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One Sentence Summary 25 

Unbiased immunophenotyping and data modelling exposed the dynamic shifts in immune cell 26 

composition during bleomycin induced pulmonary fibrosis.  27 
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Abstract 30 

The bleomycin mouse model is the most extensively used animal model to study pulmonary fibrosis. 31 

Despite this, the inflammatory cell kinetics and cell compartmentalisation is still incompletely 32 

understood. Here we simultaneously analysed 16 inflammatory cell populations in 303 samples and 33 

applied advanced data modelling to conclusively detail these kinetics. 34 

Three days post-bleomycin, the inflammatory profile was typified by acute innate inflammation, 35 

pronounced neutrophilia and loss of alveolar macrophages. After 14 days, rapid responders were 36 

increasingly replaced by the adaptive immune system and monocyte-derived alveolar macrophages, 37 

which progressed till 21 days. Multi-colour imaging revealed the spatial-temporal cell distribution and 38 

the close association of T-cells with fibrotic lung tissue at later time-points. 39 

Unbiased immunophenotyping and data modelling exposed the dynamic shifts in immune cell 40 

composition distinct for each phase of fibrosis process and defined the transition from innate to adaptive 41 

immunity marking initial lung parenchyma remodelling. 42 
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Abbreviations 47 

BALF, bronchoalveolar lavage fluid; BH, Benjamini-Hochberg; FCM, flow cytometry; IPF, 48 

idiopathic pulmonary fibrosis; LOGx+1, logarithm to the basis 10 of (x+1); ML, maximum likelihood; 49 

MVA, multivariate analysis; NLME, non-linear mixed models; OPLS-DA , orthogonal projections to 50 

latent structures discriminant analysis; PCA, principal component analysis; PF, pulmonary fibrosis; 51 

UMAP, Uniform Manifold Approximation and Projection; UVA, univariate analysis; 4RT, fourth 52 

root.  53 
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Introduction 54 

Animal models of human disease are an invaluable tool to decipher disease relevant pathomechanisms, 55 

to discover therapeutic targets and to drive translation into clinical practice. To date, the mouse 56 

bleomycin-induced lung injury model is the most frequently used animal model to investigate 57 

pulmonary fibrosis (B Moore et al., 2013; Della Latta et al., 2015; Tashiro et al., 2017). Similar to the 58 

human situation, in mice bleomycin exposure is characterized by epithelial damage, inflammatory cell 59 

infiltration, and expansion of fibroblasts and myofibroblasts as well as ECM deposition (Biasin et al., 60 

2020, 2017; El Agha et al., 2017; Tashiro et al., 2017; Xie et al., 2018). Although, the bleomycin model 61 

does not completely recapitulate human idiopathic pulmonary fibrosis (IPF), it still remains the most 62 

common and important animal model to study this disease.  63 

IPF is a severe, rapidly progressing interstitial lung disease with high mortality rates and short median 64 

survival of 1.5 - 4 years (Marshall et al., 2018; Wuyts et al., 2013). IPF is characterized by extensive 65 

lung tissue scarring, limited inflammation and extracellular matrix remodelling (Meltzer and Noble, 66 

2008). Current treatment options slow the loss of lung function, but are unable to halt or reverse disease 67 

progression (Maher and Strek, 2019). Accordingly, there is an urgent unmet clinical need for novel 68 

therapies for IPF patients. To date the aetiology and pathogenesis of IPF is still insufficiently 69 

understood; however, the role of inflammation remains undeniable yet controversial. The older concept 70 

that IPF is an inflammatory driven process has been gradually replaced by the theory of recurrent injury 71 

and aberrant repair (Selman et al., 2001; Selman and Pardo, 2002; Wuyts et al., 2013). However, 72 

multiple inflammatory cells have been implicated in disease pathogenesis, including macrophages 73 

(Misharin et al., 2017; Reyfman et al., 2019) and T cells (Todd et al., 2013), which are connected with 74 

poorer prognosis (Balestro et al., 2016).  75 

In the bleomycin model, the early phase post bleomycin administration is characterised by acute lung 76 

injury and inflammation, which is observed to last between 1-7 days (Peng et al., 2013). This 77 

inflammatory phase is followed by active fibrosis, between 7-14 days and late fibrosis between, 21-28 78 

days (Della Latta et al., 2015; Izbicki et al., 2002; Peng et al., 2013; Tashiro et al., 2017). As most 79 

studies have only analysed specific cell populations or time points, a comprehensive description of the 80 

inflammatory cell kinetics is still missing. For the detection and quantification of inflammatory cells, 81 

flow cytometry (FCM) is the method of choice. FCM is able to differentiate and quantify immune cell 82 

populations in unprecedented detail, not only from the circulation but also from disease relevant tissue 83 

(Marsh et al., 2018; Misharin et al., 2017; Tighe et al., 2019a). In contrast to traditional 84 

immunofluorescent staining, which generally use 1-3 markers for cell identification, flow cytometers 85 

applies multiple markers to simultaneously quantify numerous cell populations at a single cell 86 

resolution. Thus, FCM generates large quantities of complex data, where the analysis, visualization and 87 
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interpretation of which requires sophisticated analysis techniques, such as computational flow 88 

cytometry (Saeys et al., 2016).  89 

In order to conclusively detail the inflammatory cell kinetics in the bleomycin model, we here 90 

assembled historical FCM data from 15 different experiments and applied advanced data modelling, 91 

including univariate, multivariate and machine learning methods. We show how the combination of 92 

advanced data modelling and in-depth immune profiling can detail the dramatic changes in the 93 

inflammatory landscape in this model and also serves as a reference point.   94 
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Results 95 

Pre-processing of flow cytometric data substantially improves statistical analysis performance  96 

Intra-tracheal administration of bleomycin in mice, results in a time-dependent development of fibrosis 97 

(Figure 1AB). To comprehensively describe the inflammatory cell kinetics following bleomycin 98 

treatment, we assembled and conjointly analysed historical FCM data from 15 independent 99 

experiments, this resulted in 159 BALF and 144 lung tissue samples (Supplementary Table S1). Using 100 

standard gating strategies, a total of 16 cell populations covering the main myeloid and lymphoid cell 101 

types (Table 1) were identified (Figure 1C). The aggregation of historical experiments inherently led to 102 

an unbalanced experimental design (Supplementary Table S1), which was handled by robust statistical 103 

methods[Box 1].  104 

Table 1. Inflammatory cell identification and corresponding markers. 105 
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Macrophages 

AM Alveolar macrophages hi + + +   +     +/-           

MoAM Monocyte derived macrophages   + lo +   + - + +/-           

IM Interstitial macrophages   + - -   + - + +/-           

DCs DC CD11b+ Dendritic cells   +     - - + + +           

Monocytes 
Gr1+ MoMp Inflammatory monocytes   +     + +   - +           

Gr1- MoMp Constituative monocytes   +     -     - +           

Granulocytes 

EOS Eosinophils hi + + -         +           

PMN Mature neutrophils hi + +/- - +       +           

SiglecF+ PMN SiglecF+ neutrophils hi + + - +       +           

Immature PMN Immature neutrophils hi +   - +     - +           

L
ym

p
h

oi
d

 

B cells CD19+ B cells B cells lo +               -     +   

T cells 

CD3+ T cells T cells lo +               +     -   

CD4+ T cells T helper cells lo +               + + - -   

CD8+ T cells Cytotoxic T cells lo +               + - + -   

γδ T cells γδ T cells lo +               + + - - + 

 106 

 107 
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 109 

Fig. 1. Overview of study design, pathological changes and gating strategy. (A) Historical flow cytometry data from the 110 

bleomycin mouse model were pooled and collectively analysed. Samples were collected 3, 14, or 21 days post 111 

bleomycin or saline administration from the compartments BALF (159 samples) and lung tissue (144 samples). Five 112 

different C57BL/6 substrains were included. (B) Representative Masson’s trichrome staining of lung sections, showing 113 

pathologic alterations in the bleomycin model. Zoomed images exemplify the increasing fibrosis accumulation from 114 

day 3 to 21 after bleomycin challenge, scale bar represents 100 µm. (C) Representative flow cytometry gating strategy. 115 

Abbreviations see Table 1.  116 

In both tissues the distribution of all 16 analysed cell populations was significantly non-normal with a 117 

positive skew[Box 1] (Fig. 2A, Supplementary Fig. S1 and Supplementary Data 1). To improve 118 

distribution we trialled several common transformations; square root, reciprocal, Freeman Tukey, logit, 119 

LOG, LOGx+1 and 4RT. Only LOG, LOGx+1 and 4RT improved data distribution (pBH>0.05, 120 

Supplementary Data 1). As both LOG and LOGx+1 gave virtually equivalent results, but as LOGx+1 has 121 

additionally the advantage of not introducing missing values for zero value counts, consequent analysis 122 

was performed with only LOGx+1 and 4RT (Fig. 2AB).  123 

  124 
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 125 
Fig. 2. Data transformation improves data distribution and analytical power. Analysis of cell count data (untransformed) or 126 

following transformation using LOGx+1 or 4RT (fourth root) using 159 BALF and 144 lung samples. Cell counts in 127 

BALF are 105 and in lung 104/mg tissue. Examples of data distribution of neutrophils (PMN) as one representative 128 

population in BALF and lung samples by (A) Histograms and (B) Violin plots, total represents combined saline and 129 

bleomycin samples. (C) PCA scores plots with each point representing the inflammatory cell profile (16 populations) 130 

in one sample, plots are coloured to highlight different experimental conditions. In B and C, dots represent single 131 

sample values. (D) Heatmaps with hierarchical clustering of all 16 analysed cell populations.  132 

Bleomycin drives strong changes in the inflammatory profile  133 

To identify global changes in the inflammatory cell profile, we first applied unsupervised principal 134 

component analysis (PCA). This method reduces dimensionality by creating new variables, which 135 

successively maximize variance and thereby aids data interpretability. Without data transformation, the 136 

scores plot was dominated by single sample differences, which obscured any experimental effects (Fig. 137 

2C, left panel). After transformation pronounced differences in the inflammatory profile were revealed 138 
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(Fig. 2C). Both LOGx+1 and 4RT substantially improved the performance of the hierarchical clustering 139 

(HC), yielding clearer clustering and heatmap results (Fig. 2D). The highest influence on the 140 

inflammatory landscape was caused by the tissue compartment (BALF or lung), causing samples to 141 

separate along the first principal component (PC1). The second highest difference was caused by 142 

bleomycin, separating samples in the BALF along the second principal component (PC2; Fig. 2C, 143 

middle and right panels). Similarly, HC was first driven by the tissue compartment, followed by some 144 

weaker subclustering due to bleomycin treatment. The majority of cell populations increased after 145 

bleomycin exposure, while alveolar macrophages (AlvMp) decreased (Fig. 2D). We next utilised 146 

macroPCA, a robust PCA method able to handle and identify all possible types of data 147 

contaminations[Box 1], including strong single value or sample outliers (Hubert et al., 2019). MacroPCA 148 

results were in good agreement with PCA (Supplementary Fig. S2A), which confirmed that this dataset 149 

is free of severe outliers allowing the use of a wide variety of statistical methods (Rousseeuw and 150 

Hubert, 2018).  151 

 152 

Box 1 | Glossary of analysis terms    

robustness is a measure for how easily outlier values distort results, e.g.  
• average: not robust, a single strong outlier deforms results severely 
• median: very robust, good results even with almost half of all values being strong 

outliers 

unbalanced describes unequal group sizes or missing values, methods assuming balanced groups will have 
missleading results 

positive  skew asymmetric distribution of data with more large than small values, common in flow cytometry 
and many other biological measures (often because zero is the minimum, while there is no fixed 
maximum) 

data preprocessing preprocessing normalises data by changing all values according to one or several defined 
mathematical equations and can be a prerequisite for specific statistical methods 
Centring and scaling 

• cell count differences are not per se reflective of their biological importance 
• centring and scaling minimizes the stark differences of cell numbers between the cell 

populations allowing comparisons of fold changes 
• are vital for multivariate statistical methods, otherwise results will be dominated by 

cells with highest counts/highest noise 
Transformation 

• improves data distribution allowing use of more powerful statistical methods (Keene, 
1995; van den Berg et al., 2006) 

all types of preprocessing can be combined with each other 

centring subtraction of a constant from every value (e.g. the average of each cell population) 

scaling every value is divided by a constant (e.g. the standard deviation, SD) 

transformation convert each data point by a specific, often nonlinear, but defined mathematical function (e.g. 
log10) 

data contaminations denotes all kinds of problematic values in the data, such as sample outliers, single value outliers 
or missing values 

outlier a value so different from the rest, that it could be for example an analytical error  

 153 

As the strong compartment effect could mask weaker drivers that alter the inflammatory landscape, we 154 

analysed BALF and lung samples separately (Fig. 3). In the BALF, bleomycin exposure completely 155 
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altered the inflammatory landscape, separating samples along PC1 (explaining 63.9 % of the variation 156 

in the dataset). However, the bleomycin effect only accounted for 12.4 % of the variation in the lung, 157 

separating on PC2 (Supplementary Fig. S2A). Again, macroPCA gave similar results in the analysis of 158 

the separate compartments (Supplementary Fig. S2B), reconfirming absence of critical outliers. 159 

Analogous to the PCA findings, HC showed a strong clustering after bleomycin exposure in BALF, 160 

which was less clear in lung. The influence of day post-treatment and substrain (individual C57BL/6J 161 

lines) on cell population changes was less distinct, with only some indication towards a possible sub-162 

clustering due to these factors (Fig. 3B).  163 

 164 

 165 
Fig. 3. Bleomycin induces stronger changes in the inflammatory profile in the BALF than the lung. The contribution of 166 

different biological factors to the inflammatory cell profile as determined by (A) PCA scores plots are coloured to 167 

highlight different experimental conditions, and (B) Heatmaps with hierarchical clustering. To aid interpretation 168 

heatmaps are split into two main clusters based on dendrogram distances. Colours and shapes represent tissue, 169 

treatment (Saline, Bleo), mouse substrain and day post treatment. Cell counts from 16 populations in 159 BALF and 170 

144 lung samples were LOGx+1 transformed prior to clustering.  171 

Modelling of inflammatory cell kinetics with univariate statistical analysis 172 

In order to examine in depth, the potential influence of other experimental factors and to simultaneously 173 

control for the unbalanced design arising from the use of historical data, we applied non-linear mixed 174 

models (NLME, Supplementary Fig. 3). As the multivariate analysis showed a strong bleomycin effect, 175 

the fixed factor[Box 2] Treatment {Saline,Bleo} was included in all models[Box 2]. Other fixed factors 176 

included Day {3,14,21} and Substrain {A,B,C,D,E}. The addition of each factor, either alone or 177 

together and with or without their interaction with Treatment, notably improved the fit[Box 2] of all simple 178 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted May 26, 2020. ; https://doi.org/10.1101/2020.05.22.106690doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.22.106690


10 
 

models, increasing the goodness of fit and reducing AIC (Supplementary Fig. S3). Thus, both the Day 179 

post bleomycin exposure and Substrain significantly influenced the cellular landscape.  180 

 181 

Box 2 | Glossary of model terms    

model a mathematical equation to describing the relationship of measured data to biological factors 
• imagine you assume that the weight increases with height, than the biological factor is 

body height, the measured data is weight and a linear model would have the equation: 
weight = a∙height + b  

• parameters are a and b, a – inclination (steepness of the line), b –intercept (weight at 
height=0) 

fitting finding the best parameter values in the mathematical equation of the model, parameters are 
optimized to bring the line/curve of the model nearest to the data, often assessed by the residuals 

fixed factor also called between-subject effect, a biological factor which (possibly) affects the outcome 
• height is a fixed factor in the example, gender would be another possible fixed factor 

interaction the impact of one biological factor depends on the occurrence of another biological factor 
• imagine to include also gender and genetics as biological factors, the effect that males 

are roughly 0.13 m taller than females is much smaller in achondroplasia which results 
in short stature 

random factor also called within-subject effect, a factor which (possibly) affects baseline level such as repeated 
measures from the same source or working in experimental batches 

• in linear model example that is to measure the height/weight yearly during adolescence 
while smaller  

simple/mixed simple models have no random factor, mixed models have a random factor 

residuals difference between fitted value and measured value 
• in linear model example that is the distance from the measured value to the line 

fitted value the value suggested by the equation for the specific value of the biological factor 
• in linear model example that would at a given height the weight on the line 

predicted value similar to fitted values the predicted value is suggested by the model equation, but for formerly 
unknown points (unknown during model fitting or not measured at all) 

• imagine the linear model was based on heights from 1 – 1.5 m and you want to predict 
the weight for 1.7 m 

overfitting the model contains more parameters than possible from the data, fails to predict new data correctly 
• in the example adding irrelevant factors (e.g. birthdates, house numbers, number of 

earrings, …)  can produce perfect fits but fail to predict new values 

 182 

As each independent experiment could have similarities, the experimental ID was then included as a 183 

random factor (~1|Exp_ID). These mixed models significantly outperformed the aforementioned simple 184 

models. Finally, complex mixed models (combining the mixed models with the interactions of 185 

Treatment with Substrain or Day) notably outperformed all simple models (with or without 186 

interactions). The most complex mixed model [Treatment+Day+Substrain+Treatment:Substrain+ 187 

Treatment:Day, ~1|Exp_ID] outperformed all other models, although more prominently in BALF than 188 

in lung (Supplementary Fig. S3A). 189 

As complex models risk overfitting, especially in light of the unbalanced design, we then investigated 190 

model simplification. We first tested whether it was possible to create one control group of all saline 191 

animals. In all mixed and complex models (i.e. with random factor Exp_ID) only 4 of the over 10000 192 

investigated pairwise comparisons of a saline subgroup with another saline subgroup had a pBH<0.01 in 193 
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any of the 16 cell types. This means saline treated animals were sufficiently similar to be combined into 194 

one control group. Consequently, Treatment and Day can be then merged into one fixed factor with 195 

four groups: Saline (all days) and bleomycin after days 3, 14, and 21, which was termed SalineDay 196 

{Saline,3,14,21}, generating the simplified model [SalineDay+Substrain] and the simplified mixed 197 

model [SalineDay+Substrain~1| Exp_ID]. The performance of the simplified mixed model was slightly 198 

lower than in the most complex mixed model, but well within the range of the other top performing 199 

mixed models (Supplementary Fig. S3B).  200 

To compare the models in more detail we also directly compared the fitted values[Box 2] of the simplified 201 

mixed model with the most complex mixed model. The fitted values from both models strongly 202 

correlated (Pearson correlation R2>0.96, Supplementary Fig. S3B). This underlines the validity of 203 

model simplification and that no unexpected or systematic skew was introduced. As the simplified 204 

mixed model [SalineDay+Substrain~1|Exp_ID] also gives more easily interpretable results and has a 205 

lower risk of overfitting[Box 2], it was chosen to examine the inflammatory cell kinetics underlying 206 

bleomycin mouse model.  207 

This model was then applied to explore how individual substrains may influence the kinetics of different 208 

inflammatory cells. All mice included in this study are on the C57BL/6 background, however were 209 

obtained from different sources e.g. commercial sources (C57BL/6J, substrain A), or are the wild-type 210 

littermates from in-house breedings (substrains B-E). Although some lines were inbred for up to 15 211 

generations, all mouse lines produced similar inflammatory responses in both lung compartments, 212 

differing only in magnitude (Supplementary Fig. S4). This consistency allows to read out the 213 

compartmental kinetics of each cell population after bleomycin treatment for all substrains combined. 214 

Inflammatory cell kinetics after bleomycin-induced lung injury are robust and reproducible 215 

Analysis of the inflammatory response in the BALF, identified a non-resolving inflammatory response, 216 

with the total number of inflammatory cells continuing to increase over the investigated time course of 217 

21 days. In the lung tissue, inflammation was characterized by an immediate increase at day 3, 218 

stagnating to day 14 and mostly resolved 21 days post bleomycin exposure (Fig. 4). This suggests that 219 

the inflammatory response is persistent, yet compartment dependent.  220 

Early inflammatory changes were mostly dominated by the innate immune system, including both 221 

immature and mature neutrophils, monocyte-derived alveolar and interstitial macrophages. In contrast 222 

we observed a concomitant decrease in alveolar macrophages. Interestingly, the (inverted) trajectories 223 

of alveolar macrophages were comparable to the rise in monocyte-derived macrophages, suggesting a 224 

functional replacement by the latter and supports observations in earlier studies (Misharin et al., 2017). 225 

Following the rapid increase in the first line responders, neutrophils, their numbers later stagnated or 226 

gradually decreased, and even returned to baseline levels in the lung tissue. We also identified a time-227 

dependent increase in SiglecF+ neutrophils following bleomycin application. These cells have recently 228 
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been described to be important for cancer progression (Engblom et al., 2017). Similarly, eosinophils 229 

and dendritic cells (EOS, DC) exhibited a bell-shape response curve. In contrast monocyte populations 230 

(both constitutive and inflammatory) exhibited a slower, but consistent, step wise increase over time, 231 

which could be attributed to their contribution to both the innate and adaptive immunity and their role 232 

in tissue repair.  233 

 234 
Fig. 4. Non-linear mixed models reveal complex immune cell dynamics occurring in the lung following bleomycin induced 235 

lung injury. Plot of back transformed, fitted cell counts and their 95 % confidence intervals using the simplified mixed 236 

model [SalineDay+Substrain~1|Exp_ID] of LOGx+1 transformed cell counts for BALF (counts∙105) and lung tissue 237 

(counts∙104/mg tissue). Animal numbers were in BALF in total n = 159 (Saline 60; 3d 23; 14d 39; 21d 37) and in lung 238 

in total n = 144 (Saline 56; 3d 23; 14d 32; 21d 33). 239 

At later time points, inflammation was dominated by immune cells from adaptive immunity, with a 240 

clear preference to the alveolar compartment. While CD3+ T lymphocytes (CD4+ and CD8+ T cells, 241 

respectively) had a steep, yet non-resolving, rise early in the inflammatory response, the CD19+ B cells 242 

peaked at 14 days post bleomycin challenge. Interestingly, at the latest time point, 21 days, B cells 243 

numbers still continued to rise, implicating their involvement at later stages in this model (Fig. 4A).  244 

Taken together, the multiple inflammatory cell populations show dynamic and distinct inflammatory 245 

kinetics with clear compartment preferences. With time the involved immune cells shifted from the 246 

innate to the adaptive immune system, with the BAL being more prominently affected then the lung 247 

tissue. After 21 days the inflammatory profile was still chronically altered.  248 
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 249 
Fig. 5. Temporal and spatial localization of inflammatory cell kinetics in BALF and lung tissue. (A) Uniform Manifold 250 

Approximation and Projection (UMAP) plots of concatenated CD45+ populations (min 3 independent samples with 251 

max 10’000 CD45+ cells per sample) with overlaid manually gated populations in BALF. (B) Spatial localisation of 252 

alveolar macrophages (CD11c+/SiglecF+), neutrophils (LY6G+), and CD4+ T cells during the time course of bleomycin 253 

challenge. Nuclei are stained with DAPI (dark blue). Representative pictures of three independent mice at each time 254 

point. D3, D14 and D21, represent days 3, 14 and 21 post-bleomycin treatment, respectively. 255 

Based on these results we went back to our FCM data and visualised the kinetics of the most 256 

dynamically altered populations via computational FCM (Fig. 4B). As predicted in our modelling data 257 

AM populations strongly decreased after bleomycin exposure, while the innate PMNs vastly expanded 258 

after 3 days. Adaptive immune cells such as CD4+ T cells, CD8+ T cells and CD19+ B cells expanded 259 
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more at later time points and were virtually absent in saline treated mice (Fig. 5A). Visualisation using 260 

multi-colour immunofluorescence revealed the co presence of CD11c+/SiglecF+ AM, CD4+ T cells and 261 

Ly6G+ neutrophils in fibrotic lung tissue (Fig. 5B), the spatiotemporal presence of these cells point 262 

toward close interplay between inflammatory components. 263 

The inflammatory cell landscape continually evolves following bleomycin exposure  264 

The combination of unsupervised multivariate methods and univariate NLME identified the kinetics of 265 

each cell type with an early innate response followed later by adaptive immune response. However, the 266 

question how the entire landscape differs between different timepoints or which cell types define each 267 

stage is still open. In order to answer these questions, we applied three robust machine learning 268 

approaches.  269 

Our first approach, OPLS-DA separates the dataset into predictive and non-predictive components. 270 

Predictive means the ability to discern between groups in the given classification factor, which was here 271 

SalineDay {Saline,3,14,21}. The OPLS-DA model quality was thoroughly investigated by cross-272 

validation and permutations tests showing that in both compartments the models were highly significant 273 

(Q2>50 %, p<0.001). Similar to our PCA results (Fig. 3), the inflammatory reaction was more 274 

pronounced in the BALF than in the lung, as apparent from a clearer group separation, higher 275 

percentages of variability in the predictive component and higher predictive ability (Q2; Fig. 6A). In 276 

BALF, the inflammatory landscape at 14 and 21 days post bleomycin were very similar, but very 277 

different from the saline controls, while the landscape at 3 days bridged these two poles.  278 

We next investigated conditional inference trees and random forest models to infer which cell 279 

populations were the driving factors behind the group differences. Conditional inference trees in the 280 

BALF demonstrated that CD3+ T cells levels separated early (Saline, D3) and later timepoints (D14, 281 

D21). Separating samples on low and high CD19+ B cells distinguishes between days 14 and 21, 282 

respectively. On the other hand, low levels of PMN strongly predicts saline treated mice and the 283 

combination of low AM and SiglecF+ PMN aiding the separation between saline, D3 and D14 (Fig. 284 

6B). In the lung compartment, both innate cells (MoAM, AM) and adaptive (CD4+ T cells and CD19+ 285 

B cells) were needed to define the different groups. Saline mice were defined by low levels of MoAM 286 

and high AM, while bleomycin treatment by high MoAM and CD4+ T cells. Similar to the BALF, day 287 

21 was marked by high CD19+ levels, while D14 by was defined by lower B cell and MoAM levels 288 

(Fig. 6B). A combination of low MoAM and low AM defined day 3.  289 
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 290 
Fig. 6. Exploration of inflammatory cell landscape differences with machine learning in BALF and lung tissue. (A) Scores 291 

plot of OPLS-DA models per compartment for the factor SalineDay {Saline,3,14,21} with 95 % confidence ellipses 292 

for each group. The predictive ability of the models Q2 was calculated by 7-fold cross validation and 1000 permutation 293 

tests reconfirmed model significance with p<0.001. (B) Conditional inference trees per compartment, showing cell 294 

types and cut-offs that define each group; saline, days 3, 14 and 21 post bleomycin treatment (SalineDay). Model 295 

accuracy was evaluated with a stratified split into 65 % trainings and 35 % test set. (C) MDS plot (left panel) of the 296 
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proximity matrix of random forest models grown with 5000 trees. Model accuracy was evaluated with a stratified split 297 

into 65 % trainings and 35 % test set. The distribution of the minimal depth is shown for each cell type according to 298 

the number of trees, the mean of the minimal depth is shown (middle panel). The rank of the mean decrease in accuracy 299 

within each group is shown for each cell population (right panel). Animal numbers in all models from A-C were in 300 

BALF in total n = 159 (Saline 60; 3d 23; 14d 39; 21d 37) and in lung in total n = 144 (Saline 56; 3d 23; 14d 32; 21d 301 

33). Models were based on LOGx+1 transformed cell counts for BALF (counts∙105) and lung tissue (counts∙104/mg 302 

tissue). (D) Schematic, abstracted summary of all previous finings differentiating between the compartments BAL and 303 

lung tissue. 304 

Random forest models were then used to compare the ability of all cell populations to drive group 305 

separation. In agreement with previous results, again group separation was clearer in BALF than in 306 

lung, as demonstrated by multi-dimensional scaling plots of the random forest proximity matrix and 307 

higher accuracy (Fig. 6C). In BALF especially the adaptive immune cells CD8+ and CD3+ T cells as 308 

wells as the innate SiglecF+ PMN differed most, as became apparent from their low minimal depth. 309 

Between the different groups high CD8+, CD3+ and CD19+ levels were most predictive for late 310 

inflammation while low SiglecF+ PMN levels were most predictive for the cellular landscape in saline 311 

samples. The random forest suggests some fine but distinct differences between the global inflammatory 312 

landscape 14 and 21 days after bleomycin exposure (Fig. 6C). Although both are highly inflamed 313 

(OPLS-DA), higher levels of adaptive cells are rather predictive for day 21 (e.g. all T and B cells), while 314 

higher levels of some innate cells are more predictive for day 14 than day 21 (e.g. DC, IM, immature 315 

PMN, MoAM, EOS) or day 3 (PMN). In contrast, lung models were dominated by macrophage cell 316 

populations differing most between the inflammatory stages, foremost the depletion of alveolar 317 

macrophages. The random forest models underline that the inflammatory landscape differs notably 318 

between lung and BALF. 319 

  320 
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Discussion 321 

In this study, we have combined computation FCM, advanced data modelling and machine learning 322 

approaches to conclusively define the inflammatory cell kinetics following bleomycin treatment in 323 

mice. By combining the data from 15 independent experiments, we amassed very large sample numbers, 324 

which were far in excess of those normally found in animal experiments. The aggregation of historical 325 

samples inherently led to an unbalanced experimental design, which was handled by sophisticated, 326 

robust statistical methods. By using pre-processing techniques such as data transformation, we could 327 

substantially improve analysis power, which crucially contributed to clearer data interpretation. 328 

Changes in the inflammatory profile was dissected using multivariate and univariate statistical methods 329 

including non-linear mixed models. Only by applying these techniques in unison were we able to create 330 

the most comprehensive picture of inflammatory cell trajectories to date and characterise the sustained 331 

inflammation in the bleomycin model of pulmonary fibrosis.  332 

FCM data is normally highly asymmetric i.e. it has many larger values but no values smaller than zero, 333 

this non-normal distribution prevents the use of more powerful analysis methods. To re-establish 334 

normality we trialled several transformations, but ultimately settled on LOGx+1 as it normalised the data 335 

distribution, can be easier to interpret and also slightly improved the scedasticity compared to 4RT. Our 336 

data modelling approach resulted in a very large sample size, which notably increased statistical power 337 

and outweighed the potential drawbacks of added confounding variation from experimental runs or the 338 

use of different substrains. Furthermore, when experimental covariance was accounted for as random 339 

factor in NLME models, the inflammatory profiles in the BALF and lung tissue of all saline treated 340 

animals, irrespective of experiment, were sufficiently similar to be combined into one large control 341 

group. Secondly, the trajectories of inflammatory cell profiles were found to be consistent for all five 342 

substrains, although their magnitudes slightly differed, which is important for experimental 343 

reproducibility in light of using different knockout lines or mice sourced from different companies. 344 

The application of unsupervised and supervised as well as multivariate and univariate, demonstrated 345 

how the changes for most populations were more prominent in the BALF than in lung tissue, although 346 

the majority of populations showed consistent trajectories in both compartments. In healthy mice, the 347 

vast majority of cells in the BALF are alveolar macrophages, while in the lung tissue even at baseline 348 

conditions, a highly heterogenous pool of inflammatory cells exists, including macrophages neutrophils, 349 

T and B cells. Due to the higher sensitivity of the BALF to monitor inflammatory changes, we would 350 

recommend this as the compartment of choice for the majority of cells in FCM analysis. Analysis of 351 

the BALF has further advantages such as being easily accessible, without need for additional tissue 352 

digestion steps.  353 

Our comprehensive analysis of multiple inflammatory cell population at several time-points, describes 354 

the kinetics not only during disease development but also when it is fully established. The initial 355 
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inflammatory phase after bleomycin exposure was dominated by early responder cell types from the 356 

innate immune system of the myeloid lineage. Neutrophils constitute the first line defence of the 357 

immune system and consequently show very acute kinetics, being rapidly recruited and also being the 358 

first cell type to resolve, visible as pronounced decreases from day 3 to day 14 after the challenge. In 359 

contrast, cells from adaptive immune system, such as B and T cells, increased much slower but continue 360 

to expand even at 21 days. The worth of subtyping cell populations is apparent by the inverse kinetics 361 

displayed within macrophages, which is only possible by using multicolour analysis. We could show 362 

that while the numbers of alveolar macrophages (AlvMp) quickly decrease, monocyte derived 363 

macrophages (MoAM) increase. These contrary trajectories would explain the early observation that 364 

macrophages numbers were unchanged in this model (Izbicki et al., 2002), but the closer analysis of 365 

macrophage subtypes revealed strong dependent changes, as shown by (Misharin et al., 2017, 2013) 366 

and now reconfirmed by our results.  367 

Increasingly macrophage heterogeneity has been suggested to play an important role in the pathogenesis 368 

of lung fibrosis and have implications for therapeutic strategies. MoAM undergo marked transcriptional 369 

changes during their differentiation in the injured lung tissue. These changes are not only associated 370 

with a continuous down-regulation of genes typically expressed in monocytes and up-regulation of 371 

genes expressed in alveolar macrophages but also with markedly elevated expression of 372 

proinflammatory and profibrotic genes related to M1 and M2 phenotype. This unique transcriptomic 373 

signature of MoAM provides an explanation how bleomycin-induced lung fibrosis is attenuated 374 

following selective depletion of these cells (Joshi et al., 2020; McCubbrey et al., 2018; Misharin et al., 375 

2017). Interestingly, the existence of common profibrotic pathways in MoAM harvested from mice 376 

during fibrosis development and profibrotic macrophages obtained from the lungs of IPF patients has 377 

been reported (Aran et al., 2019; Misharin et al., 2017). All these observations strongly suggest that 378 

selective targeting profibrotic macrophages, rather than the M1 or M2 phenotype, is more likely to be 379 

of benefit in such a complex disease as IPF. The potential contribution of MoAM to the resolution of 380 

lung fibrosis is still open and remains the subject of future studies. Recent data supports this hypothesis 381 

(Cui et al., 2020). Hence, MoAM could represent very plastic cell population with distinct functions in 382 

different phases of lung fibrogenesis. 383 

Early and late fibrotic stages were characterized by increased numbers of T and B cells in the BALF, 384 

while numbers in the lung tissue remained relatively stable, this reflects earlier reports describing the 385 

presence of T cells in IPF lungs (Balestro et al., 2016; Todd et al., 2013). Here B cells are of particular 386 

interest, as abnormal B cell aggregates have been described in IPF lungs (Marchal-Sommé et al., 2006) 387 

and diverse circulating IgG autoantibodies were found in IPF plasma (Kurosu et al., 2008; Ogushi et 388 

al., 2001; Taillé et al., 2011). Furthermore, individual auto-immunoglobulins were linked to severity 389 

and/or poor prognosis of IPF (Kahloon et al., 2013; Ogushi et al., 2001) thus suggesting the causal role 390 

of certain autoantigens in IPF. Accordingly, transcriptome-profiling of lung tissue derived from 391 
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pirfenidone-treated patients revealed downregulation of B cell related genes (Kwapiszewska et al., 392 

2018). Future studies will, however, demonstrate whether these findings open an exciting new avenue 393 

for immunotherapy-based approaches in IPF. 394 

 395 

Limitations 396 

Despite analysing three independent timepoints, which cover the major stages of the bleomycin model, 397 

some timepoints are still missing. However, we consciously wanted to reuse existing experiments and 398 

avoid sacrifice of new animals. Future investigation would profit from an expansion, e.g. by inclusion 399 

of existing measurements from other groups, to cover also the progression from the initial inflammation 400 

towards active fibrosis phase by including analysis at day seven. Similarly, inflammatory profiling 401 

during fibrosis resolution, i.e. after 28 or 35 days, would deliver valuable insights on the involvement 402 

of specific subtypes during resolution. From a statistical point of view, the unbalanced study design 403 

with differing sample numbers in subgroups is unfavourable, which complicates analysis and loses 404 

some power. However, our use of robust methods such as NLME and machine learning methods 405 

(random forest) were able to overcome these limitations. Although over a dozen independent 406 

experimental runs were included, this is not a multi-centric study. Quantitative comparison of results 407 

from other laboratories at other sites and other strains/substrains would allow to even better explore 408 

bleomycin model system robustness and reproducibility. In this study, manual gating was used to 409 

identify different cell populations, thereby including expert knowledge into the analysis and gating 410 

specificity was confirmed shown by UMAP overlays. For some populations in the UMAP plots (e.g. 411 

AM), the populations were more spread than expected, this was most likely due to do different marker 412 

intensity (in this case CD11c) between different experimental runs. The topic of auto-gating is rapidly 413 

developing and promises to considerably save hands-on time and foremost the potential to detect rare, 414 

otherwise undetected cell subpopulations. The focus of this study was to primarily determine the 415 

inflammatory cell kinetics, however to further unravel the role of inflammation and potential therapeutic 416 

targets in fibrosis a quantified link of cell subpopulations to fibrotic processes is warranted.  417 

Recommendations 418 

This study explored fundamental aspects of the bleomycin animal model with good power owing to the 419 

high sample numbers so that constructive recommendations can be inferred.  420 

(I) In order to ascertain technical success of the experiment we strongly recommend to always include 421 

a negative control (saline) and a positive control (bleomycin, transgenic or knock out otherwise 422 

untreated) group with each n≥8. Foremost this serves to rate the strength of induced fibrosis and 423 

technical quality of the experiment. Statistical power gain is very high for every added sample in the 424 
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single digit region. An n# of ≥8 leaves some safety margin to stay above the critical level of n=5 to 425 

handle the occasional, unavoidable loss of samples due to premature death or technical problems.  426 

(II) For more sensitive and pronounced inflammatory readouts BALF should be routinely sampled 427 

together with lung tissue and both samples should be subjected to analogous analysis.  428 

(III) For subsequent statistical analysis we strongly recommend to investigate distribution and potential 429 

for improvements from data transformations and especially for multivariate methods additional centring 430 

and scaling. We also recommend to use both multivariate and univariate, unsupervised and supervised 431 

methods as they complement each other well in their type of generated insights.  432 

Conclusions 433 

The measurement of inflammatory cellular landscapes in the bleomycin-induced lung-injury mouse 434 

model with flow cytometry is very robust and suitable to quantify kinetic changes in multiple cell 435 

populations simultaneously. The results allowed to infer recommendations such as to add negative and 436 

positive control, apply data pre-processing, combine multivariate and univariate methods and to 437 

routinely also investigate BALF. We also found that the unintended development of potential substrains 438 

does not per se hinder general reproducibility of results and the approach to adapt bleomycin doses to 439 

the current experimental run is viable. This study underlines the relevance of combined analysis for 440 

more holistic insights into inflammatory profile changes. Cell populations show quite distinct 441 

trajectories in their kinetics. We also conclude that inflammatory cell-based response is active before, 442 

during and after manifestation of fibrosis with a shift from the initial innate immune cell domination 443 

towards the adaptive arm and inflammatory cell accumulation is not resolved after 3 weeks.  444 

  445 
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Material and Methods 446 

Animals 447 

All animal experiments were approved by the local authorities (Austrian Ministry of Science, Research 448 

and Economics) (BMWF-66.010-0038-II-3b-2013, BMWFW- 66.010/0038-WF/II/3b/2014, 449 

BMWFW-66.010/0049-WF/V/3b/2017, 66.010/0177-WF/3b/2017) and were performed in accordance 450 

with relevant guidelines and regulations. Wild type groups of several different, independent 451 

experiments (unpublished and published (Biasin et al., 2017)) were pooled and analysed. For each 452 

experimental run wild type mice were obtained from Charles River or bred in-house in case of wild 453 

type littermates and are annotated as separate strains. Overview of all strains and group sizes is given 454 

in Supplementary Table S1. All mice were maintained with 12 h light/ dark cycles and they had access 455 

to water and standard chow ad libitum.  456 

Bleomycin challenge and animal handling 457 

Male mice (25-30 g body weight) were anesthetized with isoflurane 2–2.5 % and intra-tracheal 458 

administered with bleomycin (Sigma, Vienna, Austria) or saline solution (0.9 % w/v NaCl) using a 459 

MicroSprayer® Aerosoliser (Penn-Century Inc., PA, Pennsylvania, USA), as previously described 460 

(Biasin et al., 2020, 2017). Each bleomycin lot was titrated to give a comparable response for each 461 

strain; dose range was 0.7-3.5 U/kg b.w., Supplementary Data 1). After bleomycin instillation, mice 462 

were closely monitored till they completely recovered from anaesthesia. Bleomycin or saline solution 463 

administration was performed once and animals were sacrificed after 3, 14 or 21 days.  464 

BALF and lung tissue preparation for flow cytometry  465 

Mice were euthanized via exsanguination and the lungs were perfused with phosphate buffered saline 466 

(PBS; 137 mM NaCl, 2.7 mM KCl, 10 mM Na2HPO4, 1.8 mM KH2PO4, pH 7.2), through the right 467 

ventricle. Mice were then lavaged with 1 ml PBS containing the Pierce protease inhibitor cocktail 468 

(ThermoFisher Scientific, Vienna, Austria) and 1 mM EDTA. The obtained BALF was centrifuged, 469 

washed with 1 ml MACS buffer (2 mM EDTA, 0.5 % BSA in 1X PBS), before being resuspended in 470 

0.5 ml for cell counting and consequent FCM staining. Single cell lung tissue homogenates were 471 

performed as previously described (Nagaraj et al., 2017). Briefly, the lower right lobe was weighed, cut 472 

into approximately 1 mm pieces and digested with 0.7 mg/ml Collagenase and 30 μg/ml DNAse in 473 

RPMI medium supplemented with 10 % FCS, 2 mM glutamine and 1 % penicillin-streptomycin 474 

(ThermoFisher Scientific) for 40 min at 37 °C with rotation at 350 rpm. The minced tissue was passed 475 

through a 100 μm cell strainer to obtain a single cell suspension. In case of red blood cells 476 

contamination, the cell suspension was treated with erythrolysis buffer (2.6 mM NH4Cl, 0.09 M KCO3, 477 

0.6 M EDTA) for 5 min at room temperature. The number of live cells were counted using trypan blue 478 
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exclusion and then stained with fixable viability stain (ThermoFisher Scientific), washed and then fixed 479 

with 1 % paraformaldehyde for 15 min on ice before being resuspended in MACS buffer. 480 

Flow cytometry 481 

Single cell suspensions were initially incubated with an Fc-receptor-binding antibody (ThermoFisher 482 

Scientific) for 5 min on ice to prevent nonspecific binding. A master-mix containing one of two different 483 

antibody combinations against cell surface markers (Supplementary Table S2) was added to the cells 484 

incubated for 20 min at 4 °C. For each sample between 30’000 and 300’000 events were recorded on a 485 

LSRII Flow Cytometer (BD Biosciences, Vienna, Austria) or Cytoflex S (Beckman Coulter, Vienna, 486 

Austria). Samples were analysed either using FACSDiva (BD Biosciences) or FlowJo v10.6.2 (LLC, 487 

Ashland, Oregon) software by users blinded to treatment condition. Cells were initially gated on FSC 488 

and SSC characteristics and duplexes were removed using FSC-A / FSC-H dot blot, dead cells were 489 

gated out using viability exclusion. Cells positive for the pan-leukocyte marker CD45 were taken for 490 

further analysis, cell populations were identified using the gating strategy (Fig. 1C and Table 1), as 491 

described in the results and based on published studies (Biasin et al., 2017; Gungl et al., 2018; Misharin 492 

et al., 2017, 2013; Tighe et al., 2019b). A complete description of all antibodies is given in 493 

Supplementary Table S2. Cell numbers are reported 105 in the BALF and 104/mg tissue for the lung. 494 

Uniform Manifold Approximation and Projection (UMAP) plots were performed in FlowJo, using 495 

default settings (nearest neighbours 15, minimum distance value 0.5, Euclidean distance). First, fcs files 496 

from at least three individual mice per analysis timepoint were downsampled to max 10’000 events and 497 

then concatenated. Manually gated populations were then overlaid on UMAP plots to determine they 498 

kinetics. 499 

Trichrome and immunofluorescence staining 500 

After BALF, the lungs were inflated with 4 % formalin via the trachea and then paraffin embedded. 501 

Slides were cut at 2.5 µm thick and stained with Masson’s trichrome according to standard protocols. 502 

Slides were scanned and imaged with a Virtual Slides VS120 Microscope and OlyVia Software (both 503 

from Olympus, Vienna, Austria). For multi-colour immunofluorescence staining, 2.5 µm paraffin-504 

embedded lung sections were dewaxed and subjected to heat induced antigen retrieval at pH6 (Perkin-505 

Elmer, Waltham, MA) using an antigen retrieval chamber for 15 min at 200 W. Slides were blocked 506 

with Perkin-Elmer Antibody Block solution for 20 min in a humidified chamber, and primary antibodies 507 

(Supplementary Table S3) were sequentially incubated o/n 4 °C in Perkin-Elmer Antibody Diluent. 508 

After washing with TBS-T (274 mM NaCl, 47.6 mM Tris HCl + 2 % v/v Tween20 in H2O) primary 509 

antibodies against CD4, SiglecF and CD45 were detected with the Opal Polymer HRP secondary 510 

antibody (Perkin-Elmer), using the Opal 540, 620, 690 substrates, respectively. Antibodies against 511 

Collagen I, CD11c and CD45 were used simultaneously and detected with AlexaFluor-conjugated 512 

secondary antibodies, donkey anti-goat AlexaFluor488, donkey anti-rabbit AlexaFluor555, chicken 513 
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anti-rat AlexaFluor647, respectively. Nuclear counterstaining was performed with DAPI solution 514 

1 mg/ml (ThermoFisher Scientific). 515 

Confocal imaging 516 

For imaging immunofluorescence stained slides, a Leica TCS-SP8 (DMi8 inverted microscope with a 517 

LIAchroic scan head) lightning confocal microscope was used (Leica, Wetzlar, Germany). The 518 

acquisition process followed a “sequential workflow” with well-defined settings (shown in 519 

Supplementary Table S4). In order to minimize fluorescent overlap the plugin “Channel Dye 520 

Separation” of Leica Imaging system was used. The following objectives were used: Plan Fluotar 521 

20x/0.75 multi immersion objective and Plan Fluotar 40x/1.25 glycerol immersion objective. Images 522 

were acquired at 2048 x 2048 and a pixel size of 142 x 142nm. 523 

Statistical analysis 524 

Data visualisation and statistical analysis were performed with R v3.6.3 (R Core Team, 2020) (using 525 

the packages readxl, openxlsx, plyr, stringr, tidyr, reshape, colorspace, RColorBrewer, ggplot2, ggpubr, 526 

ggrepel, gridExtra, magrittr, cowplot, plotly, lemon, lawstat, dendsort, pheatmap, cellWise, missMDA, 527 

FactoMineR, nlme, emmeans, MetaboAnalystR 2.0, caret, randomForest, randomForestExplainer, 528 

partykit, e1071), TIBCO Spotfire v10.9.0, TIBCO, Palo Alto, CA and FlowJo v10 (LLC, Ashland, 529 

Oregon).  530 

All reported p-values were adjusted for multiple testing according to Benjamini-Hochberg (BH) 531 

denoted as pBH (R function p.adjust). Distribution and scedasticity were investigated with Kolmogorov-532 

Smirnov test and Brown-Forsythe Levene-type test, respectively (pBH Supplementary Data 1). Seven 533 

common transformations were tested: square root, reciprocal, Freeman Tukey, logit (on counts mapped 534 

to 0.25-0.75), LOG, LOGx+1, 4RT (Supplementary Fig. S1).  535 

Principal component analysis (PCA) analysis (R function prcomp) was performed centred and scaled 536 

to unit variance (z-scaled) on total cell counts (untransformed, LOGx+1 or 4RT transformed). The dataset 537 

(303 samples, 16 cell populations) contained no missing values and 1.3 % zeros. MacroPCA analysis 538 

(R function MacroPCA) was performed centred and scaled to unit variance on total cell counts 539 

(untransformed, LOGx+1 or 4RT transformed). The number of components was set to cumulatively 540 

retain 80 % of explained variance, but to deliver between two and ten components. Hierarchical 541 

clustering analysis was performed centred and scaled to unit variance (R function scale) on total cell 542 

counts, for untransformed data per cell type than samples. LOGx+1 or 4RT data was centred and scaled 543 

only per cell type. The dendrograms were clustered by Lance-Williams dissimilarity update with 544 

complete linkage (R function dist and hclust) and sorted (R function dendsort) at every merging point 545 

according to the average distance of subtrees and plotted at the corresponding heat maps (R function 546 

pheatmap). 547 
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Non-linear mixed models were fitted (R function simple models gls or mixed models lme with 548 

maximum likelihood (ML), with LOGx+1 transformation and no longitudinal covariance applied (mice 549 

were sacrificed at each time point). Model selection was based on the forward addition approach and 550 

complex models were rechecked by backward dropping of factors. Simple models were constructed 551 

using the forward addition approach incorporating the fixed factors Treatment {Saline,Bleo}, Day 552 

{3,14,21} post treatment and the mouse background, Substrain {A,B,C,D,E}. The interactions, 553 

Treatment:Substrain and Treatment:Day were include to determine whether the treatment effect 554 

depended on the Substrain or Day. Mixed models additionally included the experimental ID as a random 555 

factor (~1|Exp_ID). Complex mixed models were created by combining mixed models with the 556 

interactions Treatment:Substrain and/or Treatment:Day. Models were then simplified by merging all 557 

saline samples into one control group generating the simple model [SalineDay+Substrain] and by 558 

including Exp_ID as a random factor the mixed model [SalineDay+Substrain~1| Exp_ID]. Due to rank 559 

deficiencies arising from the unbalanced design the model SalineDay:Substrain was not possible. 560 

Criteria for model performance and suitability were lower AIC (Akaike information criterion; relative 561 

estimate of information loss), higher log-likelihood (goodness of fit), significance in log likelihood ratio 562 

test comparing two models, quality of Q-Q plots and randomness in residual[Box 2] plots (Supplementary 563 

Data 1 and Supplementary Fig. S2). Post-hoc pairwise comparisons were readout as back transformed 564 

estimates (R function emmeans, type = “response”) with pBH ≤0.05 being considered statistically 565 

significant. 566 

Orthogonal projections to latent structures discriminant analysis (OPLS-DA) on LOGx+1 data was 567 

performed centred and scaled to unit variance (R function Normalization with scaleNorm=”AutoNorm” 568 

and R function OPLSR.Anal) with a standard 7-fold cross validation for the classification factor 569 

SalineDay. Model stability was additionally verified with 1000 random label permutations. 570 

Conditional inference trees were fit with default settings (R function ctree) which limits tree size to 571 

include only significant splits avoiding overfitting, so that no further cross-validation or pruning was 572 

applied. The random forest (R function randomForest) error rates decrease markedly within the first 573 

100 trees and stabilized fully after 1500 to 2500 trees. All reported random forests grown with 5000 574 

trees to guarantee stability and hyperparameter, mtry (8 in BALF and 2 in lung) was tuned to minimal 575 

out-of-bag errors (OOB) (R function tuneRF). The model stability and prediction quality (R function 576 

confusionMatrix) of conditional inference trees and random forest was evaluated by splitting the 577 

LOGx+1 randomly into trainings/test set (65 % / 35 %) stratified for the classification factor SalineDay 578 

(R function createDataPartition). 579 
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Supplementary Figures and Tables 748 

 749 

Fig. S1. Data transformations improve distribution and scedasticity. (A) List of tested data transformations with equations. (B) 750 

Normality and scedasticity was tested for each of the 16 cell populations in either 159 BALF or 144 lung samples for 751 

each of the transformations. The horizontal line denotes pBH= 0.05. 752 
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 753 
Fig. S2. MacroPCA and PCA deliver similar results. (A-C) MacroPCA scores plot of combined BALF (159 samples) and lung 754 

tissue (144 samples), before (untransformed, (A)) and after data transformation by LOGx+1 (B) or 4RT (fourth root; 755 

(C)). Samples are coloured to highlight effect of bleomycin (Saline or Bleo) and compartment (BALF or Lung). Middle 756 

and right panels show the linear fit of the first two principal components derived from the macroPCA and PCA results. 757 

(D-E) Separation of entire LOGx+1 transformed dataset into the tissue compartments, BALF (D) and lung (E). Middle 758 

and right panels show the linear fit of the first two principal components derived from the macroPCA and PCA results. 759 

Samples are coloured to highlight different days and substrains. Shapes are in all plots circles for saline and triangles 760 

for bleomycin.  761 

 762 
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 763 
Fig. S3. Simplified mixed models exhibit best performance. Overview of ANOVA model performances for model selection 764 

by: (A) Comparison of model performance by AIC and logLik for all 16 cell populations in BALF and lung, better 765 

performance is indicated by lower relative estimate of information loss (AIC; Akaike information criterion) and higher 766 

goodness of fit (log-likelihood, logLik). (B) Direct comparison of fitted values (on LOGx+1 scale) of the simplified 767 

mixed model versus the most complex mixed model. The Pearson correlation is shown as black line and R2 is given. 768 

 769 
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 770 
Fig. S4. Modelling of 16 cell populations in 159 BALF or 144 lung samples reveals complex cell kinetics. Overview of 771 

ANOVA model performances for model selection by: A) Comparison of model performance by AIC and logLik for 772 

all 16 cell populations in BALF and lung, better performance is indicated by lower relative estimate of information 773 

loss (AIC; Akaike information criterion) and higher goodness of fit (log-likelihood, logLik). B) Direct comparison of 774 

fitted values (on LOGx+1 scale) of the simplified mixed model versus the most complex mixed model. The Pearson 775 

correlation is shown as black line and R2 is given. 776 

 777 
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Supplementary Table S1. Overview of group distribution. 779 

Substrain A B C D E 

Compartment BALF Lung BALF Lung BALF Lung BALF Lung BALF Lung 

Condition Saline | Bleo Saline | Bleo Saline | Bleo Saline | Bleo Saline | Bleo Saline | Bleo Saline | Bleo Saline | Bleo Saline | Bleo Saline | Bleo 

                  5|8 5|7 

Day 3         8|11 8|12     3|4 3|4 

                      

      0|4               

Day 14 4|4   0|8 0|9 7|13 4|13 6|10 6|10     

      5|0 7|0             

  5|7               3|6 3|6 

Day 21 5|9 5|9       6|3     4|8 4|8 

  5|7 5|7                 

 780 

Supplementary Table S2. Antibodies, fluorophores and sources for flow cytometry. 781 

Panel  Antigen Label Company Catalogue Clone Isotype Identifier Dilution 

M
ye

lo
id

 

CD45 FITC Thermo Fisher 11-0451-82 30-F11 Rat IgG2b, κ AB_2753206 1:200 

SiglecF PE BD Bioscience 562757 E50-2440 Rat IgG2a, κ AB_2687994 1:20 

CD11c ef450 Thermo Fisher 48-0114-82 N418 Armenian hamster IgG AB_1548654 1:50 

CD11b ef506 Thermo Fisher 69-0112-82 M1/70 Rat IgG2b, κ AB_2637406 1:50 

Gr-1 (Ly6G/Ly6C) PE-Cy7 Biolegend 108402 RB6-8C5 Rat IgG2b, κ AB_313367 1:800 

CD64a/b AF647 BD Bioscience 558539 X54-5/7.1 Mouse NOD/Lt IgG1, κ AB_647120 1:20 

CD24 PerCP Cy5.5 BD Bioscience 562360 M1/69 Rat IgG2b, κ AB_11151895 1:500 

MHC-II APC-Cy7 Biolegend 107628 M5/114.15.2 Rat IgG2b, κ AB_2069377 1:400 

L
ym

ph
o

id
 

CD45 PerCP Cy5.5 eBioscience 45-0451-82 30-F11 Rat IgG2b, κ AB_1107002 1:200 

CD3 AF700 Thermo Fisher 56-0033-82 eBio500A2 Syrian hamster / IgG AB_837094 1:50 

CD19 BB515 BD Bioscience 564531 1D3 Rat IgG2a, κ AB_2738836 1:50 

CD8 PE Biolegend 100708 53-6.7 Rat IgG2a, κ AB_312747 1:100 

CD4 APC Biolegend 17-0041-82 GK1.5 Rat IgG2b, κ AB_469320 1:100 

gdTCR ef450 Thermo Fisher 48-5711-82 eBiogL3 Armenian hamster IgG AB_2574071 1:50 

 782 

Supplementary Table S3. Antibodies, fluorophores and sources for immunofluorescent staining. 783 

Antigen Host Brand Catalogue Identifier Concentration (µg/ml) 

Collagen I Goat Southern Biotech 1310-01  AB_2753206 0.8 

CD4  Rat Synaptic Systems HS-360 017 AB_2800530 10 

CD11c Rabbit Thermo Fisher PA5-79537 AB_2746652 3.3 

SiglecF Goat R&D Systems AF1706 AB_354943 0.4 

Ly6G Rat Biolegend 127601 AB_1089179 3.3 

CD45 Rabbit Abcam AB10558 AB_442810 0.6 

 784 
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Supplementary Table S4. Instrument configurations. 786 

Instrument Laser lines Bandpass Filters   

LSRII  

488 nm 780/60 695/40 670/14 610/20 576/26 530/30 488/10   

633 nm 780/60 730/45 660/20           

405 nm 610/20 525/50 440/40           

355 nm 530/30 440/40             

Cytoflex S 

488 nm 690/50 525/40 488/8           

561 nm 780/60 690/50 610/20 585/42         

633 nm 780/60 712/25 660/20           

405 nm 660/20 610/20 525/40 450/45         

                    

Instrument Parameter Acquistion seq 1 Acquistion seq 2         

Leica TCS-SP8  Pinhole  67.9 µm 67.9 µm         

  PinholeAiry  1 AU 1 AU         

  EmissionWavelength for PinholeAiry Calculation  580 nm 580 nm         

  Excitation Beam Splitter TD 488/552/638 TD 488/552/638         

Hybrid Detectors  

HyD 1 (nm)   410 - 460         

HyD 2 (nm) 492 - 522 560 - 571         

HyD 3 (nm)   613 - 630         

HyD 4 (nm) 530 - 548 705 - 740         

HyD 5 (nm) 645 - 675           

Solid state lasers (nm) 

405, Intensity (%): - 0.30         

488, Intensity (%): 0.30 -         

552, Intensity (%): - 0.40         

638, Intensity (%): 0.30 0.04         
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