: SLFN11 is expressed in a subset of leukocyte subpopulations. 

Panel A: Scatterplot representing SLFN11 expression (log-transformed normalized 

counts, y axis) as a function of GSEA macrophage enrichment score (ES, x axis) in 

TCGA OVCAR dataset (N = 302); ⍴ is the Spearman’s correlation coefficient, the 
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least squares regression are represented by the red lines, whereas dots are 

measurements of SLFN11 expression by ES in individual samples. Panel B: Box 

plots of publicly available RNA-sequencing results (GEO accession number 

GSE60424) for SLFN11 in sorted leukocyte subpopulations from patients.  NK: 

natural killer cells. GEO: gene expression omnibus. 

 

Figure S4: Cancer cellularity is negatively correlated with SLFN11 in ovarian 

cancer. Panel A: Scatterplot representing SLFN11 transcript (log-transformed 

normalized counts, y axis) as a function of cancer cellularity inferred using 

ESTIMATE (x axis) in TCGA OVCAR dataset (N = 302). Panel B: Scatterplot 

representing SLFN11 protein measured in all nuclear cells (overall H-score, y axis) 

as a function of cancer cellularity measured by HALO (x axis) in our cohort (N = 27). 

⍴ is the Spearman’s correlation coefficient, the least squares regression are 

represented by the red lines, whereas dots are measurements of SLFN11 protein 

levels by cancer cellularity in individual samples. 

 

Figure S5: SLFN11 in tonsil tissues. Representative images of IGG IHC (negative 

control) and serial sections of tonsil tissue. Shown is a lymphoid follicle with the oval-

shaped germinal center, the surrounding mantle zone and, at the outer layer of the 

lymphoid follicle, the paracortical zone. The insets show H&E stained tonsil tissue 

and confirm the absence of signal in the negative control sample. 
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Fig. 1 
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Fig. 2 
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Fig. 3 
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Fig. 4  
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Fig. 5 
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Fig. 6 
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Fig. 7 
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Fig. S1 
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Fig. S2 
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Fig. S3 
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Fig. S4 
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Fig. S5 
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