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Summary 

In this study we investigate the results of a metabolome- and transcriptome-wide association             
study to identify genes influencing the human metabolome. We used RNAseq data from             
lymphoblastoid cell lines (LCLs) derived from 555 Caucasian individuals to characterize their            
transcriptome. As for the metabolome we took an untargeted approach using binned features             
from 1H nuclear magnetic resonance spectroscopy (NMR) of urine samples from the same             
subjects allowing for data-driven discovery of associated compounds (rather than working with            
a limited set of quantified metabolites). 

Using pairwise linear regression we identified 21 study-wide significant associations between           
metabolome features and gene expression levels. We observed the most significant association            
between the gene ALMS1 and two adjacent metabolome features at 2.0325 and 2.0375 ppm. By               
using our previously developed metabomatching methodology, we found N-Acetylaspartate         
(NAA) as the potential underlying metabolite whose urine concentration is correlated with            
ALMS1 expression. Indeed, a number of metabolome- and genome-wide association studies           
(mGWAS) had already suggested the locus of this gene to be involved in regulation of               
N-acetylated compounds, yet were not able to identify unambiguously the exact metabolite, nor             
to disambiguate between ALMS1 and NAT8, another gene found in the same locus as the               
mediator gene. The second highest significant association was observed between HPS1 and two             
metabolome features at 2.8575 and 2.8725 ppm. Metabomatching of the association profile of             
HPS1 with all metabolite features pointed at trimethylamine (TMA) as the most likely             
underlying metabolite. mGWAS had previously implicated a locus containing HPS1 to be            
associated with TMA concentrations in urine but could not disambiguate this association signal             
from PYROXD2, a gene in the same locus. We used Mendelian randomization to show for both                
ALMS1 and HPS1 that their expression is causally linked to the respective metabolite             
concentrations.  

Our study provides evidence that the integration of metabolomics with gene expression data             
can support mQTL analysis, helping to identify the most likely gene involved in the modulation               
of the metabolite concentration. 
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Introduction 

Genome-wide association studies (GWAS) have identified thousands of common variants that           
are associated with complex traits [1], but the regulatory mechanisms behind these associations             
mostly remain poorly understood. Pinpointing causal variants is difficult, since the lead variants             
associated with a trait are often in high linkage disequilibrium (LD) with other variants in the                
same region with only a slightly lower association signal. Such associated LD blocks typically              
contain several genes or functional elements, preventing the accurate identification of causal            
genes. Furthermore, some trait associated variants fall into intergenic regions of the genome             
with no obvious functional role at all.  

A number of studies reported that trait associated genetic variants are significantly enriched in              
expression quantitative trait loci (eQTLs), suggesting that many trait associated variants affect            
the phenotype by altering gene expression [2-5]. There is also a growing body of literature               
highlighting the more pronounced effects of genetic variants on molecular traits compared to             
phenotypic traits [6-9]. This is not surprising, since molecular traits representing fundamental            
biological processes such as gene expression and metabolism are intermediates in the genotype             
to trait causality chain.  

With high-throughput measurements becoming more accessible and widespread, integration of          
molecular traits into association studies has become a central challenge in the field. Such              
synthesis allows investigating the interplay between different organisational layers of a           
biological system. Despite metabolism and gene expression regulation both being fundamental           
biological processes that are commonly studied as molecular phenotypes, there are very few             
studies in humans that focus on the interplay between them. Several studies investigated the              
relationship between untargeted serum metabolites and whole blood gene expression in           
humans [10-12], but, to the best of our knowledge no transcriptome- and metabolome-wide             
association study has been performed using urine metabolome data of healthy human subjects. 

Most metabolome- and genome-wide association studies (mGWAS) reporting metabolite         
quantitative trait loci (mQTL) use targeted approaches where the concentrations of a limited             
number of metabolites are estimated from the metabolome data generated by mass            
spectrometry or NMR spectroscopy. This targeted approach is limited to the number of known              
quantifiable metabolites in the biofluid under study. In the current study we adopted an              
untargeted approach, making use of the entire metabolomic data captured by binned 1H NMR              
spectra as our molecular traits. So here we present an untargeted metabolome- and             
transcriptome-wide association study using the entire NMR spectral information to characterize           
the urine metabolomes of 555 subjects and RNAseq data of lymphoblastoid cell lines (LCLs)              
derived from the same set of individuals. LCL have been widely used in genomic studies and                
proven their worth as faithful surrogates of primary tissues for studying both gene expression              
variation among individuals and the genetic architecture underlying regulatory variation of           
gene expression [13-16]. LCLs thus present an interesting system whose genetic variance in             
expression resembles that of the cell types affecting the urine metabolome, with the added              
advantage of not being influenced by immediate environmental factors such as recent changes             
in the diet or exposure to a drug. Despite having limited statistical power and using surrogate                
tissue, we identified two strong associations between gene expression levels and urine            
metabolome features, which allowed us to refine previous links between the corresponding            
genes and metabolites.  
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Materials and Methods 

Study samples 

Our 555 transcriptomics and metabolome profiles were measured in a randomly selected            
subset of individuals from CoLaus (Cohorte Lausannoise), a population-based cross-sectional          
study of 6,188 participants residing in Lausanne, Switzerland [17]. Recruitment to the cohort             
was done on the basis of a simple, non-stratified random selection of the entire Lausanne               
population aged 35 to 75 in 2003. The 555 samples selected for this study had a mean age of 55                    
(min=35, max=75) and 53% of them were women. 

Metabolomics data  

We used two metabolomics data sets; the first dataset was acquired at baseline for 555 subjects                
and the second dataset was acquired five years later for a subset of 301 subjects. Baseline                
urinary metabolic profiles were generated using one-dimensional proton nuclear magnetic          
resonance (NMR) spectroscopy. NMR spectra were acquired at 300 K on a Bruker 16.4 T Avance                
II 700 MHz NMR spectrometer (Bruker Biospin, Rheinstetten, Germany) using a standard 1H             
detection pulse sequence with water suppression. The spectra were referenced to the TSP signal              
and phase and baseline corrected. We binned the spectra into chemical shift increments of 0.005               
ppm, obtaining metabolome profiles of 2,200 metabolome features, of which 1,276 remain after             
filtering for missing values [18]. Lastly, the dataset was log10-transformed and standardised            
first across features and then samples, to make samples and feature intensities comparable.  

The follow-up data was acquired with an Avance III HD 600 NMR spectrometer. These spectra               
were referenced to the TSP signal and phase and baseline corrected. We binned the chemical               
shifts into 0.005 ppm bins. After removing water and urea spectral regions (4.55-5.00 ppm and               
5.5-6.1 ppm), the dataset was log10-transformed and standardised first across features then            
samples, to make samples and feature intensities comparable. Lastly, we performed principal            
component analysis (PCA) to detect outliers and 33 spectra with components scores            
below/above 3.5 standard deviations from the average of all components scores were removed.             
Our final metabolic dataset includes 1,289 features. 

Gene expression data 

Total RNA was extracted from Epstein–Barr-virus-transformed lymphoblastoid cell lines (LCLs)          
by following the Illumina TruSeq v2 RNA Sample Preparation protocol (Illumina, Inc., San Diego,              
CA) by the Department of Genetic Medicine and Development at the University of Geneva. Next               
mRNA sequencing was performed on the Illumina HiSeq2000 platform producing 49bp           
paired-end reads. Paired-end reads were mapped to human genome assembly GRCh37 (hg19)            
with GEMTools using GENCODE v15 as gene annotation [19]. The reads were then filtered for               
correct orientation of the two ends and a minimum quality score of 150 while allowing 5                
mismatches at both ends. Gene level read counts were quantified with an in-house script. This               
resulted in expression profiles of 45,470 genes for 555 individuals, which were quantified as              
RPKM values. Later, we transformed RPKM values by applying log-transformation          
[log 2(1+RPKM)] and then standardisation across samples to make genes comparable. For our            
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analysis we removed all genes on the sex chromosomes, as well as mitochondrial DNA genes               
from the gene expression data, resulting in 43,614 genes to use in the association analysis.  

Genotypic data 

Genotyping was performed by using the Affymetrix GeneChip Human Mapping 500 K array set              
and the imputation was carried out for HapMap II SNPs. Further details of genotype calling and                
the imputation can be found in [18]. 

Association analysis 

All statistical analyses were performed using Matlab [20]. Urine metabolome features were rank             
normalized in order to have comparable intensities before they were used as response variables              
in regression.  

We used a linear regression model for each pair of metabolome feature (as the response               
variable) and gene expression level (as the explanatory variable). The model also included the              
following common confounding factors: age, sex, the first four principal components of the             
genotypic data (correcting for population stratification) and the first 10 principal components of             
the gene expression data (correcting for potential batch effects). We tested 1,276 metabolome             
features for association with the expression of 19,123 protein coding and 24,491 non-coding             
genes. For the completeness of the analysis we did not apply any a-priori exclusion criteria to                
remove genes from the analysis. As a consequence, the distribution of genes RPKM values with               
significant associations were evaluated to ensure close to normality distribution for accurate            
regression estimations. We applied a nominal Bonferroni threshold for multiple testing p max =             
0.05/(125×1,109) = 3.6 -7 by taking into account the effective number of tests which we  10×             

estimated to be 125 for metabolome features and 1,109 for genes (i.e. the number of principal                
components explaining more than 95% of the data [21]). Only associations with p-value below              
p max  were considered significant.  

Metabomatching 

Metabomatching is a method to identify metabolites underlying associations of SNPs with            
metabolome features [18, 22]. It compares the association profile of a given variable with all               
metabolome features across the full ppm range, so-called pseudospectrum, with NMR spectra of             
pure metabolites available in public databases such as HMDB [23]. For each metabolite m,              
metabomatching defines a set of features that contains all the features f that fall within a      (m)F δ            

δ ppm vicinity of any NMR spectrum peak of m listed in the database. Metabomatching then                
computes the sum 
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defines a score for each m as the negative logarithm of the nominal p-value corresponding to the                 
observed sum. These scores are calculated for all the metabolites with 1H NMR spectrum in the                
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database, allowing to rank them based on their likelihood to underlie the association of the               
variable with the metabolome features. 

Although metabomatching was originally developed to use SNP-metabolome associations,         
recently it has been shown that it can also use co-varying features of metabolome data itself to                 
identify metabolites [24]. In the present study we use metabomatching to identify metabolites             
that are associated with gene expression. 

Mendelian randomization  

We performed Mendelian randomization (MR) analysis [25, 26] to assess the causal relationship             
between gene expression and metabolite concentration. While we used SNPs as instrumental            
variables (IVs), gene expression and metabolome features were interchangeably used as           
exposure and outcome to determine the direction of causality. For the MR analysis, we used               
summary statistics from mQTL/eQTL studies with higher statistical power [27, 28]. Causal            
effects were estimated by using the Wald method where the effect of a genetic variant on the                 
outcome is divided by the effect of the same genetic variant on the exposure [29]. Next, ratio                 
estimates from different instruments (SNPs) were combined by the inverse variance weighted            
method (IVW) to calculate the causal estimate [30].  

We selected significant SNPs from relevant eQTL/mQTL studies as our IVs. To detect the              
independent SNPs, we used a stepwise pruning approach where we first selected the strongest              
lead eQTL/mQTL and then pruned the rest of the SNPs in a stepwise manner if they were                 
correlated with the lead SNP (r 2 > 0.2). We repeated the pruning process with the next available                 
SNP until there were no SNPs left to prune. We used Cochran’s Q test to determine                
heterogeneity among the candidate instruments [31]. The SNPs were pruned in a stepwise             
manner from the model until the model did not show any more signs of heterogeneity               
(Cochran’s Q statistic p-value > 0.05/#of original instruments). We also applied more robust MR              
analysis methods than IVW, such as the median estimator and MR-Egger regression to evaluate              
the significance of the causal estimates [32]. These methods are known to have more relaxed               
MR assumptions and they can tolerate the violation of the exclusion-restriction assumption for             
some instruments. For all MR analysis we used the Mendelian Randomization package            
implemented in R [33]. 

 

Analysis & Results 

Association analysis 

We performed an untargeted metabolome- and transcriptome-wide association study by          
pairwise linear regression of log-transformed expression levels of each of the 43,614 genes (as              
response variable) onto each of the 1,276 metabolome features (as explanatory variable). The             
metabolome features resulted from binning the raw urinary NMR spectra with a bin-size of              
0.005 ppm, and rank normalizing each bin passing QC (see Methods). The gene expression              
levels, quantified as RPKM, were measured using RNAseq on lymphoblastoid cell lines derived             
from the same set of 555 subjects.  
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Figure 1 shows the qq-plot of all pairwise associations. It is well calibrated, and only two                
association p-values (both involving the ALMS1 gene, see below) are highly significant            
(FDR<0.05). Yet, applying an adjusted Bonferroni threshold of 3.6 -7 to account for the        10×      

effective number of independent variables (see Methods) we identified 25 additional marginally            
significant feature-gene associations. The 27 association pairs involved 22 unique genes and 25             
unique features. We did not apply any a-priori exclusion criteria to remove genes from the               
analysis. Instead, we inspected the expression value distributions of these 22 significant genes             
in order to identify cases in which the small p-value may be due to a problematic distribution of                  
the expression values. Indeed, we observed that some of the genes had zero expression values               
for a sizable fraction of the samples and very low expression values otherwise. Based on the                
distributions we filtered out all genes that had more than 95% RPKM values equal to 0 and a                  
maximum RPKM value over all samples lower than 1. Applying this rather mild filtering              
removed 11,547 out of the 43,614 autosomal genes (26%) and 1,994 out of 19,123              
protein-coding genes (10%). Amongst the 22 marginally significant associations five (23%)           
were removed. Expression distributions of the discarded as well as remaining genes are             
presented in Supplementary Figure 1 and 2, respectively. We report the remaining 21             
significant associations corresponding to 17 unique genes and 19 unique features in Table 1. 

 

   

Figure1: QQ-plot showing -log10(p)-values of metabolome- and transcriptome-wide association analysis.          
The features that significantly associate with ALMS1 expression are ranking as 1st, 2nd and 8th; the                
features associated with HPS1 expression are ranking as 3rd and 5th and the features associated with                

ALMS1P expression are ranking as 6th and 7th. 
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Table 1: 21 study-wide significant associations from metabolome- and transcriptome-wide association           
analysis, corresponding to 17 unique genes and 19 unique features. Abbreviations: GeneID - Ensembl              
Gene ID (NCBI build 37), Chr - chromosome, X  - effect size, P  - P-value. 
 

Metabolite discovery 
To find the metabolites underlying these significant associations between gene expression           
levels and metabolome features we used metabomatching. Metabomatching has been previously           
established as an effective tool for prioritizing candidate metabolites underlying          
SNP-metabolome features association profiles, so-called pseudospectra [18, 27]. In this study           
we used association profiles of genes which had at least one significantly associated metabolite              
feature as input to metabomatching and found that the pseudospectra of ALMS1 and ALMS1P              
matched well with the N-Acetylaspartate (NAA) NMR spectrum and that the pseudospectrum of             
HPS1 matched well with the trimethylamine (TMA) NMR spectrum (Figure 2). 

As shown in Table 1, the expression of ALMS1 significantly associates with three neighboring              
features at 2.0375 ppm (p-value= -16), 2.0325 ppm (p-value=7 -16) and 2.0275 ppm    ×102    10×     

(p-value=3 -7). There are few metabolites with resonances in this region and usually a singlet10×               

signal in this area is interpreted as the N-acetylated resonance detected in the 1H NMR spectrum                
of N-acetylated compounds [37]. As illustrated in Figure 2A, among the top three metabolites              
suggested by metabomatching that have a peak at 2.03 ppm, the only one with the highest                
intensity peak at this position is NAA. Also the presence of a secondary peak in the                
pseudospectrum at 7.9225 ppm matches well with one of the lower intensity peaks of the NMR                
spectrum of NAA reported at 7.92 ppm in HMDB, even though the association p-value of this                
feature is below the Bonferroni threshold (p-value=2 -4). Similarly, metabomatching the      10×     

pseudospectrum of ALMS1P (ALMS1 pseudogene) points to NAA as the most likely matching             
N-acetylated compound (Supplementary Figure 3). The metabolome features pointing to NAA           
are the same features as in ALMS1 but with lower association p-values (2.0375 ppm with               
p-value=1 -7, 2.0325 ppm with p-value=  8 -8 , 7.9225 ppm with  p-value= 2 -4).10× 10× 10×  
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The reference spectrum of NAA in the Urinary Metabolome Database (UMDB) that we used for               
metabomatching was recorded in water. In order to verify that the peaks of this spectrum are                
comparable to those of NAA in urine, we spiked NAA into pooled urine samples from our                
collection at a concentration of 10 mM and recorded its 1H NMR spectrum. Inspecting the 5                
multiplet regions of NAA, we concluded that the NAA peak positions are very similar in both                
solvents (Supplementary Figure 4). To further investigate if a better match exists among all the               
N-acetylated family of compounds, we built a library consisting of all N-acetylated compounds             
proton NMR spectra available in HMDB and the Biological Magnetic Resonance Data Bank             
(BMRB). NAA remained the best metabomatching hit for the ALMS1 pseudospectrum           
(Supplementary Figure 5). Figure 3 illustrates the relationship between ALMS1 gene expression            
level and the NAA metabolite concentration where every point in the plot represents a study               
sample and each of the samples are color coded according to the genotype at rs7566315 SNP,                
that is an eQTL of ALMS1 and mQTL of NAA. 

The third and fifth strongest associations in Table 1 are between HPS1 gene expression and two                
neighboring metabolome features at 2.8725 ppm (p-value=2 -8) and 2.8575 ppm (p-value=      10×      

8 -8), respectively. Figure 2B shows the metabomatching result of the HPS1 pseudospectrum.10×             

Among the top three metabolites suggested by metabomatching, trimethylamine (TMA) is the            
most plausible metabolite driving the association pattern, as it is the only metabolite with its               
highest intensity NMR peak at 2.86 ppm region and no missing peaks. Schematic representation              
of the match between pseudospectra and the NMR spectra for both ALMS1 and HPS1 can be seen                 
in Supplementary Figure 6. 
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Figure 2: Metabomatching figures showing the pseudospectra derived from gene expression -           
metabolome features associations [22]. The features in each pseudospectrum are color-coded by the sign              
of the effect size and the four highest ranking candidate metabolites are listed on the lower left with their                   
reference NMR spectra shown on the right (color coding indicating their relative peak intensities). A)               
CoLaus urine metabolome-ALMS1 gene expression association profile metabomatching figure. Leading          
features allowing metabolite identification are at 2.03 ppm and 7.92 ppm regions which match well with                
the highest intensity peak of NAA and one of the lower intensity peaks of the NAA NMR spectrum,                  
respectively. B) CoLaus urine metabolome - HPS1 gene expression association profile metabomatching            
figure. Leading features allowing metabolite identification are at 2.87 and 2.86 ppm which match well               
with TMA singlet. 
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Figure 3: SNP rs7566315, showing a mQTL effect on NAA and an eQTL effect on ALMS1 gene expression.                  
Each point represents a study sample. NAA concentration is approximated by the feature at 2.0375 ppm                
that is log10 transformed after feature- and sample-wise z-scoring (y-axis). ALMS1 expression is             
quantified as log2 transformed RPKM+1 values (x-axis). Color code represents the genotype of rs7566315              
(legend). 

 

Validation of ALMS1 and HPS1 associations 

To the best of our knowledge, there is no other study with urine NMR spectra and expression                 
data of LCLs derived from the same subjects that is of comparable or larger sample size,                
precluding proper out-of-sample replication of our results. We have, however, access to            
additional urine NMR spectra from samples collected for a subset of 301 CoLaus subjects in a                
follow-up study conducted five years after the baseline data collection. We note that the              
follow-up NMR data are not independent from the baseline data, yet they were obtained from               
physically different samples collected at a significantly later time and processed in a different              
NMR spectrometer and facility. As for the expression data, we only have those from LCLs               
derived from blood taken at baseline, so we could only test whether the associations we               
observed between baseline metabolomics and baseline transcriptomics measurements would         
persist as associations between follow-up metabolomics and baseline transcriptomics data. 

We thus asked whether our significant and marginally significant results can be confirmed also              
using the follow up metabolomics data. We focused on the ALMS1 and ALMS1P gene expression               
association with NAA and the HPS1 gene expression association with TMA. As baseline and              
follow-up urine NMR data were each processed and binned individually, the features did not              
correspond one-to-one between the studies. To test the association of these three genes with              
relevant features, we selected all features within +/- 0.03 ppm neighborhood of top features              
associated with these genes from baseline dataset; i.e. 2.0375 ppm for ALMS1 and ALMS1P, and               
2.8575 ppm for HPS1. This resulted in 12 features to test for each of the genes. We used a                   
Bonferroni multiple testing corrected p-value threshold of 0.05/(12 features x 3 genes) = 1.4             

-3.10×  

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 25, 2020. ; https://doi.org/10.1101/2020.05.22.110197doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.22.110197
http://creativecommons.org/licenses/by-nc-nd/4.0/


In the follow-up, ALMS1 gene expression level significantly associated with three neighboring            
features at 2.042 ppm (p-value=5.1 -7), 2.037 ppm (p-value=3.7 -6) and 2.032 ppm    10×    10×     

(p-value=3.9 -4), likely corresponding to the features at 2.0375 and 2.0325 ppm in the10×              

baseline association study. HPS1 gene expression level significantly associated with 2 features at             
2.869 ppm (p-value=2.2 -5) and 2.859 ppm (p-value=1.3 -3) that likely correspond to the  10×     10×       

features at 2.8725 and 2.8575 ppm in the baseline dataset. ALMS1P however did not show any                
significant association with candidate features in the follow-up study. Supplementary Table 1            
summarises our validation results. 

Comparison with mGWAS results  

We performed an association study with metabolome features in the NAA and TMA NMR peak               
regions using data from 826 individuals of the CoLaus cohort for whom the urinary NMR               
spectra are available (similar to [18]). Figure 4A shows the locuszoom figure of SNPs in loci                
surrounding ALMS1/ NAT8 locus with significant association p-values with metabolome feature          
at 2.0375 ppm. The SNPs most strongly associated with this metabolome feature are correlated              
with each other and lie within a locus containing ALMS1, ALMS1-IT1, NAT8 and ALMS1P genes               
(r 2>0.8). In Figure 4B, we show the p-values for association of expression values from nine               
genes with five different metabolome features that represent all multiplet regions of NAA (see              
Supplementary Figure 4 for a wider range of genes in the locus). ALMS1 and ALMS1P have the                 
most significant association results with the 2.0375 ppm feature, compared to the rest of the               
genes. Concordantly, ALMS1 and ALMS1P gene expression levels are associated more           
significantly to the feature at 7.9225 ppm, the secondary feature in our NAA identification,              
compared to the other genes at the locus. Figure 5A shows the significant association pattern of                
SNPs in the loci surrounding HPS1/ PYROXD2 locus with metabolome feature at 2.8725 ppm and              
Figure 5B shows the significance level for association of expression values from seven genes              
with the same metabolome feature. Even though the SNPs with the most significant association              
with feature 2.8725 are physically located closer to PYROXD2 gene rather than HPS1 gene, the               
expression level of PYROXD2 does not show significant association with this feature. Inspecting             
the list of published mGWAS in humans [38], we found that the SNPs in both ALMS1 and HPS1                  
loci have been previously reported to associate with a number of metabolic traits (Tables 2).               
The ALMS1 locus has previously been associated with a number of N-acetylated compounds,             
while HPS1 locus has been associated with various metabolites including trimethylamine and            
dimethylamine [18, 27, 36]. In mGWAS studies determining the mediator genes is not a              
straightforward procedure, as mQTL SNPs are indistinguishable from neighboring SNPs in LD,            
and mediator genes of the mQTLs are often inferred based on their physical proximity to the                
SNPs or functional relevance. Consequently, published mGWAS studies were not able to            
distinguish between NAT8 and ALMS1 or HPS1 and PYROXD2 as mediator genes of NAA and               
TMA, respectively. In contrast, in the current association study we use gene expression data              
allowing us to pinpoint ALMS1 and HPS1 as mediator genes. 
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Table 2: List of published mGWAS results in humans concerning ALMS1/ NAT8 and HPS1/ PYROXD2 loci.              

MS:Mass Spectrometry, numbers in reported mGWAS results section refer to NMR spectral shift positions              
in ppm. 

 

To further evaluate the possible regulation of NAA and TMA by other genes suggested by               
published mGWAS studies, we investigated the metabomatching plots of these genes in order to              
see if they pointed to any N-acetylated compounds/TMA. The investigated genes either (a) were              
the target of an eQTL SNP that is mQTL of NAA/TMA, or (b) were within 500kb of ALMS1/ HPS1.                  
However none of these candidate genes produced a pseudospectrum containing even a single             
nominally significant  signal pointing to NAA/TMA. 
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Figure 4: A) LocusZoom plot for ALMS1/NAT8 locus, where the SNPs are associated with metabolome               
feature at 2.0375 ppm, LD colored with respect to lead mQTL. B) Bar plot shows -log 10 transformed                 
p-values from associating expression values of nine genes in the locus with the five NAA features. 
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Figure 5: A) LocusZoom plot for HPS1/PYROXD2 locus, where the SNPs are associated with metabolome               
feature at 2.8725 ppm, LD colored with respect to lead metaboliteQTL. B) Bar plot shows -log 10                

transformed p-values from associating expression values of seven genes in the locus with the TMA feature                
at 2.87 ppm. 
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Causality analysis  

We performed MR analysis using summary statistics from the eQTLGen Consortium [28] and             
Raffler et al. [27] for eQTL and untargeted mQTL results, respectively. We investigated both the               
causal effect of the gene expression on the metabolite concentration and vice versa for the               
ALMS1-NAA and HPS1-TMA gene-metabolite pairs. 

In the MR analysis where we investigated the causal effect of ALMS1 gene on NAA concentration,                
instrumental variables (IVs) were selected among the SNPs that were reported as significant             
eQTLs (FDR<0.05) in eQTLGen and that were also measured in Raffler et al., resulting in 86                
SNPs. By applying the stepwise pruning approach (see Methods) we found 14 independent SNPs              
as candidate IVs. Next, we performed Cochran’s Q test to detect heterogeneity among these 14               
SNPs and removed a further three of those, resulting in 11 SNPs as potentially valid IVs to use                  
in the MR analysis (see Methods). As for the outcome, we used NMR peak intensities as proxies                 
for the concentration of NAA as there were no targeted studies reporting summary statistics              
explicitly for NAA concentration. To this end we used the peak at 2.0308 ppm reported in Raffler                 
et al., as this peak is the highest peak in the NAA spectrum and often used to estimate the                   
concentration of N-acetylated compounds (NAC) [36, 39]. NAA has other NMR peaks in its              
spectrum, yet the observed intensities at these peaks are much lower and therefore difficult to               
detect robustly by NMR spectroscopy. Indeed these peaks were only weakly correlated amongst             
themselves and with the main peak at 2.03 ppm region (pearson rho<0.5), so they were too                
noisy to define a more robust estimate of the NAA concentration than the main peak on its own.                  
For these reasons we decided to perform our MR analysis using only the intensity measure at                
2.03 ppm as outcome, which implies therefore that we studied the causality of any NAC rather                
than NAA specifically. Causal effect estimates given by different meta-analysis methods are            
reported in Table 3. All methods agreed on ALMS1 expression level being causal for NAC               
concentrations. 

For the completeness of the analysis, we also tested the causal effect of NAC on ALMS1 gene                 
expression level. IVs were selected among the SNPs that were reported as significant mQTLs              
(p-value < 1 -6) in Raffler et al. [27]. Amongst the cis-eQTLs of ALMS1 from eQTLGen, most  10×               

candidate IVs seemed to have direct pleiotropic effect on ALMS1 expression in cis, reflected by               
the strong heterogeneity between their expected and observed effects. To overcome this            
problem we sought to use also trans-eQTLs of ALMS1, however none of the candidate IVs were                
measured in the trans-eQTL study of eQTLGen. As an alternative, we performed an association              
study between the candidate IVs and ALMS1 gene expression level as measured in CoLaus and               
used these eQTL results in the MR analysis. Overall, we identified 26 significant mQTLs for the                
2.03 ppm feature in Raffler et al. (p-value < 1 -6) which corresponded to six independent         10×       

SNPs. Two of the six candidate IVs exhibited pleiotropic effects and they were removed from               
the analysis. Finally, we had four SNPs as potentially valid IVs to use in the MR analysis (see                  
Methods). Causal effect estimates given by different meta-analysis methods are reported in            
Table 3. None of the methods found NAC concentration to be causal for ALMS1 gene expression                
level. However, it should be noted that due to low sample size of trans-eQTL study, this                
particular MR analysis was underpowered. 
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Table 3: MR results for testing causal effect of ALMS1 gene expression levels on N-acetylated compounds                
(ALMS1 -> NAC) and MR results for testing causal effect of N-acetylated compounds on ALMS1 gene              
expression levels (NAC -> ALMS1 ) using summary statistics data. 

 

For the MR analysis of the HPS1 gene, IVs were selected among the SNPs that were reported as                  
significant eQTLs (FDR<0.05) in eQTLGen and that were also measured in Raffler et al. [27]. As                
for the outcome, similarly to NAA, there were no studies reporting targeted summary statistics              
for TMA concentration, therefore we used the NMR peak intensities to estimate the             
concentration of TMA. According to HMDB, TMA has one singlet at 2.89 ppm where the peak                
position ranges from 2.79 to 2.99 ppm. In the Raffler et al. dataset we used the intensity of                  
feature at 2.8541 ppm as a proxy of TMA concentration. For the MR analysis we had 77                 
candidate SNPs six of which were selected as valid IVs as they were independent and did not                 
exhibit heterogeneity (see Methods). Causal effects estimated by using different meta-analysis           
methods are reported in Table 4. All of the methods agreed on HPS1 gene expression having a                 
causal effect on TMA concentration.  

We also explored the causal effect in the other direction, testing the causal effect of TMA                
concentration on HPS1 gene expression. There were 87 significant mQTLs in Raffler et al. [27]               
that were also measured in eQTLGen. By applying the stepwise pruning approach and removing              
the SNPs showing heterogeneity (see Methods) we had 18 SNPs to use as IVs in the MR analysis.                  
Causal effects estimated by using different meta-analysis methods are reported in Table 4. All of               
the methods agreed on TMA concentration being causal on HPS1 expression. To sum up, the               
estimated causal effect size of HPS1 on TMA ranged from 0.27 to 0.37 depending on the method,                 
while the causal effect size of TMA on HPS1 was around -0.09, pointing to the existence of a                  
negative feedback loop.  

 

Table 4: MR results for testing causal effect of HPS1 gene expression level on TMA (HPS1 -> TMA) and                 
MR results for testing causal effect of TMA on HPS1 gene expression level (TMA -> HPS1 ) using summary                
statistics data. 
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Discussions & Conclusion 

In this study, we present a metabolome- and transcriptome-wide association study using            
matching RNA-seq and NMR urine profiles from 555 subjects of the CoLaus cohort. This is the                
first time such a study is performed on untargeted urine metabolome of healthy individuals. In               
contrast to targeted approaches that are restricted to a limited set of urine metabolites, our               
association study uses the binned features of the entire 1H NMR spectra as metabolic traits. We                
identified one gene (ALMS1 ) whose association with two adjacent NMR features around 2.03             
ppm is highly significant, surviving even the most conservative correction for multiple            
hypotheses testing. 16 additional genes are associated with metabolic features with marginal            
significance with p-values below an adjusted threshold accounting for the estimated number of             
independent variables (see Table 1). Among the top 17 genes, 10 are in loci with SNPs that have                  
been previously reported as mQTLs. This shows the sensitivity of our study to extract likely               
candidates of metabolically relevant genes, despite its small sample size and low power. 

We used metabomatching to search for promising metabolite candidates underlying gene           
expression-metabolome features associations. This approach was particularly insightful for our          
top hit ALMS1, as well as the strongest marginally significant association involving HPS1: Both              
genes had previously been implicated by mGWAS linking their loci to compound families.             
However, in both cases the reported mQTL also harbored other genes, leaving the exact              
gene-metabolite association ambiguous.  

Specifically, the locus associated through mGWAS with N-acetylated compounds includes both           
ALMS1 and the NAT8 gene [18, 27, 36, 39], and the latter seemed to be the more likely candidate                   
due to its known N-acetyltransferase activity. Yet, our association study using transcriptomics            
data only implicates ALMS1 and not NAT8. Thus, while we cannot rule out a functional role of                 
NAT8, the mQTLs of this locus likely act, at least predominantly, as eQTLs through ALMS1,               
pointing to its regulatory role in modulating the compound concentration. This metabolic role of              
ALMS1 is also supported through its known role in Alström syndrome characterised by             
metabolic deficits (PMC6327082) and kidney health disorder phenotypes [40]. Interestingly, in           
the mGWAS reported by Montoliu et al. using data from a Brazilian cohort, the authors observed                
the association between N-acetylated compounds and the SNPs located in ALMS1/ NAT8 locus            
with stronger SNP associations in the ALMS1 gene rather than NAT8 [39] . They argued that the                 
high ethnic diversity of their study population might have been responsible for breaking down              
the linkage disequilibrium in the ALMS1/ NAT8 region of the genome, resulting in a stronger              
association for SNPs close or in the ALMS1  gene compared to other studies. 

Our study also sheds more light onto the involved compound: Applying metabomatching on the              
pseudospectrum from association of all NMR features with the ALMS1 expression level using a              
database composed of all N-acetylated compounds NMR spectra, suggested NAA as the best             
matching metabolite due to the presence of a secondary peak at 7.92 ppm and not missing any                 
high intensity peaks unlike other N-acetylated compounds (Supplementary Figure 5).          
Interestingly, NAA is the second most abundant metabolite in the brain and involved in neural               
signalling by serving as a source of acetate for lipid and myelin synthesis in oligodendrocytes               
[41]. NAA can be detected in urine of both healthy and unhealthy individuals in low               
concentrations [42] and it has a long history of being a surrogate marker of neural health and a                  
broad measure of cognitive performance [43, 44]. Recently it has been shown that NAA              
correlates with time measures of neuropsychological performance [45]. The signals of SNPs in             
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ALMS1 by GWAS with intellectual phenotypes such as self-reported ability in mathematics [46,             
47] might therefore be due to its role in modulating NAA. This conjecture of course assumes that                 
NAA levels in relevant brain tissues reflect those in urine and that the ALMS1 expression               
variation, and in particular its genetic component, in LCLs or blood, can serve as a proxy for                 
brain tissue. As for HPS1, our second strongest association of a gene expression level with urine                
NMR features, we note that mGWAS previously associated its locus with TMA levels [18, 27, 36].                
Yet, most of these studies, including the aforementioned GWAS using a Brazilian cohort [39]              
considered the PYROXD2 gene, which is in the same locus, as the most likely modulator of TMA                 
concentrations due to its known function as pyridine nucleotide-disulfide oxidoreductase. While           
we cannot rule out that this gene is indeed involved in TMA metabolism, in contrast to HPS1 we                  
have no evidence for association of PYROXD2 expression levels with TMA. Thus, our data              
indicates that the mQTLs of this locus act predominantly as eQTLs through HPS1, pointing to its                
regulatory role in modulating TMA. 

Our work illustrates the potential of metabolome- and transcriptome-wide association studies           
for deciphering gene-metabolite relationships. In particular, even with our modest sample size            
of 555 matched profiles we already had enough power to detect one significant and several               
marginally significant associations. Moreover, our two strongest associations pinpointed genes          
in loci implicated by mGWAS as the most likely candidates for transcriptional metabolite             
regulation. We also showed the possibility of extending correlative work and studying the             
causal relationship between gene expression levels and metabolite concentrations. Our          
Mendelian randomization study supported the causal role of ALMS1 gene expression levels on             
N-acetylated compound concentration, whereas for HPS1 we observed a negative feedback loop            
between its expression levels and TMA metabolite concentrations. Furthermore, this work           
demonstrated that our metabomatching tool, whose usefulness for elucidating candidate          
metabolites from mGWAS association profiles [18, 22] as well as auto-correlation signals in             
NMR data [24] was demonstrated previously, performs equally well on pseudospectra           
generated by association with gene expression levels.  

Our study has many limitations: First, we only had access to gene expression levels of LCLs.                
While blood and such blood-derived cells are the easiest samples one can obtain from healthy               
subjects, their expression levels in many cases may only reflect poorly those of the relevant cells                
and tissues. Furthermore, metabolic reactions are of course driven by enzymes whose protein             
concentration determines the metabolic rate, and variation in gene expression levels is only one              
source of variation in active enzyme concentration (next to post-transcriptional and           
post-translational modifications, as well as their decay rate). Second, metabolite concentrations           
in urine correspond to excess that is cleared from the body, which depends on food intake and                 
provide a poor proxy for many metabolite concentrations in their relevant location.            
Nevertheless, our study shows the promise of co-analyzing two or more distinct molecular traits              
observed in the same cohort. 
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