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Abstract  

In bladder cancer (BLCA) there are, to date, no reliable diagnostics available to predict 
the potential benefit of a therapeutic approach. The extraordinarily high molecular 
heterogeneity of BLCA might explain its wide range of therapy responses to empiric 
treatments. To better stratify patients for treatment response, we present a highly 
automated workflow for in-silico drug response prediction based on a tumor’s 
individual multi-omic profile. Within the TCGA-BLCA cohort, the algorithm identified a 
panel of 21 genes and 72 drugs, that suggested personalized treatment for 94,7% of 
patients - including five genes not yet reported as biomarkers for clinical testing in 
BLCA. The automated predictions were complemented by manually curated data, thus 
allowing for accurate sensitivity- or resistance-directed drug response predictions. 
Manual curation revealed pitfalls of current, and potential of future drug-gene 
interaction databases. Functional testing in patient derived models and/or clinical trials 
are next steps to validate our in-silico drug predictions. 

 

Introduction 

More than three decades of development in empiric systemic therapies have passed without 

remarkably changing the numbers of deaths caused by bladder cancer (BLCA).1 As of 2017, 

BLCA is the seventh most common cancer and annually affects more than 450.000 people 

worldwide, resulting in almost 200.000 deaths.2 Recent advancements include 

immunotherapies in BLCA, which have brought the first significant progress in survival since 

platinum-based chemotherapy regimens were introduced in the mid 1980s.3 However, in 

recent years the five-year overall survival has only been improved by 5% - and the effects of 

immunotherapies are still to be evaluated.4  

The molecular diversity of BLCA might be one of the major reasons for the low response rates 

of BLCA to systemic agents. BLCA is among the cancer types with the highest total mutational 

burden.5 Moreover, about two thirds of BLCA are exposed to APOBEC mutagenesis, which 

increases the mutational diversity within each individual cancer during development. At the 

transcriptomic level, BLCA can be divided into molecular subtypes and clinical implications of 

these sub-classifications have already been suggested.6 Nevertheless, transcriptome-based 

subclassifications alone do not seem to be optimal for selecting the right therapeutic approach, 
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as subtypes are still highly heterogeneous and do not incorporate the entire genomic 

landscape of BLCA tumors.  

To facilitate a biomarker driven personalized therapy approach in BLCA, the first step is the 

identification of clinically relevant and actionable genomic alterations. Thus, in this study we 

used the TCGA-BLCA cohort as a starting point and aimed to determine potentially actionable 

genes and associated drugs based on the mutational landscape of muscle invasive bladder 

cancer. Moreover, we integrated existing evidence from other cancer entities and 

transcriptomic data to enrich the genomic-based information. With this study we succeeded in 

broadening the horizon of agents to drive pretreatment diagnostics and decision making from 

an empiric towards an individualized marker driven therapy strategy. 

 

Results 

Variant calling, quality control and variant filtering 

We first performed variant calling from whole-exome sequencing (WES) data from the TCGA-

BLCA cohort (Cell, 2017). The derived single nucleotide variants (SNVs) and copy number 

variations (CNVs) served as a base for a query in “The Drug Gene Interaction Database” 

(DGIdb)7 to identify variants with non-curated* DGI information (* = all DGIs not yet curated 

by manual curation or not derived from an expert curated DGI database will hereafter be called 

“non-curated” to highlight their level of evidence). Intending to target clinically relevant 

mutations only, we performed a prediction on the variant effect on the protein function and 

included only those variants with potentially damaging effect. Furthermore, only variants with 

a high impact, e.g. missense or stop-gain variants, were retained, thereby removing variants 

with likely limited effect on the protein. Subsequently, we filtered by the cohort prevalence of 

affected genes and the type of drug-trials the DGIs had been derived from. Finally, selected 

DGIs not present in an expert curated database were manually curated (see Fig. 1 and 

Methods for a detailed description) and transcriptome based drug-response scores (DRS) 

were calculated, if available. 
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Fig.1 Workflow design - the diagram depicts the key steps of our in-silico drug prediction. a After variant calling in 

whole-exome sequencing (WES) data from the TCGA bladder cancer cohort, a query was performed on the “Drug 
Gene Interaction database” (DGIdb) to identify targetable genomic alterations amongst the discovered mutations. 

b During the subsequent fully automated filtering phase, further selection criteria were applied. c In the semi-

automated filtering phase manual curation complemented the automated query of the expert curated CIViC 
database, resulting in the final set of genes and drugs. 

 

Variant calling compared to previous TCGA analysis 

Variant calling from the 412 patients` tumor genomes resulted in an unfiltered variant count 

(UVC) of 201,937 genomic variations. Quality metrics identified a high overlap with previous 

variant calling from the TCGA-BLCA cohort e.g. with Robertson et al. (Cell, 2017) With a 

median agreement of 98.3%, the identified SNVs in particular were highly similar to the 

previously documented analyses, despite using a more conservative approach than 

Robertson et al. (Cell, 2017). For identified CNVs the median agreement with previously 

reported CNVs was 84.6%. The lower agreement compared to SNV calls can be explained for 

example by the larger difference in the workflows used for CNV calling compared to SNV 

calling.  

 

Variant and drug filtering 

DGIdb is the largest cumulative database for DGIs. It works as a widely used open source tool 

to collect drug-gene interactions by text mining from public resources, such as publications 
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and databases,7 of which several, but not all, are expert-curated. By querying DGIdb, we 

identified 34,039 SNVs and CNVs with existing references for non-curated DGIs (in total 

16,9% of UVC).  

Before DGIdb filtering, tumor samples showed a wide range of mutational load from 1 to 7320 

SNVs (median 293). The vast majority of samples presented drug-related SNVs after filtering, 

ranging from 0 to 574, with a median of 23 mutations. (see Fig. 2a). The subsequent 

mutational impact prediction for the SNVs identified a large overlap of the high-impact 

damaging variants with the total amount of all non-synonymous SNVs (see Fig. 2b). We 

observed a minor decrease in CNV count by filtering for deep deletions and amplifications, 

respectively. The CNV count per sample changed from 0 to 595 (median 52) prior to filtering, 

to 0 to 243 (median 44) after (see Fig. 2c). Copy number gains and amplifications outweighed 

copy number losses and deep deletions (see Fig. 2d). 

 
Fig. 2 Filtering shows distinct effects on the SNV/CNV selection. a Barplot illustrates the log-scaled mutation load 

per sample for non-synonymous mutations, before (red bars) and after (blue bars) filtering for provided drug-gene 

interactions. Bars are overlying, not stacked. b Boxplots depict the distribution of types of SNVs before filtering. c 
The barplot shows the differences of CNV load per sample throughout filtering. The overlying bars represent CNV 

load before (red bars) and after (blue bars) filtering for non-curated drug-gene interactions. d Boxplots illustrate 

the type of CNV (DEL = deletion, 0 copies; LOSS = copy number loss, 1 copy; GAIN = copy number gain, 3-4 
copies; AMP = amplification, >4 copies).  

 

Next, we assigned the non-curated DGIs to the individual samples. This resulted in a “drug 

load” per sample, representing all predicted drugs with a gene dependent recommendation. 

Fig. 3 illustrates the effect of each step of filtering on the “drug load”. The combined “drug 

load” considering all drugs for all SNVs and CNVs varied from 0 to 1896 (median 1422). 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted May 26, 2020. ; https://doi.org/10.1101/2020.05.22.101428doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.22.101428


 

 

Filtering DGIs for the selected variants with predicted clinical relevance (high transcriptome 

impact score) reduced the “drug load” to 0 to 1478 (median 274) drugs per sample. Applying 

cohort prevalence filters and excluding drugs without relation to cancer therapy resulted in 0 

to 191 (median 57) drugs per sample. Manual curation and the CIViC query created a final 

total “drug load” of 0 to 66 drugs (median 27) per sample.  

From the remaining 11,938 variants present across the cohort (5,9 % of UVC), for further 

investigation we demanded a variant cohort prevalence of 15%, which resulted in a set of 109 

genes and 207 drugs. Thus, of the initial 4117 DGIs 91,2% were dismissed during automated 

filtering before manual curation and CIViC query. A majority of drop out resulted from both 

variant and drug related criteria. Drugs not being related to cancer therapy caused the 

dismissal of 17,5% of DGIs. Low cohort prevalence and non-damaging variants resulted in the 

removal of a further 18,3% (see Fig. 3 and 4a). 

 
Fig. 3  Development of the “drug load” along the filtering process. Each bar in a-d depicts a “drug load” per patient. 

Bars are not stacked, but overlying. Note that the y-axes change throughout the filtering. Drugs tested in bladder 

cancer trials or trials generally including solid tumors (ct) were distinguished from drugs used in general cancer 
trials (nct) and from medications not related to cancer in general. In a-d purple bars illustrate the total drug load per 

sample. Drugs with no reference to cancer therapy are illustrated in yellow (other). a Barplot illustrates the “drug 

load” for all SNVs and CNVs after querying DGIdg before any filters were applied. In b “drug load” after filtering for 
clinically relevant variants is depicted. In c cohort prevalence filters for variants were applied and drugs with no 

reference to  cancer therapy were excluded. d Barplot illustrates the final “drug load”  for curated drug-gene 

interactions after integration of CIViC and manual curation results.  
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Automation / Manual Curation / CIViC Integration 

Up to this point in our investigation the workflow was fully automated (see Fig. 1 a and b). 
The selected DGIs resulted in a set of 109 genes and 207 associated drugs. However, the 

level of evidence of selected DGIs can be separated into two groups. The first group was 

supported by CIViC (“Clinical Interpretation of Variants in Cancer”; https://civicdb.org) DGI 

references. CIViC is an open source database for expert curated DGI references, which we 

integrated into our workflow to be automatically queried.8 The second group was compiled of 

non-curated DGIdb entries and lacks information on the actual support of the treatment. To 

base our in-silico predictions on proven DGIs only, we conducted a manual curation of non-

curated DGIs (see Methods - Manual Curation). Note that we selected all SNV dependent 

non-curated DGIs for manual curation. Manual curation is very time consuming and we 

expected similar methodological results for CNV dependent DGIs. The non-curated SNV 

dependent DGIs selected for manual curation represent 25,8% of all selected DGIs (see Fig. 
4b). It can be expected that the fraction of non-curated DGIs will decrease over time, with 

more comprehensive information available in databases such as CIViC.  

Interestingly, manual curation uncovered 62% of all investigated DGI references to be 

irrelevant, due to missing evidence of single agent efficacy or missing references to drug or 

gene itself. Commonalities of sources without proper reference to the DGI of interest include 

administration of the drug as part of a therapy regimen (which does not allow for evaluation of 

the single agent efficacy) and exclusive citations of either drug or gene in the list of references. 

In respect to all manually curated DGIs, 23.3% proved to be irrelevant due to exclusion in 

manual curation.  

By extracting information concerning the direction of the DGI (sensitivity/resistance) from the 
DGI references, we were able to create binary predictions of response direction. While a 

majority of 55.6% of DGIs described sensitivity reactions, 11.9% of DGIs referred to resistance 

and 8.2% contained conflicting evidence e.g. in case of variant dependent contrary response 

prediction within one gene (see Fig. 4c). Additionally, we used information from the mined 

references to annotate DGIs and discovered 10 reasonable combinational therapies. Finally, 

filtering out DGIs neither supported by CIViC information nor by manual curation, reduced the 

number to 21 final genes and 72 drug/drug combinations, respectively. 
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Fig. 4 Influence of automated and manual filtering on the number of drug-gene interactions (DGIs). a The pie chart 
illustrates the fraction of DGIs filtered in an automated fashion, grouped by filter criteria. In b, the fraction of DGIs 

that underwent curation or CIViC query is shown (note that not all available DGIs were manually curated, as this 

was beyond the scope of this study), whereas in c, the respective assessment categories of the remaining DGIs 
with manual curation and CIViC support are depicted. Note that combination treatments are excluded in this plot, 

since they all refer to the same DGIs and would thus be counted twice.  

 

Integration of transcriptomic data 

To base our predictions on a second data level we used in-vitro drug sensitivities and protein 

expression data from the NCI-60 cell lines to create drug response scores (DRS). The 

transcriptome dependent DRS were applied on each individual sample. DRS were measured 

for 26% (19/72) of the finally selected drugs. Note that a positive DRS indicates that the sample 

responded favorably to the tested drug, i.e. a positive DRS is interpreted as sensitivity. 

However, it is important to note that a negative DRS does not implicitly mean that the cell line 

was resistant to the applied drug, rather that no sensitivity could be observed. Thus, a negative 

DRS is interpreted as “no evidence of sensitivity”. The transcriptomic data based DRS 

provided a second level of information to weigh the inferred in-silico drug predictions. 

Additional evidence on the transcriptome level is an even stronger indication that (i) the variant 

observed on the genomic level has an impact and (ii) that the drug actually has the predicted 

effect. Thus, a DGI with directional support (sensitivity/resistance) on the genomic (SNV 

and/or CNV - derived) level, as well as support on the transcriptomic level, has a higher 

reliability compared to a DGI with support of only one level. This is illustrated in Fig. 5, where 

DGIs per sample are categorized based on their level of evidence for drugs with DRS support.  
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Fig. 5 Oncoprint showing weighted evidence across samples based on DRS and curation support. 
Conflicting_evidence: resistance prediction + DRS positive; Mutation_dependent_evidence: gene_dependent 

prediction + DRS positive / gene_dependent prediction + no DRS; Resistance_evidence: resistance prediction + 

no DRS; Sensitivity_evidence: sensitivity_unspecific prediction + no DRS / sensitivity prediction + no DRS / 
no_genomic + DRS positive; Sensitivity_strong_evidence: sensitivity_unspecific prediction + DRS positive / 

sensitivity prediction + DRS positive. 
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Final drug and gene panel 

Based on the previously described steps, we identified a set of 21 actionable genes and 72 

corresponding drugs or drug combinations as promising target-driven therapy suggestions for 

muscle invasive bladder cancer (see Fig. 6). In total 94.7% of TCGA-BLCA samples could be 

covered by our set of selected drugs and genes by being represented with at least one 

predicted DGI. 

The finally selected set represents a mix of genes and drugs known in the context of bladder 

cancer, together with interesting potential new targets. 45 of the identified 72 drugs or drug 

combinations are currently or formerly tested in BLCA clinical trials. While being tested in solid 

tumor basket trials or other solid tumor entities, at the time of our investigation 17 of the listed 

drugs have not been tested in explicit BLCA trials yet (ceritinib; CUDC-907 (fimepinostat); 

dacomitinib; DS-7423; entrectinib; gedatolisib; idelalisib; letrozole; margetuximab; MK-2206; 

PD-0325901 (mirdametinib); PF-04691502; pictilisib; ponatinib; rigosertib; rociletinib; VS-

5584).9 Twelve predicted drugs are being investigated in the MATCH trial,10 five in the My 

Pathway trial 11 and 12 in the COXEN trial.12 As expected, only a minority of 12,5% (9/72) of 

drug approaches are non-targeted therapies.  

For ten DGIs reasonable combinational therapies could be identified to avoid therapy evasion. 

Furthermore, at the time of investigation we found six of the identified combinational therapy 

approaches in clinical trials with mostly solid tumors (buparlisib + MEK-inhibition; gedatolisib 

+ MEK-inhibition; lapatinib + AKT-inhibition; paclitaxel + PI3K-inhibition; palbociclib + 

PI3K/mTOR-inhibition; selumetinib + mTOR-inhibition; trametinib + mTOR-inhibition).9 

The majority of the identified genes (16/21) are currently a subject of clinical trials as diagnostic 

biomarkers or in reference to therapeutic decision making for BLCA therapy. However, at the 

time of our investigation DNMT3A, FBXW7, HRAS, RAF1 and TOP1 are not yet found as 

biomarkers in BLCA related clinical trials and we are the first to report them as potential 

candidates for biomarker driven therapy testing.9 With FGFR3 we identified the first and as yet 

only genetic biomarker with FDA approval for locally advanced and metastatic BLCA 13 

amongst our predictions.  
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Fig. 6 Our drug-prediction workflow discovers a panel of genes and related drugs / drug-combinations for 

personalized therapy in bladder cancer. a The heatmap illustrates the final selection of drug-gene interactions 
(including combination treatments).  “Sensitivity” and “resistance” refer to predicted sensitivity and resistance when 

the associated gene contains a respective variant. “Sensitivity_unspecific” refers to genes where sensitivity to a 

particular drug could not be assigned to a particular variant but multiple variants would lead to the prediction. In 
“variant_dependent” predictions, different variants within one gene can cause a divergent direction of the response 

prediction (sensitivity/resistance). b The barplot shows the prevalence of identified genes and the predicted impact 

on gene product (abbr.: DEL = deletion, 0 copies; AMP = amplification, > 4 copies). c The barplot depicts the 20 
most frequently predicted drugs and the directions of drug response. The legend is the same as in Fig. 5a, with 

the exception of “gene_dependent”, which categorizes samples that have multiple genes mutated that have a 

divergent (sensitivity/resistance) response to the same drug. 

 

Divergence in drug response prediction 

Within a majority of samples, drug response predictions depended on multiple different 

mutations. In each individual sample a directed response prediction (sensitivity/response) 

could depend on different genes and therefore divergence of the direction of prediction was 

possible (in the following referred to as “gene-dependent divergence”). In total, 252 pairs of 

drug and sample contained any kind of divergence, referring to 158 individual samples with 

multiple divergent predictions. We note that in a majority of samples 55,3% (228/412) the drug 

response predictions were free of any divergence. The 252 gene-dependent divergences 

found across the samples can be categorized into 122 within CIViC predictions, 97 within 

manual curation, and 33 resulting from differences between CIViC and manual curation 

predictions (2 in CIViC: resistance / manual curation: support; 31 in CIViC: support / manual 

curation: resistance), respectively. Thus, in all of these cases multiple genes had been 

mutated that had different impacts on the drug response. We identified divergent predictions 

exclusively resulting in reference to 8 drugs (docetaxel; sirolimus; cetuximab; bevacizumab; 

lapatinib; oxaliplatin; gemcitabine; trastuzumab). Between-source divergences corresponded 

to 3 drugs (cetuximab; sirolimus; gemcitabine). In total, predictions in only 1,2% (5/412) of 

samples included between-source divergence (arising exclusively from the curation of 

different DGIs across the curation sources). 

 

Potential application of the drug and gene panel 

The drug and gene panel resulting from our workflow is a groundwork for a personalized 

therapy testing approach for BLCA. Investigating the predicted drugs, we observe agents that 

have been clinically tested in BLCA, such as EGFR-inhibitors like cetuximab. Furthermore, 

mTOR-inhibitors like sirolimus, agents affecting the RAF/MEK/ERK pathway such as 
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selumetinib, or PARP-inhibitors such as olaparib appear in our panel. With 10 identified drug 

candidates, PI3K-inhibitors form a major group of which only three (buparlisib; copanlisib; 

taselisib) are currently in clinical testing explicitly in BLCA. 

Fig. 7 illustrates a blueprint for the future application of our workflow, where we intend to 

analyze sequencing results from patient derived tumor material. The gene and drug panel can 

serve as a cost-efficient yet comprehensive molecular diagnostics that is tailored to BLCA 

tumors. To illustrate an example, in the case of a significant PI3K-mutation (found in 38,8% 

(160/412) of all samples; see Fig. 6b) our algorithm predicted variant-dependent sensitivity to 

22 drugs and 6 drug combinations. Additionally, three unspecific gene-dependent predictions 

for sensitivities were found alongside two predicted resistances. Both resistances refer to 

EGFR-inhibitors; cetuximab and trastuzumab. Moreover, predictions from our algorithm can 

be weighted in reference to the level of supporting evidence (only genomic / genomic + DRS 

information available) (see Fig. 6d). Subsequently, testing of the predicted drug response in 

patient derived tumor models can confer several implications for future clinical administration 

(see Fig. 6e). The efficacy of predicted sensitivities from drugs of the same group (e.g. the 

PI3K-inhibitors buparlisib and gedatolisib) could be assessed preclinically. Similarly, the 

observed resistance predictions can be utilized as negative controls in testing the 

aforementioned tumor model. Both in-vitro and in-vivo results would mandatorily be reported 

to the database, the algorithm was interrogating at the outset, to increase or decrease the 

power of the underlying DGIs.  
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Fig. 7 Blueprint for future clinical applications. a Histologic samples are derived from the tumor mass and processed 
into b individual patient derived tumor models. c Tumor mass and tumor models undergo sequencing to confirm 

genomic comparability. d Sequencing results are analyzed with our algorithm for drug response predictions. 

Delivering weighted (level of support) and directed (sensitivity/resistance) predictions, the most promising 
sensitivities can be selected to be tested against predicted resistances, functioning as negative controls. (Figure 

legend according to Fig. 5) e The derived proposals are tested in the patient derived models. f The drug with the 

best response is administered to the patient, while feedback about in-vitro sensitivities and resistances is reported 
to the database. g Clinical response is also reported to databases (DGIdb; CIViC etc.), increasing or decreasing 

the power of the DGIs for the next query of the algorithm. 
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Discussion 

Poor and unforeseeable outcomes of standard therapies in BLCA raise the question, whether 

empiric “one size fits them all” therapy and testing approaches can be justified in the setting 

of notably individual tumors.6 Indeed, the genomic and transcriptomic diversity in BLCA offers 

a plethora of known actionable targets.14 For other cancer types genomic aberrations have 

proven to be relevant therapy targets, e.g. BRAF mutations in melanoma or HER2 mutations 

in breast cancer.15,16 In contrast to single marker driven diagnostics and decisions, molecular 

tumor boards in the US (Mayo Clinic 17; Weill Cornell 18) as well as in Europe (DKFZ/NCT 19; 

ETH Zürich/SwissMTB 20) started to comprehensively investigate individual genomic tumor 

landscapes. They transferred clinical knowledge amongst oncologic entities resulting in (off-

label) drug suggestions for these often end-of-treatment-line patients, with notable 

responses.20 In BLCA, genomic biomarker driven FGFR-inhibitors have only recently been 

approved.13 Despite known targetable mutations, further genomic marker driven therapy has 

yet to be approved in BLCA. Therefore, BLCA investigations in comprehensive multiple marker 

based drug prediction are highly warranted. 

 

This study introduces a highly automated algorithm to facilitate a personalized drug response 

prediction for target-driven therapy testing. To acknowledge the genomic and transcriptomic 

individuality of BLCA we have developed an algorithm for in-silico drug response prediction 

that includes the highest level of automation reported to date. Our workflow identified 21 

genes, corresponding to 72 drugs and drug combinations as candidates for biomarker driven 

therapy in BLCA. The majority of the identified drugs (45/72) are currently the subject of 

research for targeted therapy in BLCA and other cancer types. Importantly, even without any 

a priori focus our algorithm identified the single approved genomic marker for targeted therapy 

in bladder cancer, FGFR3.13 This may reinforce that our workflow is a valid approach for the 

identification of potentially relevant DGIs. Since the method was similarly applied to all genes, 

we can highlight the discovery of DNMT3A, FBXW7, HRAS, RAF1 and TOP1 as potential 

candidates for mutation dependent pharmacotherapy, not having been reported in clinical 

settings up to this point.9  

Alongside the identification of new potential targets, our WES-based approach could strongly 

increase the sample coverage. Prior analyses using panel-based sequencing methods 

identified up to 60% predefined targetable lesions in BLCA patients.21 Our WES-based 

approach identified one or more targetable genetic alterations in 94,7% of muscle-invasive 

BLCA in the TCGA cohort. Therefore, our algorithm offers a robust strategy for the prediction 

of promising targets in most patients with muscle-invasive BLCA. 
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Within the group of identified targetable alterations, we found examples of altered genes 

playing notable parts in the pathogenesis of BLCA. DNA methylation regulation is crucially 

dependent on the DNMT3A gene product. Its mutations are described in many cancer 

entities.22 In BLCA, mutated DNMT3A is known to cause hypermethylation and thereby silence 

promoters of tumor suppressor genes.23 So far it is not reported as a biomarker for a targeted 

therapy approach in BLCA. In the case of DNMT3A activating mutations, our algorithm 

acknowledged this pathogenetic mechanism and suggested use of the DNA 

methyltransferase inhibitor Decitabine. The potential importance of combinational therapies in 

personalized drug discovery became obvious during manual curation. In case of a PIK3CA 

mutation, our algorithm suggested CDK4/CDK6-inhibitor palbociclib. CDK4/CDK6 is affected 

downstream in the line of the PI3K (=PIK3CA) pathway, mediated by AKT and Cyclin-D. Due 

to according references with synergistic efficacy of a combined inhibition of PI3K and 

CDK4/CDK6 e.g. in breast cancer models, manual curation suggested PI3K-inhibition in 

combination with palbociclib in case of PIK3CA mutation.22  

Drug filtering and manual curation after the identification of drug-gene interactions using 

DGIdb.org uncovered several key findings. We have found that a majority of DGIs were 

dismissed due to both drug and gene related reasons. Drugs were dismissed due to an 

absence of evidence as cancer therapies; they were for example investigated in drug 

metabolism instead. Specialized databases for disease-drug-gene relations would address 

this problem. Filtering thresholds caused some DGIs to be dismissed due to low cohort 

prevalence to create a manageable size of a drug and gene panel. However, these dropped 

DGIs can be of future interest. Ongoing development and increasing the evidence base of 

expert curated databases such as CIViC will overcome cohort prevalence barriers. During 

manual curation a majority of non-curated DGIs had to be dismissed due to missing evidence 

supporting the provided DGI. For instance, mentioning of the drug or gene only in the list of 

references of a quoted article led to a non-curated DGI. Such DGIs were dismissed because 

evidence of a single agent gene-dependent drug efficacy was not given.  

Automation and introduction of artificial intelligence may solve the problem of vague DGIs. In 

2019 Kim et al. introduced the artificial intelligence based search engine for disease-gene-

chemical relationships DigChem, which is able to avoid aforementioned text-mining errors. 

However, their study emphasized that the overlap with other DGI databases (CTD 23, IBM 

Watson for Drug Discovery 24 and DrugBank 25) is complementary, rather than displaying 

directly comparable results.26 Moreover, in the process of DGI filtering we found a large 

disparity between provided DGIs and the ratio of expert curated DGIs. Therefore, we conclude 

that manual curation has still to be considered mandatory to achieve evidence-based DGIs.  

Although only in a minority of samples, we identified divergent drug response predictions due 

to the presence of multiple DGIs per sample and due non-matching genome- and 
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transcriptome-based predictions. A majority of divergences resulted from drugs with multiple-

gene dependent response predictions within a given sample. In these cases model and clinical 

testing will facilitate judgment about the dominant DGI. Importantly, at the time of investigation 

a majority of samples were free of divergences in drug response prediction. 

Both curations, manual and expert based, identified more sensitivities than resistances in 

DGIs. Although validation is missing so far, we credit this fact to a known reporting bias for 

positive study results eg. sensitivities.28 For the creation of comprehensive DGI databases a 

more liberal reporting of resistances will be essential. Siu et al. have addressed the need for 

liberal and barrier-free reporting of DGIs in creating a scheme for responsible sharing of 

cancer genome data for utilization in comprehensive analysis.29 Therefore, testing and 

reporting of drug resistance in DGIs as comprehensive as existing reporting of drug 

sensitivities, will be of paramount importance.  

Biologically, advanced tumor stages are characterized by the consequences of multiple prior 

therapies in the form of progressed intratumor heterogeneity. Taking tumor evolution theories 

into account a plethora of potential therapy evasion mechanisms might have developed by 

that time and create limitations to personalized therapy so far.30 However, our algorithm can 

be adapted for testing in patient derived tumor models and thereby offers a tool to facilitate 

testing in multiple tumor stages and of multiple locations (eg. metastases). The remarkable 

findings of Biswas et al. (Nature Medicine, 2019), demonstrated mutational similarities 

between different evolutionary tumor branches. These findings might open the door to 

solutions how to address intratumor heterogeneity with targeted therapies.31 In our opinion, 

developing a dynamic understanding of oncogenesis and its underlying processes of therapy 

evasion development is compelling. It will allow for multi-time and multi-location evaluation of 

tumors and lead to accordingly individualized therapies.  

We acknowledge that our approach is still hypothesis-generating and further validation is 

needed. Eventually, clinical trials will need to prove the superiority of in-silico drug response 

predictions. In 2019 preliminary data from the BISCAY trial compared the efficacy of the PD-

L1 checkpoint inhibitor durvalumab in combination with targeted therapies in selected 

urothelial cancer patients. Despite achieving a superior overall response rate with the 

combination of durvalumab and the PARP inhibitor olaparib in case of an DNA-damage-repair 

gene alteration, compared to durvalumab monotherapy none of the study arms could reach 

the threshold for a positive study result.32 In 2017 Kiss et al. demonstrated that genomic 

variations and their impact as predictive markers for therapy response, have to be carefully 

interpreted with consideration of transcriptional and gene-regulatory factors as well as of co-

existing mutations.33 These findings highlight the importance of biomarker-driven trials. 

Basket-trials such as the My Pathways study (NCT02091141) or the NCI-MATCH study 

(NCT02465060) offer access to individualized treatment with a diversity of targeted agents. 
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Our algorithm represents a sophisticated tool that can be implemented in clinical trials and lay 

the foundation to precise cancer therapy based on a comprehensive understanding of 

molecular oncogenesis. 

In conclusion, our algorithm for in-silico drug response prediction in bladder cancer identified 

drugs with proven antitumor activity but importantly also new potentially druggable targets and 

novel drugs, which have not yet been tested in bladder cancer. Moreover, our drug prediction 

provided information for 94,7% of BLCA samples, highlighting its applicability to the majority 

of bladder cancer patients. Integration of genomic and transcriptomic data acknowledged 

different regulatory processes in oncogenesis and increased the granularity of our predictions. 

Importantly, our algorithm yielded an efficient and affordable gene panel for drug response 

prediction based on a comprehensive approach. Integration of proven and disproven drug-

gene interactions into open source databases will be of utmost importance to improve drug 

predictions. Prospectively, our workflow will include these growing databases and 

consequently predict promising drugs contemporaneously. Ultimately, these in-silico drug 

response predictions require further testing in patient derived models and clinical trials prior to 

implementation as personalized approaches in clinical practice. 

 

Methods 

The Cancer Genome Atlas bladder cancer cohort 

We analyzed the genomic landscape of the 412 bladder cancer patients of the TCGA-BLCA 

cohort 14. Based on the whole exome information, variants in the tumor genome have been 

identified and linked to their potentially targeting drugs. We prioritized variants and drugs 

according to their clinical relevance and prevalence in bladder cancer patients. The workflow 

is depicted in Figure 1 and detailed in the following. The 412 patients in the TCGA-BLCA 

cohort present a well-mixed population, e.g. in regard to gender, BLCA subtype, and tumor 

stage, which will likely reduce the effect of clinical features on the drug prediction results. 

For each patient in the TCGA-BLCA cohort, the whole exome sequencing based bam files for 

normal as well as tumor samples have been downloaded from the GDC data portal.34 Bam 

files had already been generated with the GDC data harmonization workflow.35 For patients 

with multiple tumor and/or normal samples, we selected the sample with the latter plate 

number according to the GDC guidelines 36, and preferred fresh frozen over FFPE samples. 

Further, to ensure a sample selection as homogeneous as possible, we selected the blood 

derived normal whenever possible, as this was the normal control available for the majority of 

patients. 
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Variant Calling from the TCGA cohort 

To investigate the genomic landscape of the 412 bladder cancer patients, we performed 

somatic variant calling for the identification of single nucleotide variants (SNVs), as well as 

copy number calling to identify copy number variants (CNVs). The pipeline for whole exome 

sequencing analysis from the retrieved bam files to unannotated variant calls is based on the 

framework described in J. Singer et al. 2018 37, employing the Snakemake workflow 

environment 38 

SNVs: In brief, variants were called based on the GATK best practices workflow 39, with 

somatic variant calling on the matched tumor and normal samples. To achieve high quality 

calls and reduce the number of false positives, we applied three different variant callers and 

only considered variants that were identified by at least two callers. The utilized variant callers 

were MuTect 40, Strelka 41, and VarScan2 42, where the latter two not only perform single 

nucleotide variant calling, but also identify small insertions and deletions in the sample. 

Variants were annotated using SNPeff 43 and SNPsift 44 and enriched with information on their 

presence in ClinVar 45, COSMIC 46, and dbSNP 47, as well as their overall mutation impact 

(e.g. missense variant or synonymous variant). We also performed a functional annotation to 

assess the potential of each variant to be damaging for the protein function. 

CNVs: We used the CNV caller Facets 48 to call copy number variants on the matched tumor 

and normal samples for each patient. All CNVs were annotated to identify the affected genes. 

 

In-silico drug prediction and selection 

Similarly as described in Singer et al. 20, we queried DGIdb 7,49,50 to identify the drug-gene 

interactions reported in a collection of 30 databases, of which several are expert-curated (e.g. 

MyCancerGenome51). The more databases support an interaction, the higher the scoring of 

the drug. Finally, based on drug-gene interactions identified in DGIdb we collected associated 

clinical trials at ClinicalTrials.gov. Here we distinguished between clinical trials in BLCA and 

those also including solid tumors (cancer type, “ct”), non-cancer type specific (“nct”) trials, and 

trials not related to cancer in general (“other”). Trials in the “nct” category focus on patients 

with other cancer types, thus for bladder cancer patients their corresponding drugs would 

potentially be regarded as off-label therapy. 

Integrating clinical trial information provides a first prioritization of the drug-gene interactions 

(DGIs) resulting from the DGIdb query. The initial set of possible drugs was filtered to only 

contain drugs that have previously been tested in cancer-related clinical trials (categories “ct” 
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and “nct”). Further, we prioritized drugs according to their frequency in the cohort, to obtain a 

set of drugs that is likely to contain at least one possible match for each BLCA patient.  

 

Variant prioritization and selection 

The set of identified variants (both SNVs and CNVs) was filtered to prioritize variants that are 

likely to be of clinical relevance, i.e. that i) are likely to have an impact on the protein function 

and ii) that are associated with genes with DGIs listed in DGIdb. An overview of the filtering 

process is illustrated in Figure 1. SNVs were filtered to only include those that have a high 

impact (higher than 20, based on the SNPeff impact list) and that are predicted to be 

damaging. The CNVs were filtered to only include those with deep deletions (Copy number = 

0) or high amplifications (Copy number > 4). 

Further, we only included variants that affect genes with a reported drug-gene interaction 

(based on the DGIdb query). Furthermore, we prioritized variants that occur more frequently 

across the TCGA-BLCA cohort, to obtain a final selection that is not only likely to be of clinical 

relevance, but also likely to have at least one targetable variant present in BLCA patients. 

The minimum set cover analysis was performed to identify the fraction of the cohort that was 

covered by the selected set of priority genes (and drugs). It was based on in-house scripts 

and performed a greedy selection of the best possible set. 

 

Integration of CIVIC 

The information provided by DGIdb is very comprehensive and thus a valuable resource to 

provide a basic set of DGIs as a starting point. However, it has several limitations that impede 

its direct use for clinically relevant in-silico drug prediction. First of all, it is undirected and only 

lists DGIs without indicating the nature of the DGI, i.e. whether a mutation in the respective 

gene confers sensitivity or resistance. Second, it only reports interactions between genes and 

drugs and does not consider the individual variants present in a patient’s tumor. And finally, it 

contains not only expert-curated databases such as MyCancerGenome.org, but also 

comprehensive compound collections. As a consequence, we enriched the DGIdb based 

information with variant specific expert curated information from the CIViC database.8 Here, 

individual aberrations that affect a specific gene are evaluated for their potential to confer 

sensitivity or resistance to a drug, and each evaluation (called evidence item) is rated with an 

evidence level to show the quality of the underlying information. For instance, preclinical 

studies are rated lower than information gained from multi-center clinical trials. Our CIViC 

based assessment of each DGI is accordingly applied on the variant level, such that in case 
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different TCGA samples showed different variants of the same gene, a DGI can have divergent 

readouts, i.e. sensitivity or resistance. Note that it is possible that a variant-drug interaction 

type is not clearly identifiable from the information currently available in CIViC, e.g. in some 

studies a variant seemed to confer sensitivity while in other studies this was not a significant 

finding. In these “CONFLICT” cases we employ a majority vote that counts how many 

evidence items support sensitivity and resistance, respectively, and take the interaction type 

supported by the majority of evidence items. Note that before the majority vote is applied, we 

prioritize the evidence items according to their relevance, e.g. evidence items on bladder 

cancer would be prioritized over those with information from other cancer types. Further, CIViC 

contains evidence items that are not explicitly in favor of either sensitivity or resistance. 

Accordingly, the corresponding DGI is labeled as “UNKNOWN” to indicate that the DGI was 

found in CIViC, but that the available information is not sufficient to clearly predict response 

or resistance. 

 

Manual curation of drug-gene interaction 

References of DGIs obtained from the DGIdb query with no annotation in the curated CIViC 

database were selected for manual curation. Clinical studies as well as experimental studies 

were included. First, categories for response were separated into “SENSITIVITY”, 

“RESISTANCE” and “UNKNOWN”. The category “UNKNOWN” thereby summarized all 

references with missing evidence of single agent activity, effectiveness or missing reference 

to the drug or gene itself. An annotation category was added to document restrictions such 

as: quality of data, conflicting evidence, variant dependent response, co-variant dependent 

response, gene expression dependent response, reasonable combinational therapy to avoid 

therapy evasion and clinically relevant information about the drug. Second, the full text articles 

referenced by DGIdb were screened for the gene and the active substance. If the active 

substance name was not found, generic names, brand names and accession numbers were 

searched for. 

If gene and drug were found, data was screened to support single agent activity of the drug in 

clear reference to an explicit mutation and/or wild type. In clinical studies response 

“SENSITIVITY” was defined as improvement of response rate, progression of free survival or 

overall survival under administration of the drug, in case of mutated gene compared to wild 

type. Response “RESISTANCE” was here defined as decreased response rate, inferior 

progression free survival or overall survival under administration of the drug, in case of a 

mutated gene compared to wild type. In experimental studies, response “SENSITIVITY” was 

defined as deteriorated growth or decreased survival of the tumor model under administration 
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of the drug, in case of mutated gene compared to wild type. Response “RESISTANCE” was 

defined as accelerated growth or increased survival of the tumor model under administration 

of the drug, in case of mutated gene compared to wild type. Response “UNKNOWN” was 

defined as no significant difference of clinical outcome or tumor model reaction when 

comparing mutant to wild type. References with missing evidence of single agent activity, 

effectiveness of the administered drug or missing reference to the drug or gene itself, were 

classified as response “UNKNOWN” as well. 

 

Integration of DRS 

We used the CellMiner tool to mine for drug response correlating to expression data of the 

NCI-60 cell lines.52 As previously published, corresponding genes were used to generate 

patient specific drug response scores (DRS) using correlation coefficients as weighting 

factors.53 Thereby, DRS represent a statement on a potential drug response based on the 

level of expression of a certain gene product. Hence, a positive DRS is a prediction of a drug 

sensitivity, as the underlying investigations correlated tumor model response to a certain 

level of gene product expression. However, a negative DRS does not predict a therapy 

resistance, but a non-response to the drug. A therapy “RESISTANCE” is defined in Methods 
- Manual curation of drug-gene interaction. An overview of the DRS predictions for the 

TCGA samples is shown in Fig. 5. 
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Data availability 

The data that support the findings of this study are available from the corresponding author 

upon request. 
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