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Abstract

Stochasticity from gene expression in single cells is known to drive metabolic heterogene-

ity at the population-level, which is understood to have important consequences for issues

such as microbial drug tolerance and treatment of human diseases like cancer. Experimen-

tal methods for probing metabolism in single cells currently lag far behind advancements in

single-cell genomics, transcriptomics, and proteomics, which motivates the development of

computational techniques to bridge this gap in the systems approach to single-cell biology. In

this paper, we present SSA-FBA (stochastic simulation algorithm with flux-balance analysis

embedded) as a modelling framework for simulating the stochastic dynamics of metabolism

in individual cells. SSA-FBA extends the constraint-based formalism of metabolic network

modelling to the single-cell regime, providing a suitable approach to simulation when kinetic

information is lacking from models. We also describe an advanced algorithm that significantly

improves the efficiency of exact SSA-FBA simulations, which is necessary because of the com-

putational costs associated with stochastic simulation and the observation that approximations

can be inaccurate and numerically unstable. As a preliminary case study we apply SSA-FBA

to a single-cell model of Mycoplasma pneumoniae, and explore the use of simulation to under-

stand the role of stochasticity in metabolism at the single-cell level.
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1 Introduction

Recent experimental advances are driving a data explosion in systems biology by enabling re-

searchers to profile single cells, including their genome, transcriptome, and proteome [1, 2]. Such

single-cell measurements can yield information on thousands of individual cells in a single experi-

ment. This can provide insights on intracellular function and the role of intercellular heterogeneity

in a variety of biological systems ranging from microbial populations [3, 4] to human diseases such

as cancer [5, 6].

Relatively less advanced are methodologies to probe the metabolism of single cells [7, 8, 9, 11,

12]. This presents a barrier to studying metabolic reprogramming in tumour biology for example,

which is now understood to be a central hallmark of cancer [13, 14]. Single-cell metabolism is chal-

lenging due to low abundances of many metabolites, compartmentalisation in eukaryotic cells, and

the wide diversity of intracellular metabolites that lack regular structure [9]. Moreover, metabolism

is more dynamic than many cellular processes such as DNA replication and gene expression, which

means attempts to capture the metabolic state of an individual cell is susceptible to perturbation by

changes in cellular behaviour and the surrounding environment. Current experimental obstacles to

studying single-cell metabolism combined with its fundamental biological importance necessitates

the development of computational techniques that infer the metabolism of single cells from other

sources, such as single-cell transcriptomic or proteomic data and information about metabolism at

the population-level [10].

While our current capacity to probe or model the metabolism of single-cells is limited, con-

siderable attention has been devoted to the metabolism of cellular populations, where metabolic

network modelling has received a great deal of success combining limited experimental data and

computational simulation [15, 16, 17]. Extensions of these population-based frameworks, such as

dynamic metabolism expression models [18] or dynamic enzyme-cost flux-balance analysis [19],

have also been developed to incorporate the dynamics of gene expression. These deterministic

approaches fail to capture effects that are relevant for metabolism in single cells however, where

stochasticity is understood to play a pivotal role governing the dynamics of metabolism and growth
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at the single-cell level [20, 21]. To date, there have only been a handful of attempts (see [22] and

references therein) to extend metabolic network modelling to the single-cell regime, which have

mainly focussed on integrating single-cell transcriptomics data with flux-balance analysis (FBA)

in the context of cancer.

In general, the few existing approaches to stochastic modelling of single-cell metabolism fall

into two distinct categories: (i) analytical treatment of the equations for expression of a single en-

zyme catalysing a single reaction [23, 24], or (ii) computational modelling of whole cells [25, 26]

using hybrid methods involving ordinary differential equations (ODEs), particle-based stochastic

simulation algorithms (SSA, [27, 28]), and dynamic FBA (DFBA, [29]). Although the shared

aim of these approaches is to relate single-cell behaviour to phenotype, the two categories fall

at opposite ends of a wide spectrum of increasing complexity: whole cell modelling attempts to

accommodate as much detail as possible, but generates models that are a long way from ana-

lytic tractability. On the other hand, analytic methods can provide a mechanistic understanding of

how the expression of a single enzyme governs fluctuations in metabolite levels, but this has less

relevance outside the context of the metabolic reaction network. The goal of this paper is to intro-

duce a stochastic extension of FBA that we call SSA-FBA (stochastic simulation algorithm with

flux-balance analysis embedded), which attempts to address some limitations of previous ad-hoc

treatments of metabolism in whole cell models and proves to be an appropriate tool for simulating

metabolic network models of single cells.

The remainder of this paper is organised as follows. In Section 2 we outline the conceptual

definition of SSA-FBA and relate it to a formal description of single-cell metabolism based on

the chemical master equation. In Section 3 we compare exact and approximate implementations

of SSA-FBA, and then introduce an advanced algorithm that significantly improves the efficiency

of an exact simulation. A case study of a single Mycoplasma pneumoniae cell containing 176

reactions is simulated using SSA-FBA in Section 4, where we also explore the consequences of

stochasticity at the single-cell level. We conclude in Section 5 with a summary of the main results

and directions for future work. Further details on SSA-FBA and its advanced implementation can

2

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted May 26, 2020. ; https://doi.org/10.1101/2020.05.22.110577doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.22.110577


be found in the Supplementary Appendix accompanying this manuscript and all code and data are

freely available at https://gitlab.com/davidtourigny/single-cell-fba.

2 SSA-FBA: stochastic simulation algorithm with flux-balance

analysis embedded

Stochasticity in the metabolism and growth of single cells is generally believed to emerge be-

cause of fluctuations in enzyme expression levels [20, 21, 23, 24], where low mRNA and protein

copy numbers limit the precision of gene regulation [30]. Due to the relatively high copy num-

bers of most metabolites, metabolism is thought to have little intrinsic stochastic variation (Figure

1a). This general observation will motivate SSA-FBA as an appropriate framework for modelling

single-cell metabolism, where the dynamics of reaction fluxes internal to a metabolic network are

captured deterministically by FBA while SSA is used to model changes in the copy numbers of en-

zyme molecules and metabolites that are produced or consumed on the periphery of the metabolic

network (Figure 1b).

Prior to separating out the various sources of stochasticity, the combined single-cell network

of M metabolic and enzyme expression reactions can be captured by the chemical master equation

(CME) [31]
dP(n)

dt
=

M

∑
j=1

a j(n−S j)P(n−S j)−a j(n)P(n) (1)

where n is an N-dimensional vector for counts of N chemical species, a j(n) the propensity value

of reaction j given n, and S j the stoichiometry of reaction j. The probability density function

P(n) describes the probability of the system to occupy state n at time t. Typically, the system of

equations (1) (often infinite) can not be solved directly, and therefore Gillespie introduced SSA

[27, 28] for sampling trajectories n(t) through state space that are exact realisations of the CME.

One serious limitation of SSA is its computational cost when applied to large chemical reaction

networks. Various adaptations of Gillespie’s original algorithm, both exact and approximate, have
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Figure 1: Cartoon illustrations of single-cell metabolism and SSA-FBA.

(a) Extrinsic stochastic contributions come from fluctuations in the expression levels of enzymes catalysing
metabolic reactions. Intrinsic stochastic contributions to metabolism are less by comparison.
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(b) Simple SSA-FBA model where intracellular glutamylglutamic acid (enclosed by dotted box) is the only
species internal to the metabolic reaction network, and therefore transport and cleavage reactions R1, R2
form the subset of SSA-FBA reactions with gene expression reactions R3, R4, R5 making up the SSA-only
reactions. Reactions R3, R4, R5 thus have their propensity values calculated by a rate law that depends on
the counts of external species (e.g., glutamic acid, ribosome, mRNA) while propensity values for R1, R2
are obtained by solving FBA. Since the rates of reactions R1 and R2 depend on the number of transporter
and enzyme molecules, respectively, counts of these external species also serve to constrain SSA-FBA
propensity values in the embedded LP problem.
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therefore been proposed to improve the runtime of SSA, which can be particularly restricting for

metabolism due to the multi-scale nature of enzymatic reactions. Since the average counts of

enzymes are many times lower than those of metabolites, and metabolic reactions operate on a

much faster time-scale than those of gene expression, the propensity values of these reactions

can differ by several orders of magnitude. In order to deal with the computational challenges of

multiple time-scales, several SSA methods that use a stochastic quasi-steady state assumption (a

stochastic generalisation of the quasi-steady state assumption in DFBA [29]) have been introduced

to simulate trajectories corresponding to a reduction of the CME (1) on the basis of time-scale

separation (see [32, 33, 34] and Supplementary Appendix S1).

While the above methods for accommodating time-scale separation in SSA could in principle

be used to simulate single-cell metabolism, in practice it is rarely the case that rate equations or

parameters on which these methods depend are known for the majority of reactions in a metabolic

network model. Consequently, our proposal is to borrow from the solution to this same problem

in the constraint-based formalism of (D)FBA [15, 16, 29] where linear programming (LP) is used

to identify a numerical solution to the deterministic quasi-steady state conditions of the metabolic

reaction network. In SSA-FBA, reactions are separated into three mutually disjoint subsets based

on whether the participating species are defined to be internal or external to the metabolic reaction

network (see Figure 1b for illustration). The three subsets of reactions in an SSA-FBA model are:

• FBA-only reactions. Responsible for interconverting among internal species

• SSA-only reactions. Responsible for interconverting among external species

• SSA-FBA reactions. Responsible for interconverting between internal and external species

For example, the SSA-only reactions may correspond to reactions involved in gene expression,

while the FBA-only and SSA-FBA reactions correspond to reactions involved in metabolism. Fur-

thermore, since external species such as enzymes have the ability to determine the propensity

values of reactions in the metabolic network, the constraints or bounds on those of the FBA-only

and SSA-FBA reactions are allowed to vary as functions of external species. The LP problem
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representing the metabolic reaction network therefore takes the form

maximise : z = c ·aFBA

subject to : S ·aFBA = 0, l(n)≤ aFBA ≤ u(n)
(2)

where aFBA is a vector containing the propensity values of FBA-only and SSA-FBA reactions, S is

the stoichiometry matrix of the metabolic reaction network, and l(n),u(n) are bounds that depend

on the counts of external species (see Supplementary Appendix S1 for extended discussion). The

coefficient vector c is understood to be chosen in order for the cell to fulfil some biologically-

relevant objective.

Propensity values for SSA-FBA reactions obtained from an optimal solution to the LP prob-

lem (2) are combined with the propensity values of SSA-only reactions, calculated from counts

of external species directly, to determine the next reaction event according to Gillespie’s original

algorithm (although this step can also be replaced by more advanced methods). Since FBA-only

reactions do not effect the counts of external species, their propensity values are not required at this

stage. On the other hand, execution of either an SSA-only or SSA-FBA reaction updates the counts

of external species, which in turn update the bounds of both FBA-only and SSA-FBA propensity

values in (2). This bidirectional coupling implies that the associated FBA problem is “embedded”

in SSA in much the same way an LP problem is embedded within an ODE in DFBA [29]. The rel-

ative scale of SSA-only to SSA-FBA propensity values obtained from the embedded FBA problem

(2) serves as an additional parameter of an SSA-FBA model, as are the stoichiometry values of

the reactions these correspond to. The choice of this relative scaling factor proves to be important

for simulation efficiency and is related to the multi-scale nature of single-cell metabolism, because

numerical exploration of the state space will become challenging if propensity values differ by

several orders of magnitude.

It is important to highlight that, unlike various multi-scale versions of SSA attempting to best-

approximate trajectories of the CME (1) [32, 33, 34], the goal of SSA-FBA is to serve partly

as a lumping framework to build and simulate single-cell metabolic models involving large re-
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action networks lacking kinetic information [15, 16]. Thus, some degree of freedom is afforded

to the model builder when making their choices for partitioning reactions into the three subsets

(FBA-only, SSA-only, or SSA-FBA) and there is further flexibility regarding the relative scaling

of SSA-only to SSA-FBA propensity values. Our provided guidelines are that this scale factor

should be inversely correlated with the stoichiometry of SSA-FBA reactions (i.e., stoichiometry

of SSA-FBA reactions should increase as their propensity values scale down relative to SSA-only

propensity values) and distinguishing between internal and external species (and hence partition-

ing of reactions) should be loosely based on the understanding that time-scales of internal species

are relatively fast compared to those of external species. Further considerations for SSA-FBA are

outlined in Supplementary Appendix S1.

3 Implementation of SSA-FBA

The definition of SSA-FBA provided in Section 2 involves obtaining expected propensity values

for SSA-FBA reactions from an embedded LP problem, whose constraints depend on the counts

of species external to the metabolic reaction network. The resulting optimal expected propensity

values in turn serve to determine the random selection of a reaction to execute during the next time

interval of the SSA simulation. Since both SSA-only and SSA-FBA propensity values are taken

into consideration during selection of this reaction, and because execution of a reaction from either

set changes the counts of external species, implementing SSA-FBA following this exact approach

appears to imply that runtime will scale in the number of reaction execution events in a way that

depends on the complexity of the embedded LP problem.

A related issue arises in the simplest implementation of DFBA [29], where the Euler method

is used to integrate the ODE over a time interval across which an optimal flux distribution does

not to change. When the end of the interval is reached, the constraints of the embedded LP prob-

lem are updated using the current values of kinetic variables and re-solved for a new optimal flux

distribution used to parameterise integration over the next interval. As the size of the time inter-
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val used for integration increases, fewer calls to the LP solver are required to complete a DFBA

simulation, which can improve overall runtime considerably. We first explored a similar approach

to approximating SSA-FBA simulations, also observing that a similar concept has been used to

simulate whole cell models [25, 26]. The resulting simulations were no longer exact in the sense

defined in Section 2, but we hypothesised that for a suitable approximation we might be able to

improve overall runtime without overly compromising the accuracy of SSA-FBA. For demonstra-

tion purposes, we designed a toy model that contained only two SSA-only reactions (R0 and R1),

one SSA-FBA reaction (R2, growth rate of Mycoplasma genitalium) and one variable FBA bound

(oxygen transport reaction). The toy model contained three species S0,S1,S2 and is represented by

the reaction schema

S0
R0
�
R1

S1
R2→ S2, (3)

where it is understood that the propensity value of reaction R2 depends indirectly on counts of

species S1, which bounds the maximal rate of the oxygen uptake reaction in the metabolic network

model of M. genitalium [25] based on the functional form u(S1) = S1/10.

Simulations began with initial species counts S0 = 1000, S1 = 0, S2 = 0, and the toy model

was simulated across 3000 reaction execution events using either the exact (embedded LP problem

updated and re-solved after the execution of every reaction event) or an approximate SSA-FBA

method. The approximate SSA-FBA method only updated the constraints and re-solved the em-

bedded LP problem after a fixed number, ∆event , of reaction events had executed. As a general trend

we found that when ∆event was small the variances of the approximate SSA-FBA trajectories were

comparable to those of exact SSA-FBA (Figures 2a and 2b), while increasing ∆event increased the

variance of approximate SSA-FBA trajectories correspondingly (Figure 2c). A further shortcom-

ing of approximate SSA-FBA was that trajectories occasionally (particularly for larger ∆event as

visible in Figure 2c, but observed for all ∆event tested) displayed numerical instability and diverged

from realistic values towards the latter end of a simulation. This type of numerical instability also

arises during direct integration of many DFBA models [35], but is particularly problematic for

SSA-FBA because its stochastic nature means the pathology can not be conclusively ruled-out on
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the basis of trial simulations (for example, to establish optimal size of ∆event). It relates to the fact

that the embedded LP can become infeasible within an integration interval, which induces a closed

domain of definition for the dynamic system.

We therefore searched for a strategy to reduce the computational cost of exact SSA-FBA rather

than risk the loss of accuracy and numerical stability associated with approximation, and were mo-

tivated by a recent method for numerical integration of ODEs with embedded LP problems [35] to

derive an exact optimal basis SSA-FBA algorithm (Supplementary Appendix S2). The new simu-

lation algorithm is guaranteed to be exact in the sense of Section 2, but is distinguished from the

direct implementation of exact SSA-FBA because it improves efficiency and reduces the frequency

of calls to an LP solver by using an optimal basis to calculate SSA-FBA and FBA-only propensity

values. We evaluated the performance of our exact optimal basis SSA-FBA algorithm using the

M. genitalium metabolic network model by selecting a random sequence of K execution events,

each event corresponding to a selection of SSA-FBA or FBA-only reactions (between 1 and Kmax)

whose upper bounds are known in the original model (i.e., not zero or infinity). Execution of K

events then involved updating the bounds of the reactions selected for the ith event by multiplying

their previous value by some 0< σ < 1 so that the cumulative effect was to slowly drive the growth

rate of M. genitalium to zero over the course of simulation. After execution of each event, SSA-

FBA and FBA-only propensity values were calculated either by directly solving the LP problem or

using the efficient optimal basis algorithm. Employing this approach rather than evaluating a full

SSA-FBA simulation allowed us to confidently compare the performance of direct and efficient

implementations, while confirming that calculated propensity values remained identical.

Figure 2d displays representative results of the comparisons between the efficient optimal basis

algorithm and direct implementation of exact SSA-FBA, showing that the former improves run-

time by an order of magnitude over the latter. The efficient optimal basis algorithm also scales

better in the number of reaction execution events than the direct implementation (slopes of lin-

ear regressions using data from Figure 2d are 19.0 vs 1.7 for direct vs exact, respectively). We

therefore conclude that our efficient optimal basis SSA-FBA algorithm can be used to significantly

9

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted May 26, 2020. ; https://doi.org/10.1101/2020.05.22.110577doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.22.110577


Figure 2: Comparison of exact and approximate SSA-FBA implementations using the M. genital-
ium metabolic network model. First three panels each display trajectories from 20 representative
simulations, each consisting of 3000 reaction execution events. Error bars in fourth panel are
standard deviations for runtimes across four simulations with parameters σ = 0.9, Kmax = 5 and
K = 50000, 100000, or 200000 described in the main text.
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(a) Exact SSA-FBA simulation of toy model
(equivalent to ∆event = 0).
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(b) Approximate SSA-FBA simulation of toy
model with ∆event = 50.
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(c) Approximate SSA-FBA simulation of toy
model with ∆event = 500.
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(d) Comparison of runtimes for exact SSA-FBA
implementations.

10

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted May 26, 2020. ; https://doi.org/10.1101/2020.05.22.110577doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.22.110577


improve the runtime of exact SSA-FBA simulations.

4 Case study: M. pneumoniae

In this section we present preliminary results from using SSA-FBA to simulate the metabolism of

a single M. pneumoniae cell. Mycoplasma are among the smallest bacterial cells yet discovered

and M. pneumoniae the best known and examined [36], making it an excellent case study for un-

derstanding single-cell metabolism in a relatively simple organism. Its close relative M. genitalium

was previously used to build a whole cell model [25].

We constructed a reduced metabolic reaction network of M. pneumoniae consisting of 86

metabolic reactions, including a metabolism production reaction that constitutes the objective func-

tion of the embedded FBA problem (see Supplementary Model file accompanying this manuscript).

The full SSA-FBA model also has 30 protein species that are either enzymes or transporters regu-

lating flux through the FBA reactions, or serve a direct role in gene expression (RNA polymerase,

ribosomal protein, or RNAse). Furthermore, each protein species is associated with an mRNA

molecule and three reactions corresponding to RNA transcription, RNA degradation, and protein

synthesis, making 90 SSA-only reactions (176 reactions in total). Species on the periphery of

the metabolic reaction network that appear as reactants in the Michaelis-Menten-like rate laws

for SSA-only reactions (nucleoside triphosphates and amino acids) were designated as external

species together with extracellular substrates, and therefore reactions of the embedded FBA model

involved in their production or consumption were assigned to the SSA-FBA reaction subset. The

remaining reactions of the embedded FBA model made up the FBA-only subset. The full list of

parameter values and species are provided in the Supplementary Model file and associated code,

but note that species internal to the metabolic reaction network, although recorded and tracked by

the model, are not relevant to the SSA-FBA formalism.

For the parameter values we evaluated, simulating one million reaction execution events took

just over one minute on a personal laptop computer with a 2.8 GHz Intel Core i7 processor (76.86
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Figure 3: Example simulation of the M. pneumoniae SSA-FBA model used as a case study.
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seconds with standard deviation of 1.4 seconds across four simulations). We experimented with

the relative scaling of SSA-FBA and SSA-only propensity values, and identified a range of stoi-

chiometry and scaling factors yielding simulations that produced biologically-realistic trajectories

after a runtime of just 7-9 seconds on the same machine (Figure 3). The SSA-FBA model generally

displayed a wide range of different behaviours, where alternative groups of metabolite or protein

species would tend to accumulate more than others in each simulation instance, supporting the

notion that stochasticity at the single-cell level is a driver for metabolic heterogeneity [10, 21, 24].

One serious limitation of the current model is that no explicit method is in place to prevent the

counts of some metabolites from becoming negative, which occurred on occasion during indi-

vidual simulations. Ongoing work aims to address this issue, obtain more biologically-realistic

parameter values and rate laws, and appropriately quantify the stochastic nature of SSA-FBA and

its relevance for metabolic heterogeneity.
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5 Conclusion

In this paper we have presented what we believe to be the first comprehensive framework for

simulating single-cell metabolism in a way that captures effects of stochasticity in the context of

large metabolic reaction networks. SSA-FBA involves a hybrid method for embedding FBA in

SSA, which is well-suited to using metabolic models for which kinetic information is lacking.

We also have proposed an advanced optimal basis algorithm for exact simulation of SSA-FBA

models, which can otherwise become computationally expensive due to the nature of embedding

an LP problem in SSA with multiple time-scales. A preliminary case study using our algorithm to

simulate the metabolism of a single M. pneumoniae demonstrates that SSA-FBA has the potential

to reveal how stochasticity at the single-cell level impacts metabolic heterogeneity at the level of

the population.

Future extensions of our work will involve applying SSA-FBA to larger, more realistic models

of single cells, in addition to reconsidering how standard constraint-based formulations of metabo-

lite pools and an objective function should be adapted to suit the biological nature of single-cell

metabolism. More complex models of single-cell metabolism could include mechanisms that im-

part regulatory control of stochasticity [37], and pave the way for combining insights from simu-

lation with experimental advances in microfluidics [38] or real-time quantification of RNA trans-

lation events within individual cells [39]. From an algorithmic perspective, SSA-FBA could be

extended to incorporate additional time-scales governed by continuous stochastic or deterministic

processes (e.g., [40]), and its computational efficiency perhaps further enhanced through paralleli-

sation methods [41].
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[21] Wehrens M, Büke F, Nghe P, Tans SJ (2018) Stochasticity in cellular metabolism and growth:

approaches and consequences. Curr. Opin. Syst. Biol. 8: 131-136.

15

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted May 26, 2020. ; https://doi.org/10.1101/2020.05.22.110577doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.22.110577


[22] Damiani C, Maspero D, Di Filippo M, Colombo R, Pescini D, Graudenzi A, Westerhoff

HV, Alberghina L, Vanoni M, Mauri G (2019) Integration of single-cell RNA-seq data into

population models to characterize cancer metabolism. PLoS Comput. Biol. 15: e1006733.

[23] Levine E, Hwa T (2007) Stochastic fluctuations in metabolic pathways. Proc. Natl. Acad. Sci.

USA. 104: 9224-9229.

[24] Tonn MK, Thomas P, Barahona M, Oyarzún DA (2019) Stochastic modelling reveals mech-

anisms of metabolic heterogeneity. Commun. Biol. 2: 108.

[25] Karr JR, Sanghvi JC, Macklin DN, Gutschow MV, Jacobs JM, Bolival B Jr., Assad-Garcia

N, Glass JI, Covert MW (2012) A whole-cell computational model predicts phenotype from

genotype. Cell 150: 389-401.

[26] Karr JR, Takahashi K, Funahashi A (2015) The principles of whole-cell modeling. Curr.

Opin. Microbiol. 27: 18-24.

[27] Gillespie DT (1976) General method for numerically simulating the stochastic time evolution

of coupled chemical reactions. J. Comput. Phys. 22: 403-434.

[28] Gillespie DT (1977) Exact Stochastic Simulation of Coupled Chemical Reactions. J. Phys.

Chem. 81: 2340-2361.

[29] Mahadevan R, Edwards JS, Doyle FJ 3rd (2002) Dynamic flux balance analysis of diauxic

growth in Escherichia coli. Biophys. J. 83: 1331-1340.

[30] Elowitz MB, Levine AJ, Siggia ED (2002) Stochastic gene expression in a single cell. Science

279: 1183-1186.

[31] Gillespie DT (1992) A rigorous derivation of the chemical master equation. Physica A 188:

404-425.

[32] Rao CV, Arkin AP (2003) Stochastic chemical kinetics and the quasi-steady-state assumption:

Application to the Gillespie algorithm. J. Chem. Phys. 118: 4999-5010.

16

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted May 26, 2020. ; https://doi.org/10.1101/2020.05.22.110577doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.22.110577


[33] Cao Y, Gillespie DT, Petzold LR (2005) The slow-scale stochastic simulation algorithm. J.

Chem. Phys. 122: 014116.

[34] Cao Y, Gillespie DT, Petzold LR (2005) Multiscale stochastic simulation algorithm with

stochastic partial equilibrium assumption for chemically reacting systems. J. Comput. Phys.

206: 395-411.
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