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Abstract:1

Turnover of species composition through time is frequently observed in nature.2

Often explained by changes in abiotic conditions or regional species pools,3

compositional turnover is employed as an indicator of external stress in nat-4

ural ecosystems. Theoretically, the possibility of turnover driven by intrinsic5

ecological dynamics—species interactions, dispersal—is also known, but what6

role such autonomous turnover plays in nature remains unclear. Expanding7

the boundaries of metacommunity modelling, we show that in large meta-8

communities immigration pressure from neighbouring locales robustly drives9

continuous turnover in local composition—without environmental change or10

regional invasions. That ecological communities may turn over autonomously11

challenges assumptions implicit in assessment and management tools, and sug-12

gests that natural compositional change should be incorporated in ecological13

status assessments based on ancestral baselines.14

Main Text:15

Change in species composition through time, called community turnover, is observed in most16

ecosystems (1–3). Potential drivers include changes in the abiotic environment (4–6), random17

population fluctuations due to demographic stochasticity (7), and autonomous population dy-18

namics driven by species interactions and dispersal (8, 9). While there exist well-developed19

bodies of theory describing community turnover due to environmental change (10, 11) and20

demographic stochasticity (12), our understanding of autonomous compositional change is un-21

derdeveloped. In particular, it remains unclear to what extent observed spatio-temporal patterns22

in biodiversity may be due to autonomous ecological dynamics.23

If it were known that intrinsic ecological dynamics alone cannot account for observed com-24
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positional turnover, then abiotic environmental change would be the most plausible explanation25

(turnover by demographic stochasticity alone is predicted to be orders of magnitude slower than26

observed (1)). In the current phase of rapid anthropogenic environmental change, any altera-27

tion in the composition of an ecological community should then be interpreted as a potential28

indicator of stress (13–15) and the degree of compositional change compared to past baselines29

a valid measure of anthropogenic impact.30

If, on the other hand, temporal community turnover is a natural phenomenon that can arise31

independently of changes in the abiotic environment, then observed shifts in the composition32

of ecological communities would not necessarily imply the presence of external pressures.33

Intrinsic dynamics may even permit ecosystems to adapt and absorb environmental change34

without impacting ecosystem functioning. Assessments, projections and mitigation strategies35

would then need to account for such autonomous compositional turnover.36

So, can communities of many interacting species turn over autonomously? If so, what is37

the driving mechanism? And does the resulting turnover reproduce patterns observed in empir-38

ical data? Here we address these questions drawing on recent advances (16) in the theory of39

metacommunities (17), using population-dynamical simulation models with explicitly defined40

spatial and environmental structure. To ensure turnover is purely autonomous, we keep the en-41

vironment fixed throughout simulations. In our model, local community composition is determ-42

ined by species sorting (non-uniform responses of species to local environmental conditions43

and interspecific competition) and mass effects (immigration from neighbouring locales). The44

model can be understood as a simplified representation of interactions within guilds (e.g. trees45

or intertidal invertebrates) and has been shown to reproduce fundamental spatial biodiversity46

patterns (16).47

Each of our simulated metacommunities occupies a two-dimensional landscape defined by48

a random spatial network, mapped onto an abiotic environment. The metacommunity is as-49
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sembled in a stepwise fashion by the iterative introduction of species whose numerical eco-50

logical traits are randomly sampled. There is an intrinsic limit on the number of species that51

can coexist in such a metacommunity (16). In all cases, we assemble until regional diversity52

reaches this asymptote; thereafter autonomous steady state dynamics are studied in the absence53

of regional invasions. Abiotic filtering occurs via the spatial variation of intrinsic growth rates54

Rix and biotic filtering via interspecific competition encoded in the interaction coefficients Aij .55

A spatial connectivity matrix with elements Dxy describes dispersal. Here i, j are species in-56

dices while x, y refer to patches. We model metacommunity dynamics of population biomasses57

Bix = Bix(t) using a system of spatially coupled Lotka-Volterra (LV) equations that, in matrix58

notation, has the form (16)59

dB

dt
= B ◦ (R−AB) + BD, (1)

with ◦ denoting element-wise multiplication.60

Intrinsic growth rates Rix are sampled from spatially correlated normal distributions with61

autocorrelation length φ and variance σ2 (Fig. S1). For simplicity, and since predator-prey dy-62

namics are known to generate fluctuations through mechanisms distinct from those we report63

here, we restrict our analysis to competitive communities for which all ecological interactions64

are antagonistic. The off-diagonal elements of the interaction matrix A are sampled independ-65

ently from a distribution in the range 0 ≤ Aij < 1 (i 6= j) and we set all Aii = 1. The topology66

of our model metacommunities, expressed through D, is generated by sampling the spatial co-67

ordinates of the N local communities uniformly from a
√
N ×

√
N square, and linking them68

through a Gabriel graph (18). Immigration rates Dxy > 0 are then modelled using an exponen-69

tial dispersal kernel with characteristic length ` (19). We selected a combination of parameters70

φ, σ2 and ` that generates substantial autonomous turnover (Fig. S2) in order to obtain a full71
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characterisation of the phenomenon in the computationally accessible spatial range (N ≤ 256).72

Autonomous turnover in model metacommunities73

For small (N ≤ 8) metacommunities assembled to saturation in regional diversity γ, popu-74

lations attain equilibria, implying the absence of autonomous turnover (16). With increasing75

metacommunity size N , however, we observe the emergence of steady-state population dynam-76

ics (Fig. S3, https://vimeo.com/379033867) that can produce substantial turnover in77

local community composition. This autonomous turnover can be represented through Bray-78

Curtis (20) (BC) similarity matrices comparing local community composition through time,79

and quantified by the number of compositional states detected in such matrices using hierarch-80

ical cluster analysis (19).81

At intermediate spatial scales (Fig. 1, 16 ≤ N ≤ 32) we often find oscillatory dynam-82

ics, which can be perfectly periodic or slightly irregular. With increasing oscillation amp-83

litude, these lead to persistent turnover dynamics where local communities repeatedly fluctuate84

between a small number of distinct compositional states (represented in Fig. 1 by stripes of high85

pairwise BC similarity spanning large temporal ranges). At even larger scales (N ≥ 64) this86

compositional coherence begins to break down, and for very large metacommunities (N ≥ 128)87

autonomous dynamics drive continuous and unpredictable change in community composition.88

Metacommunities in which the boundaries of species ranges along environmental gradi-89

ents are clumped are termed Clementsian, while those for which range limits are independently90

distributed are denoted Gleasonian (21). We consider the block structure of the temporal dis-91

similarity matrix at intermediate N to be a form of Clementsian temporal turnover, character-92

ized by sudden significant shifts in community composition. Metacommunity models similar93

to ours have been found to generate such patterns along spatial gradients (22), potentially via94
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an analogous mechanism (23). Large, diverse metacommunities manifest Gleasonian temporal95

turnover. In such cases, species invasions and extirpations are largely independent and temporal96

occupancies predominantly uncorrelated, such that compositional change is continuous, rarely,97

if ever, reverting to the same state.98

Mechanistic explanation of autonomous turnover99

We explain the emergence of autonomous turnover in large metacommunities building on exist-100

ing analytic theory for isolated LV communities. Application of methods from statistical mech-101

anics to models of large isolated LV communities with random interactions has revealed that102

such models exhibit qualitatively distinct phases (24–26). If the number of modelled species,103

S, interpreted as species pool size, lies below some threshold value determined by the distribu-104

tion of interaction strengths (Fig. S4), these models exhibit a unique linearly stable equilibrium.105

This characterizes the so-called unique fixed point (UFP) phase. Some species may go extinct,106

but the majority persists (26). When pool size S exceeds this threshold, there appear to be no107

more linearly stable equilibrium configurations. Any community formed by a selection from108

the S species is either unfeasible (there is no equilibrium with all species present), intrinsically109

linearly unstable, or invadable by at least one of the excluded species. This has been called the110

multiple attractor (MA) phase (25). However, the precise nature of dynamics in this MA phase111

appears to remain unclear.112

Ecological models have been shown to easily exhibit attractors called stable heteroclinic net-113

works (27), which are characterized by dynamics in which the system bounces around between114

several unstable equilibria, each corresponding to a different composition of the extant com-115

munity, implying indefinite community turnover. As these attractors are approached, such mod-116

els exhibits increasingly long intermittent phases of slow dynamics, which, when numerically117
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Figure 1: Autonomous turnover in large model metacommunities. A: Typical metacom-
munity models: a spatial network with nodes representing local communities (or patches) and
edges, channels of dispersal. Node colour represents the number of local compositional states
detected in 104 unit times using hierarchical clustering of the Bray-Curtis (BC) similarity mat-
rix (19). B: Colour coded matrices of pairwise temporal BC similarity corresponding to the
circled nodes in A. Insets represent 102 unit times. For small networks (N = 8) local composi-
tion converges on static fixed points. As metacommunity extent increases, however, steady state
dynamics emerge. Initially this autonomous turnover is oscillatory in nature with communities
fluctuating between small numbers of compositional states which can be grouped into clusters
(16 ≤ N ≤ 32). Intermediate metacommunities (32 ≤ N ≤ 64) manifest ‘Clementsian’ tem-
poral turnover, characterized by sharp transitions in composition, implying species turn over
in cohorts. Large metacommunities (N ≥ 128) turn over continuously, implying ‘Gleasonian’
assembly dynamics in which species’ temporal occupancies are independent. C: The mean
number of local compositional clusters detected for metacommunities of various numbers of
patches N . While the transition from static to dynamic community composition at the local
scale is sharp (see text), non-uniform turnover within metacommunities (A) blurs the transition
at the regional scale. Aij = 0.5 with probability 0.5, φ = 10, σ2 = 0.01, ` = 0.5.
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simulated, can give the impression that the system eventually reaches one of several ‘stable’118

equilibria. We demonstrate in supplementary text that the MA phase is in fact characterized119

by stable heteroclinic networks (Figs. S5, S6). We retain the MA terminology here because120

the underlying complete heteroclinic networks, interpreted as a directed graph (28, 29), might121

have multiple components that are mutually unreachable through dynamic transitions (30), each122

representing a different attractor.123

Spatially implicit metacommunities: To demonstrate the effect of approximate heteroclinic124

networks in speciose ecological models, we constructed a single-patch ‘metacommuity’ model:125

an isolated LV community coupled to an implicitly modelled local ecological neighbourhood.126

This is achieved by adding, for each of the S species, a propagule rain at a low rate ε (Eq. S5).127

This small perturbation, analogous to mass effects occurring in spatially explicitly metacom-128

munity models, brings the underlying heteroclinic network in the MA phase to life (see supple-129

mentary text): because natural rates of population growth/decline are of order O(1) or smaller130

for this model (31), it prevents population biomasses from falling below levels of magnitude131

O(ε) and inhibits the indefinite slowing down of community turnover in the heteroclinic net-132

work. Here we show results for ε = 10−10 and 10−15, which produce qualitatively similar133

outcomes: with increasing pool size S we observe a transition from stable equilibria into dy-134

namic states in which community composition continuously turns over (32).135

To characterize this transition quantitatively, we again performed hierarchical cluster ana-136

lyses of the temporal BC similarity matrix in the model’s steady state (Fig. 2A-B). For S < 35137

(in the chosen parameterization) a single cluster was detected, generally corresponding to an138

equilibrium state, in rare cases superimposed with weak oscillations (Fig. 2, inset). For S ≥ 35,139

autonomous compositional turnover becomes increasingly likely. Community composition can140

then be organised into multiple clusters, reflecting the passage of the community state past141
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multiple perturbed equilibria along the paths set out by the heteroclinic network of the under-142

lying unperturbed model (Fig. 2C). As S increases, so does the complexity of the underlying143

attracting heteroclinic network and hence the variety of ways in which communities can form144

and change through time. A numerical threshold of around 35 species is consistent with the145

theoretical prediction (25) of S ≈ 32 for the transition between the UFP and MA phases (sup-146

plementary text).147

Spatially explicit metacommunities: To test whether to same mechanism drives turnover in148

spatially explicit metacommunity models, we defined the species pool size for a given local149

community as the time averaged number of species with Bix > 10−15 in the local neighbour-150

hood, i.e. the focal patch or any adjacent patch. Under variation of metacommunity size N , we151

found, for systems of more than 16 local communities, a positive linear association between152

the number of compositional clusters detected in the time series of a focal node and the species153

richness of the local neighbourhood (Fig. 2D; p < 10−6). (For N ≤ 16 the association was154

non-significant because most communities were static.) Remarkably, these linear regression155

lines combined trace a relation between neighbourhood richness and cluster number that is very156

similar to that found for the single-patch model (Fig. 2D). Furthermore, the phenomenology of157

the gradual emergence of autonomous turnover is consistent between the single-patch model158

and the full metacommunity model, including the progression from oscillations, through Clem-159

entsian turnover, to Gleasonian turnover with increases in S (Fig. S7). Thus, by analogy with160

the single-patch LV community model, we conclude that the autonomous turnover observed161

in large metacommunity models is best explained by the emergence of complex, approximate162

heteroclinic networks at the local scale.163

We have demonstrated that propagule pressure is required to perturb a local community164

away from unstable equilibria and drive compositional change. In order to invade, however,165
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Figure 2: Ecological mass effects drive autonomous turnover. A: Compositional clustering
represented by the block structure of the BC similarity matrix (200 unit times). B: Hierarchical
cluster analysis approximately quantifies the number of compositional states with a similarity
threshold of 75% (red dashed line) (19). C: The number of compositional clusters detected,
plotted against the size of the pool of potential invaders for an isolated LV community using
a propagule pressure ε of 10−10 and 10−15, fit with a generalized additive model (33). For
S < 35 a single cluster is detected. For S ≥ 35 autonomous turnover occurs (≥ 1 com-
positional clusters) with the transition indicated by the dashed line (inset). D: Qualitatively
identical behaviour was observed for model metacommunities in which ‘propagule pressure’
arises due to ecological mass effects from the local neighbourhood. Each point represents a
single node. Lines in D are standard linear regressions. The good alignment of subsequent fits
demonstrates that neighbourhood diversity is the dominating predictor of cluster number, rather
than N . N = 16, 32, 48, 64, 80, 96, 128, 160, 192, 224, 256, Aij = 0.5 with probability
0.5, φ = 10, σ2 = 0.01, ` = 0.5.
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species need to be capable of passing through biotic and abiotic filters. We would expect, there-166

fore, that turnover would be suppressed in highly heterogeneous or poorly connected environ-167

ments where mass effects are weak. Manipulating the parameters φ, σ2 and `, this is precisely168

what we observe (Fig. S8).169

Autonomous turnover and local ecological limits: Species richness in LV systems subject to170

invasion pressure is ultimately regulated by the onset of ecological structural instability (16,31):171

in species rich, structurally unstable communities, press perturbations easily lead to extinctions.172

The boundary between the UFP and MA phases coincides exactly with the onset of structural in-173

stability (Eqs. S6-S12), implying that the emergence of biodiversity regulation and of autonom-174

ous turnover are tightly linked. For metacommunities, we demonstrate this linkage numeric-175

ally in Fig. 3 by showing that, as regional species richness increases, the onset of autonomous176

turnover coincides with the saturation of local species richness. Autonomous turnover might177

therefore serve as an indication of the structural instability of complex communities.178

The macroecology of autonomous turnover179

We find surprising similarities between temporal and spatio-temporal biodiversity patterns emer-180

ging in model metacommunities and in empirical data (Fig. 4), with quantitative characteristics181

lying within the ranges observed in natural ecosystems.182

Temporal occupancy: The proportion of time in which species occupy a community tends183

to have a bi-modal empirical distribution (34–36) (Fig. 4A). The distribution we found in sim-184

ulations (Fig. 4E) closely matches the empirical pattern.185

Community structure: Temporal turnover has been posited to play a stabilizing role in the186

maintenance of community structure (37,38). In an estuarine fish community (39), for example,187
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Figure 3: The emergence of temporal turnover during metacommunity assembly. A: Spe-
cies richness at local (αsrc, grey) and regional scales (γ, black) for a single metacommunity of
N = 32 coupled communities during iterative invasion of random species. We quantify local
source diversity αsrc as the metacommunity average of the number αsrc of non-zero equilib-
rium populations persisting when immigration is switched off (off-diagonal elements of D set
to zero), since this is the component of a local community subject to strict ecological limits to
biodiversity. Note the log scale chosen for easy comparison of local and regional richness. B:
Increases in regional diversity beyond local limits arise via corresponding increases in spatial
turnover (βs, black). Autonomous temporal turnover (βt, grey) sets in precisely when average
local species richness αsrc has reached its limit, reflecting the equivalence of the transition to
the MA phase space and the onset of local structural instability. In both panels, the dashed line
marks the point at which autonomous temporal turnover was first detected. Aij = 0.3 with
probability 0.3, φ = 10, σ2 = 0.01, ` = 0.5.
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species richness (Fig. 4B) and the distribution of abundances were remarkably robust despite188

changes in population biomasses by multiple orders of magnitude. In model metacommunities189

with autonomous turnover we found, likewise, that local species richness exhibited only small190

fluctuations around the steady-state mean (Fig. 4F, three random local communities shown)191

and that the macroscopic structure of the community was largely time invariant (Fig. S9). In192

the light of our results, we propose the absence of temporal change in community properties193

such as richness or abundance distribution despite potentially large fluctuations in population194

abundances (39) as an indication of predominantly autonomous ecological dynamics.195

The Species-Time-Area-Relation, STAR: The species-time-relation (STR), typically fit196

by a power law of the form S ∝ Tw, describes how observed species richness increases with197

observation time T . The exponent w of the STR has been found to be remarkably consistent198

across taxonomic groups and ecosystems (40–42), indicative of some general population dy-199

namical mechanism. However, the exponent of the STR decreases with increasing sampling200

area (40), and the exponent of the empirical Species Area Relation (SAR) (S ∝ Az) consist-201

ently decreases with increasing sampling duration (40) (Fig. 4C, D). We tested for this pattern202

in a large simulated metacommunity with N = 256 patches by computing the STAR for nested203

subdomains and variable temporal sampling windows (19). We observed exponents of the nes-204

ted SAR in the range z = 0.25-0.60 and for the STR a range w = 0.02-0.48 (Fig. S10), both205

in good agreement with observed values (41, 43). We also found a clear decrease in the rate of206

species accumulation in time as a function of sample area and vice-versa (Fig. 4G, H).207

Thus, the distribution of temporal occupancy, the time invariance of key marcoecological208

structures and the STAR in model metacommunities match observed patterns. This evidence209

suggests that such autonomous dynamics cannot be ruled out as an important driver of temporal210

compositional change in natural ecosystems.211
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Figure 4: Macroecological signatures of autonomous compositional change. A bimodal dis-
tribution in temporal occupancy observed in North American birds (34) (A) and in simulations
(E, N = 64, φ = 5, σ2 = 0.01, ` = 0.5). Intrisically regulated local species richness ob-
served in estuarine fish species (39) (B) and in simulations (F, N = 64, φ = 5, σ2 = 0.01,
` = 0.5). The decreasing slopes of the STR with increasing sample area (40) (C), and the SAR
with increasing sample duration (40) (D) for various communities and in simulations (G and H,
N = 256, φ = 10, σ2 = 0.01, ` = 0.5). In C and D we have rescaled the sample area/duration
by the smallest/shortest reported value and coloured by community (see original study for de-
tails). In G and H we study the STAR in metacommunities of various size N , represented by
colour. Limited spatio-temporal turnover in the smallest metacommunties (blue colours) greatly
reduces the exponents of the STAR relative to large metacommunities (red colours). Aij = 0.5
with probability 0.5 in all cases.
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Conclusions212

Current understanding of the mechanisms driving temporal turnover in ecological communities213

is predominantly built upon phenomenological studies of observed patterns (44) and is unques-214

tionably incomplete (39,45). That temporal turnover can be driven by external forces – seasonal215

or long term climate change, direct anthropogenic pressures etc. – is indisputable. A vitally im-216

portant question is, however, how much empirically observed compositional change is actually217

due to such forcing. A recent landmark analysis of temporal patterns in biodiversity detected218

no systematic change in species richness or structure in natural communities, despite rates of219

compositional turnover greater than predicted by null models (1–3, 46). Here we have shown220

that empirically realistic turnover in model metacommunities can occur via precisely the same221

mechanism as that responsible for regulating species richness at the local scale. While the pro-222

cesses regulating diversity in natural communities remain poorly understood, our theoretical223

work suggests local structural instability may explain these empirical observations in a unified224

and parsimonious way.225

Simulations reveal a qualitative transition from small to large metacommunities. For com-226

munities of species such as marine mammals or large fish whose ranges can extend across entire227

macroclimatic niches, one might plausibly expect that autonomous turnover is absent. For or-228

ganisms with ranges that are small compared to their macroclimatic niches, on the other hand,229

autonomous turnover of local communities can plausibly be expected based on our findings.230

Empirically distinguishing between these two cases for different guilds will be an important231

task for the future.232

At intermediate spatial scales, autonomous turnover is characterized by sharp transitions233

between cohesive compositional states. To date, few empirical analyses have reported such co-234

herence in temporal turnover, perhaps because the taxonomic and temporal resolution required235
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to detect such patterns is not yet widely available. Developments in biomonitoring technolo-236

gies (47) are likely to reveal a variety of previously undetected ecological dynamics, however.237

By combining high resolution temporal sampling and metagenetic analysis of community com-238

position, a recent study demonstrated cohesive but short-lived community cohorts in coastal239

plankton (48). Such Clementsian temporal turnover may offer a useful signal of autonomous240

compositional change in real systems.241

Thus, overcoming previous computational limits to the study of complex metacommunities242

(49,50), we have discovered the existence of two distinct phases of metacommunity ecology—243

one characterized by weak or absent autonomous turnover, the other by continuous composi-244

tional change in the absence of external drivers. By synthesizing a wide range of established245

ecological theory (16, 25, 27, 49), we were able to heuristically explain these phases. Our ex-246

planation implies that autonomous turnover requires little more than a diverse neighbourhood of247

potential invaders, a weak immigration pressure, and a complex network of interactions between248

co-existing species.249
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Supplementary materials344

Materials and Methods345

Supplementary text346

Figs. S1 – S10347

Materials and Methods348

Metacommunity assembly: The dynamics of local population biomasses Bix(t) were349

modelled using a spatial extension to the multispecies Lotka-Volterra competition model (16):350

dBix

dt
= Bix

(
Rix −

S∑
j=1

Aij Bjx

)
− eBix +

∑
y∈N (x)

e

ky
exp
(
−dxy`−1

)
Biy. (S1)

The competitive coupling coefficients Aij for i 6= j were sampled from discrete distributions.351

Generally, Aij were set to 0.5 with a probability of 0.5 and to 0 otherwise, however, for the352

simulation shown in Fig. 3, we relaxed the dynamic coupling and instead set Aij to 0.3 with a353

probability of 0.3. This delayed the onset of local structural instability during metacommunity354

assembly, making the coincident emergence of local diversity regulation and autonomous com-355

positional turnover visually clearer.356

Environmental heterogeneity was modelled implicitly through spatial variation in species’357

intrinsic growth rates Rix. Specifically, the Rix were sampled independently for each species i358

from a Gaussian random field (51) with mean µ = 1.0 and standard deviation σ, generated via359

spectral decomposition (52) of the N × N landscape covariance matrix with elements Σxy =360

exp [−φ−1dxy], where dxy denotes the Euclidean distances between patches x and y, and φ the361

autocorrelation length (Fig. S1).362

The dispersal matrix D (Eq. (1)) has diagonal elements Dxx of −e, where e, the fraction363

of biomass leaving patch x per unit time, was kept fixed at 0.01 for all simulations. For pairs364
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of nodes connected by an edge in the spatial network, the immigration terms were modelled as365

negative exponentials Dxy = ek−1
y exp (−dxy`−1), controlled by a dispersal length parameter `,366

thus assuming a propensity for propagules to transition to nearby sites. The normalisation con-367

stant ky divides the biomass departing patches y between all other patches in its local neighbour-368

hood (N (y)), weighted by the ease of reaching each patch i.e. ky =
∑

z∈N (y) exp
(
−dyz`−1

)
,369

implying an active dispersal process.370

Metacommunities were assembled through a stepwise invasion process. In each iteration371

of the algorithm, 0.05S + 1 new species were introduced to the the metacommunity, with S372

denoting the current extant species richness. The invaders were tested to ensure positive growth373

rates at low abundance, and then added at 10−6 biomass units to the local community in which374

their growth rate was highest. The metacommunity was periodically scanned and species with375

biomass smaller than 10−4 biomass units in all nodes of the network were considered regionally376

extinct and removed from the model. The assembly algorithm aims to remove all species whose377

total biomass declines to zero in the course of the system’s complex dynamics. In rare cases378

autonomous fluctuations may drive one of the remaining species to very low abundance in all379

nodes, however the majority retain local biomass above the detection threshold in at least one380

node at all times.381

To assemble models of sufficient spatial extent and species richness, we developed a paral-382

lel implementation of the assembly algorithm based on a domain decomposition of the spatial383

network, and simulated it on the high-performance cluster at Queen Mary, University of Lon-384

don (53). This permitted assembly of saturated metacommunities of up to N = 256 patches385

harbouring S ∼ 3000 species, thus breaking through frequently lamented computational lim-386

its (49, 50) on the numerical study of metacommunities.387
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Quantifying autonomous turnover: For fully assembled metacommunities, we simu-388

lated and stored time series of tmax = 104 metacommunity samples Bixt = Bix(t) taken in389

intervals of one unit time. In these metacommunity timeseries, we measured spatio-temporal390

turnover based on i) compositional dissimilarity, ii) the distribution of temporal occupancy, iii)391

the number of compositional clusters detected using hierarchical clustering, and iv) via species392

accumulation curves generated using sliding spatial and temporal sampling windows. Metrics393

were selected in order to answer specific questions, or for comparison to observed patterns.394

Some analyses require quantifying local species richness. This was done by setting a detection395

threshold of 10−4 biomass units, below which populations are considered absent from the com-396

munity. Local source diversity, which we define in Fig. 3, is a related but different diversity397

measure that is more adequate for quantifying the component of a local community subject to398

local ecological limits to biodiversity.399

Compositional dissimilarity: Spatio-temporal compositional similarity was quantified us-400

ing the Bray-Curtis (20) similarity index via the function vegdist in the R package “ve-401

gan” (54).402

Temporal occupancy: We assessed temporal occupancy by first converting biomass into403

presence-absence data (Pixt = 1 for allBixt > 10−4, and 0 otherwise). Then, for all populations404

present at least once, we computed the temporal occupancy (TOix) as the proportion of the time405

interval of length tmax during which that population was present:406

TOix =
1

tmax

∑
t

Pixt (S2)

Hierarchical clustering: We assessed the degree of temporal clustering in community com-407

position using complete linkage hierarchical clustering (55) of the Bray-Curtis similarity matrix,408

which gives an approximate measure of the number of unstable equilibria between which the409
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dynamical system fluctuates. We computed the number of clusters using a threshold of 75%410

similarity, which reflects the structure visible in pairwise dissimilarity matrices (Fig. 2A and411

B).412

Spatio-temporal species accumulation: We studied the STR and SAR in model metacom-413

munities using a sliding window approach, asking how many species Sobs were detected in spa-414

tial ‘windows’, represented by connected sub-graphs of ∆A nodes, during temporal windows415

of ∆T unit times:416

Sobs =
∑
i

[∑
t∈∆T

∑
x∈∆A

Pixt ≥ 1

]
(S3)

where the Iverson brackets [.] denote the indicator function. Time windows with all possible417

starting points for a given window length were evaluated and analogously for the spatial sub-418

sampling, and then the average species richness for a given sample size computed. In closed419

systems, the species accumulation in both space and time must ultimately saturate, either when420

the entire metacommunity or entire time series is sampled. Thus we defined the exponents z and421

w of the STAR as the maximum slopes of the SAR/STR on double logarithmic axes (Fig. S10).422

Supplementary text423

Spatial parameterization: Other than patch number N , the parameters that most im-424

pact the spatio-temporal structure of model metacommunities are the environmental correla-425

tion length φ, the variability of the environment σ2, and the dispersal length `. In order to426

understand the role of these parameters for autonomous turnover, we fixed N = 64 and as-427

sembled metacommunity models with σ2, ` = 1 × 10−2, 5 × 10−2, 1 × 10−1, 5 × 10−1, 1,428

and φ = 1, 5, 10, 50, 100 in all combinations and computed the resulting temporal beta429

diversity as the mean spatially averaged temporal BC dissimilarity observed in 10 replicates430
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of each parameterization. Rates of autonomous turnover varied in a complex but systematic431

way under variation in the spatial parameterization of the model, with turnover being weakly432

correlated with the dispersal length and maximized for intermediate habitat heterogeneity and433

autocorrelation (Fig. S2). Weak abiotic heterogeneity seeds the non-uniform spatial structure434

of the metacommunity and therefore promotes turnover. For large enough spatial networks,435

dispersal limitation and competitive repulsion alone are sufficient to drive steady state dynam-436

ics in perfectly uniform landscapes. The scan of the parameter space allowed selection the437

parameterization that maximized autonomous turnover: φ = 10, σ2 = 0.01, ` = 0.5 (peak in438

Fig. S2A). Using this combination of parameters we then assembled metacommunity models439

of N = 8, 16, 32, 48, 64, 80, 96, 128, 160, 192, 224, 256. By maximizing turnover in this440

way, we were able to explore the macroecological implications of autonomous turnover in the441

computationally accessible spatial range (N ≤ 256).442

To some extent, the complex roles of parameters φ, σ2, and `, shown in Fig. S2, can be dis-443

tilled into the effect on a single parameter: the time averaged spatial community dissimilarity444

at the local neighbourhood scale. To demonstrate this we used the multiple-site dissimilarity445

metric derived in Ref. (56), which generates an unbiased total beta diversity metric for sys-446

tems of three or more sites/time points, allowing direct comparison of beta diversity for local447

neighbourhoods of different numbers of nodes. Spatial β-diversity, βs, was computed using448

the function beta.multi.abund() included in the R package ‘betapart’ (57). This metric449

partitions β-diversity into two components corresponding to species replacement and compos-450

itional nestedness. Here we report total dissimilarity only. Temporal turnover responded un-451

imodally to local neighbourhood dissimilarity (Fig. S8) over the parameter range of Fig. S2,452

suggesting that spatial parameterizations that maximise βs, either through exaggerating abi-453

otic differences between adjacent local communities or dampening mass effects, can elevate454

neighbourhood diversity while simultaneously suppressing the pool of species that can actually455
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invade.456

This result makes plausible why empirical studies have detected a range of statistical as-457

sociations between spatial and temporal turnover in natural ecosystems. Positive, negative,458

unimodal, and non-significant relationships have been reported between temporal turnover and459

species richness or spatial turnover (41), (58–62). The unimodal response, shown in Fig. S8460

may help to resolve these apparent contradictions: it is not species richness or spatial dissim-461

ilarity per se that best predict temporal turnover, but the size of the pool of species capable of462

passing through biotic and abiotic filters to invade a local community.463

Note that for consistency we compute βt in Fig. S8 using the BC dissimilarity as in Fig. S2,464

however the pattern is qualitatively unchanged if βt is computed using alternative β-diversity465

metrics or cluster analysis as in the main text.466

Phase space of a generalised Lotka-Volterra community: Analytic theory (25) predicts467

a sharp transition between what has been called the Unique Fixed Point (UFP) and Multiple468

Attractor (MA) phases. In Fig. S4 we reproduce the phase portrait for such a system and note469

that our explicitly modelled metacommunities reveal a gradual transition in the MA phase space470

from oscillatory, to Clementsian and into Gleasonian turnover regimes. Assuming large S, the471

sharp transition between UFP and MA phases has been shown (25) to occur at species richness472

S =
2

(1 + γ)2 var (Aij)
, (S4)

where γ = corr (Aij, Aji) denotes the degree of correlation in the effects two species have on473

each other, measuring the symmetry of interspecific interaction strengths, and var (Aij) is the474

variance in the distribution. In our model we use a random interaction matrix for which γ = 0.475

We sample interaction coefficients from a discrete distribution with var (Aij) = (0.25)2 giving476
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a predicted transition into the MA phase space at S = 32 species. Thus, while the prediction477

is approximate for small S communities with non-uniform intrinsic growth rates, a numerically478

observed threshold of around 35 species in the isolated LV model (Fig. 2C inset) is consistent479

with these analytic predictions.480

Isolated LV communities: To explore the emergence of heteroclinic networks in LV mod-481

els, we studied an isolated LV model with and without coupling to an implicitly modelled neigh-482

bourhood species pool. The dynamics of the model follow483

db

dt
= b ◦ (r−Ab) + ε, (S5)

where b is a population biomass vector of length S, r is a vector of independent random normal484

variables with mean 1 and variance σ2 = 0.01 representing maximum intrinsic growth rates,485

A is a competitive overlap matrix and the vector ε represents the slow immigration of biomass486

corresponding to a weak propagule pressure. The elements εi are analogous the to explicitly487

modelled immigration terms BixDxy of the full metacommunity model.488

As in the metacommunity model, interspecific competition coefficients Aij were set to 0.5489

with a probability of 0.5 for i 6= j and otherwise to zero, while Aii = 1, for all i. We enforced490

bi > 0 for all i by simulating dynamics in terms of logarithmic biomass variables. In simulating491

this model, we did not follow the common practice of removing species whose biomass drops492

below some threshold. Instead all species were retained. We consider two situations: with and493

without the inclusion of a weak propagule pressure ε.494

Heteroclinic networks in the case without propagule pressure: We first demonstrate in495

simulations that, indeed, as predicted under certain constraints (27), stable heteroclinic net-496

works exist in the MA phase of model Eq. (S4) for ε = 0. For this we choose S = 300,497
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which, with other parameters set as described above, brings us deeply into the MA phase of498

the model. Simulations were initialised by setting all Bi = 10−3 (1 ≤ i ≤ S) at t = 0. The499

system was simulated until t = 2.1 · 107 and system states recorded at times t = 2.1 · 10j/1000
500

(0 ≤ j ≤ 7000). As illustrated in Fig. S5, while dynamics tend to become slower for larger501

t, no stable equilibrium or other simple attractor appears to be ever reached—as expected for a502

system approaching a heteroclinic network. Instead, as expected when a heteroclinic network503

exists, the system bounces around between unstable equilibria, apparently in a random fashion.504

Unexpected to us, however, the system appears to visit not only unstable equilibria in its tran-505

sient, but occasionally also unstable periodic orbits (t ≈ 1.3 · 104 in Fig. S5) and perhaps more506

complex invariant sets (t ≈ 1.2 · 106 in Fig. S5).507

One might wonder whether there is any tendency for dynamics to eventually come to a halt.508

To study this question, we calculated the number of changes in community composition (species509

invasions and extinctions) between all pairs of subsequently recorded system states, where we510

considered a species i as “present” if Bi > 10−4, and from this the momentary rate of change in511

composition on the ln(t) scale by dividing by ln(101/1000). In Fig. S6 we show the time series512

of the centred moving average over this number for 100 subsequent pairs or recordings, and513

averages for non-overlapping adjacent blocks for 300 pairs. Spikes where the rate of change is514

particularly high correspond to brief phases of regular or irregular oscillation. We performed a515

median regression of the block-wise averages by a power law (rate) ∼ tν . Median regression516

was used to de-emphasize the spikes. For the simulation shown in Fig. S5 found that ν did not517

differ significantly from zero, implying a decline of the turnover rate on the natural time axis as518

t−1. When we repeated this analysis for 15 independent simulations (two of which failed due to519

numerical issues), we observed a tendency for ν to be slightly positive (ν = 0.054±0.020, t-test520

t = 2.67, p = 0.020), perhaps because the effect of oscillatory phases on the mean turnover521

rate on the ln(t)-scale increases with increasing t. Overall, however, the decline of turnover522
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rate approximately as t−1 was confirmed, providing evidence for the existence of an attracting523

heteroclinic network that the LV system Eq. (S5) with ε = 0 slowly approaches.524

Use of logarithmic biomass variables was essential for these simulations. We found that525

median species biomass at the end of each run was typically around 10−3,500,000, much smaller526

than the smallest number representable by double precision floating point arithmetic, which is527

around 2 · 10−308. Needless to say, these small numbers mean that the simulations with ε = 0528

are, while instructive, ecologically unrealistic.529

Heteroclinic networks in the case with propagule pressure: The case ε > 0, where dy-530

namics move alongside the underlying heteroclinic network without ever fully approaching it,531

is discussed in the Main Text as it provides a useful intermediate between the explicit metacom-532

munity model and the more tractable isolated community. In Fig. S7 we show that the transition533

from oscillatory to Clementsian and finally Gleasonian turnover regimes can also be observed534

in these isolated LV models (εi = ε = 10−15 for all i, other parameters as above).535

Local structural instability drives autonomous turnover: Species richness in compet-536

itive LV communities is intrinsically limited by the onset of ecological structural instability.537

Here we show analytically that for isolated communities the boundary between the UFP and538

MA phases (25) is identical to the structurally unstable limit (31).539

The transition between UFP and MA phase for competitive LV models occurs (25) when540

Φ = (u− γv)2 , (S6)

where Φ := S∗/S is the proportion of species persisting, i.e. the ratio between the number S∗541

of species that persist and the pool size S, and again γ = cor (Aij, Aji). The quantities u and v542

in Eq. (S6) are given by543
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u =
1− E[Aij]

S1/2 std (Aij)
, (S7)

with E[Aij] and std (Aij) denoting mean and standard deviation of the distribution of off-544

diagonal entries of A, respectively, and545

v =
Φ

u− γv
. (S8)

For γ 6= 0, Eq. (S8) does not have a unique solution for v. The equivalent quadratic equation546

γv2 − uv + Φ = 0 has two solutions, one of which diverges as γ → 0; this we discard. The547

other solution is548

v =
u−

√
u2 − 4γΦ

2γ
, (S9)

which becomes v = Φ/u for γ → 0, consistent with Eq. (S8). Substitution of Eq. (S9) into549

Eq. (S6) gives550

Φ =

(
u−

√
u2 − 4γΦ

2

)2

, (S10)

which can be shown in a standard calculation to be equivalent to551

Φ =
u2

(1 + γ)2 (S11)

for u > 0 and −1 < γ < 1. Finally, substituting Eq. (S7) into Eq. (S11) gives552
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S∗ =

(
1− E[Aij]

)2

(1 + γ)2 var (Aij)
, (S12)

which is exactly the theoretical limit of structural instability in isolated LV communities [Eq. (18.3)553

of Ref. 31], thus demonstrating that UFP-MA phase boundary and the onset of structural in-554

stability perfectly coincide.555

Temporal patterns in community structure: Fluctuations in local population biomasses556

as communities move between unstable equilibria in heteroclinic networks can span multiple557

orders of magnitude (red trajectories in Fig. S9A) and lead to significant temporal turnover in558

community composition (Fig. S9B). In contrast, the high-level properties of the assemblages559

remain largely unchanged. This is evident in the dampening of biomass fluctuations at meta-560

population and metacommunity scales via a spatial portfolio effect (blue and black trajectories561

in Fig. S9A), but also in the robustness of species biomass distribution (Fig. S9C) and range562

size distribution (Fig. S9D, range sizes computed as in Ref. (16)). In this case the mean relative563

biomass and range size are plotted irrespective of species identity (black lines) along with the564

mean ± one standard deviation (grey lines), for direct comparison with Ref. (39). The relat-565

ively small standard deviations demonstrate a temporally robust distribution of metapopulation566

biomasses and spatial ranges, despite large fluctuations at the local scale.567

STAR in large metacommunity models: We characterised the within assemblage STAR568

using a moving spatio-temporal window as described in the main text and comparing the res-569

ulting SAR and STR exponents. In Fig. S10 we show the nested SAR and STR for a single570

metacommunity of N = 256. The number of species detected for large spatial or temporal571

windows necessarily saturates in closed systems. We therefore defined the exponents of the572
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STAR, displayed in Fig. 4 of the main text, as the maximum slope of the SAR/STR on double573

logarithmic axes.574
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Supplementary figures575

34

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted May 26, 2020. ; https://doi.org/10.1101/2020.05.22.110262doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.22.110262


●
●●

●
●●●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●●

●

●●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●●

●●
●

●●●

●●

●

●●

●●●

●●

●●

●

●●
●

●●

●

●

●
●●

●

●

●●

●●●

●●●

●●●

●●

●●

●●●

●
●

●

●

●

●●

●●●

●●

●

●

●

●

●●●●●●

●●●●

●●●

●●

●●●

●●

●●

●●

●

●

●●

●●●●

●
●●●
●
●

●

●●

●●

●●

●
●●

●
●
●●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●●

●

●
●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●●

●●
●

●●●

0.8

0.9

1.0

1.1

Rix

●●
●●● ●

●
●

●
●

●

●

●
●

●

●
●

●

●

●
●

●

●●

●

●

●●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●
●●

●

●
●

●
●

●

●

●

●

●

●●

●●
●

●
●

●

●

●

●

●

●

●

●

●

●●●

●

●●

●
●●●

●●●●●●●●

●

●

●●
●●

●

●

●●●●
●

●●

●●

●
●●

●●●

●

●●

●

●●

●●●
●

●

●

●●

●●

●●

●●

●●

●

●●●

●

●

●

●●

●●

●●●

●●
●

●

●

●●●

●●
●●●
●

●
●●

●●

●
●●●
●

●
●
●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●●

●

●

●●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●
●●

●

●

●

●

●
●

●

●

●

●

●●

●●
●

●

●

●

●

0.8

0.9

1.0

1.1

Rix

Figure S1: Spatially autocorrelated growth rate distributions. Instrinsic growth rates are
sampled from spatially autocorrelated random fields of autocorrelation length φ and variance
σ2. Two example distributions are shown, both of N = 64, σ2 = 0.01, with φ = 10 (left) and
φ = 1 (right). See Materials and Methods for details.
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Figure S2: Temporal turnover throughout the spatial parameter space. Temporal β-
diversity βt was computed as the mean BC dissimilarity between time points in a time series of
1000 unit times, observed in metacommunities of N = 64 patches. Correlation length φ was
varied in the range 1 to 100, environmental variability σ2 and dispersal length ` in the range
10−2 to 1, with each parameter combination replicated 10 times. The values of φ, σ2 and ` were
each plotted on logarithmic axes. In A we fixed ` at 0.5; in B φ at 10; and in C σ2 at 1.0. See
Supplementary Text for details.
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Figure S3: Autonomous metapopulation dynamics in large metacommunity models. In
species rich metacommunities of N > 8 patches, local biomasses autonomously fluctuate and
the variability of those fluctuations increases with metacommunity size. Here we show the
instantaneous biomass distributions for a single species in metacommunities of N = 32, 64 and
128, at three time points in logarithmic biomass units. For N = 32, autonomous fluctuations
are largely restricted to the outer extremes of the species’ distribution, while the core range (left
of network) remains largely static. For N = 64, some nodes or regions may be permanently
occupied by the focal species, however even in this core range biomass can fluctuate by orders
of magnitude. With the emergence of Gleasonian turnover in the high N limit no or few nodes
are permanently occupied and local community composition is no longer well characterized by
the core-transient distinction (34,36,39), which decomposes local communities into populations
that are present almost all the time, and those observed only rarely. Hence, for N = 128 no
obvious core range exists. Note that spatial networks are not shown to scale, the area of the
model landscape is ≈ N in all cases. Aij = 0.5 with probability 0.5, φ = 10, σ2 = 0.01,
` = 0.5. See Main Text for details.
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0

Figure S4: The sharp transition between UFP and MA phases. Reproduction of the phase
diagram derived by Bunin (25) showing the emergence of MA as the size S of the species
pool increases. In our case, the first and second moments of the distribution in Aij were fixed.
Community state in phase space therefore follows a square root function with increasing S, as
indicated by the dashed line. (The “Unbounded growth” phase is hence not relevant for our
study.) In spatially explicit metacommunity models we observe the emergence of autonomous
turnover which transitions from oscillations to Clementsian and finally Gleasonian turnover.
See Supplementary Text for details.

37

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted May 26, 2020. ; https://doi.org/10.1101/2020.05.22.110262doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.22.110262


0.
0

0.
4

0.
8

1.
2

B
io

m
as

s

102 1.2 × 102 1.4 × 102 1.6 × 102 1.8 × 102 2 × 102
0.

0
0.

4
0.

8
1.

2

B
io

m
as

s

103 1.2 × 103 1.4 × 103 1.6 × 103 1.8 × 103 2 × 103

0.
0

0.
4

0.
8

1.
2

B
io

m
as

s

104 1.2 × 104 1.4 × 104 1.6 × 104 1.8 × 104 2 × 104

0.
0

0.
4

0.
8

1.
2

Time

B
io

m
as

s

105 1.2 × 105 1.4 × 105 1.6 × 105 1.8 × 105 2 × 105

0.
0

0.
4

0.
8

1.
2

Time

B
io

m
as

s

106 1.2 × 106 1.4 × 106 1.6 × 106 1.8 × 106 2 × 106

0.
0

0.
4

0.
8

1.
2

Time

B
io

m
as

s

107 1.2 × 107 1.4 × 107 1.6 × 107 1.8 × 107 2 × 107

Time

Figure S5: Episodes in the approach of an isolated LV community model to a heteroclinic
network. The biomasses of different species are represented by lines of different colours and
style. At any moment in time, all but a few of the S = 300 species in the system have biomasses
close to zero. With increasing simulation times t the intervals between the switches in system
state, corresponding to transitions from the vicinity of one saddle point to the next, become
longer, while the duration of these transitions remains of the order of magnitude of 10 time units,
leading to increasingly sharper transitions on the logarithmic time scale. See Supplementary
Text for details.
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Figure S6: Rate of change in community composition for the simulation shown in Fig. S5.
The black line is the moving average over 100 subsequent recordings, blue dots represent av-
erages over non-overlapping adjacent blocks of 300 recordings for t ≥ 1000, and the red line
a median nonlinear regression of the dots by a power-law (rate) ∼ tν (ν = 0.091 ± 0.062, not
significantly different from zero). See Supplementary Text for details.
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Figure S7: Autonomous turnover in isolated LV communities. A: The number of composi-
tional clusters detected as a function of the size of the pool of potential invaders for a propagule
pressure, ε, of 10−15 biomass units per unit time. B-F: Heatmaps of the pairwise Bray-Curtis
similarity for the corresponding time-series (over 104 unit times) showing a clear transition from
oscillatory to Clementsian turnover and finally to Gleasonian turnover. Dashed lines in A show
the size of the species pool for which each community time series was generated. Aij = 0.5
with probability 0.5, σ2 = 0.01. The parameters φ and ` are not defined for the isolated LV
models. See Supplementary Text for details.
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Figure S8: Unimodal relationship between spatial and temporal turnover. Spatially aver-
aged temporal turnover plotted against the time averaged spatial turnover in the local neighbour-
hood, computed during 1000 unit times. Blue line and shaded area represent a locally weighted
regression (LOESS smoothing) and 95% C.I.. Parameters N , φ, σ2 and ` as in Fig. S2. See
Supplementary Text for details.
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Figure S9: Temporally robust community structure A: We highlight the scale dependence of
autonomous population dynamics by showing the biomass of three random local populations of
the same species (Bix, red), of the metapopulation of which they form a part (Bi =

∑
xBix,

blue) and finally of the entire metacommunity (B =
∑

i

∑
xBix), black). B: Autonomous

turnover can be substantial. Here we show the decay of spatially averaged BC similarity from
an arbitrary initial composition in metacommunities of N = 16, 32, 64, 128, and 256 patches.
For large metacommunities undergoing autonomous Gleasonian turnover, the percentage of
permanent populations, and hence the temporal BC similarity can drop to zero. C: Metacom-
munity scale relative rank abundance curve, plotted with species ‘identity’ disregarded. The
black curve represents the mean biomass observed at a given rank, while grey curves represent
the mean ± one standard deviation. This figure highlights the temporally invariant diversity
structure at the metacommunity scale. D: The temporally averaged rank range size curve, plot-
ted as in C. Aij = 0.5 with probability 0.5, φ = 10, σ2 = 0.01, ` = 0.5. N = 64 for A, C and
D. See Supplementary Text for details.
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Figure S10: The Species-Time-Area-Relation. The nested SAR (A) and STR (B) generated
using a sliding window approach for a single metacommunity model of N = 256. Metacom-
munity models are closed systems and as such, both the SAR and STR saturate for the large
sub-samples. As such we defined the exponents of the STAR by the maximum slopes observed
on double logarithmic axes. Aij = 0.5 with probability 0.5, φ = 10, σ2 = 0.01, ` = 0.5. See
Supplementary Text for details.
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