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Abstract  

Background. Despite improvements in antiretroviral therapy, human immunodeficiency virus type 1 (HIV-

1)-associated neurocognitive disorders (HAND) remain prevalent in subjects undergoing therapy. HAND 

significantly affects individuals’ quality of life, as well as adherence to therapy, and, despite the increasing 

understanding of neuropathogenesis, no definitive diagnostic or prognostic marker has been identified. 

Results. We investigated transcriptomic profiles in frontal cortex tissues of Simian immunodeficiency 

virus (SIV)-infected Rhesus macaques sacrificed at different stages of infection. Gene expression was 

compared among SIV-infected animals (n=11), with or without CD8+ lymphocyte depletion, based on 

detectable (n=6) or non-detectable (n=5) presence of the virus in frontal cortex tissues. Significant 

enrichment in activation of monocyte and macrophage cellular pathways was found in animals with 

detectable brain infection, independently from CD8+ lymphocyte depletion. In addition, transcripts of four 
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poly (ADP-ribose) polymerases (PARPs) were up-regulated in the frontal cortex, which was confirmed by 

real-time polymerase chain reaction. 

Conclusions. Our results shed light on involvement of PARPs in SIV infection of the brain and their role 

in SIV-associated neurodegenerative processes. Inhibition of PARPs may provide an effective novel 

therapeutic target for HIV-related neuropathology. 
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Background 

The advent of combination antiretroviral therapy (cART) resulted in a 50% decline in rates of AIDS-related 

deaths, and a 40–50% decrease in the incidence of human immunodeficiency virus (HIV)-associated 

dementia (HAD) [1]. Yet an estimated 50% of infected patients exhibit HIV-1 central nervous system (CNS) 

infection [2], with approximately 30% of in people living with HIV (PLWH) progressing to some form of HIV-

associated neurocognitive disorder (HAND) [3]. Even in HIV-infected individuals on combined anti-retroviral 

therapy (cART), low-level viral replication persists in the central nervous system (CNS) [4]. Residual viremia 

as a result of incompletely suppressive cART [5, 6] is associated with low-level immune activation driving 

chronic inflammation [7, 8]. It has been shown that both HIV and Simian immunodeficiency virus (SIV) can 

enter the CNS during early stages of infection [9, 10], and there is compelling evidence that the brain is a 

putative reservoir for HIV [11, 12]. Persistent CNS infection and inflammation may contribute to the 

development of HAND [13], which remains a major cause of morbidity among HIV-infected individuals. As 

HAND-related cognitive decline is exacerbated by age-associated neurodegeneration, the prevalence of 

HAND is only expected to escalate with cART-increased life expectancy [14]. Moreover, if therapy is 

interrupted, viral rebound is going to occur [15-17], and because HIV is able to replicate in the CNS, brain 

specific viral variants are found at rebound after interruption of cART [18].  

While progress has been made in understanding the pathophysiology of HAND and neurological 

complications of HIV acquired immunodeficiency syndrome (neuroAIDS) under conditions of high viral 

load, the host’s inflammatory responses to low-level chronic systemic infection and how this exacerbates 

neuronal injury and dysfunction in the brain are incompletely understood. Infection of Rhesus macaques 

(Mucaca mulatta) with simian immunodeficiency virus (SIV) in the absence of therapy offers a well-

established animal model for the study of the relationship of HIV infection and neuropathogenesis [10, 19, 

20], while avoiding the confounding factor of cART [21-23]. Approximately 30% of Rhesus macaques 

infected with the heterogeneous SIVmac251 viral swarm [24] develop within 2-3 years [25, 26] SIV-

associated encephalitis (SIVE), the pathological hallmark of neuroAIDS, which is diagnosed post mortem 

by the presence of virus and abnormal histopathology features, such as inflammation of brain tissues and 

formation of multinucleated giant cells. When animals are depleted of CD8+ lymphocytes using an anti-

CD8+ antibody before virus inoculation [27], the incidence is elevated to >85% in less than six months. 
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Thus, CD8+ lymphocyte depletion provides a useful, rapid disease model with increased incidence of 

brain infection and neuropathology [28, 29]. 

Myeloid cells accumulate in the meninges and choroid plexus during early infection, and in the 

perivascular space and SIVE lesions in infected macaques during late infection [30]. In particular, SIVE 

lesions are composed of CD68+ CD163+ macrophages during early infection, as well as SIV-infected 

macrophages recruited terminally during simian AIDS (SAIDS) [30, 31]. SIV-induced products of activated 

macrophages and astrocytes lead to CNS dysfunction and disease that might directly damage neurons 

[32]. These observations indicate that neuropathogenesis of HIV infection and pathogenesis of HAD and 

HAND may be linked [33]. It has also suggested that, given the neuroprotective properties of poly(ADP-

ribose) polymerases (PARPs) inhibitors [34], these inhibitors might be used as neuroprotective against 

NeuroAIDS as well [35]. PARPs regulate a vast variety of cellular processes [36], and in particular, 

PARP1 and PARP-2 participate in regulating DNA metabolism [37], including DNA repair activated by 

DNA strand breaks [38]. Previous studies demonstrated that PARP1 plays a role of in regulating HIV 

replication and integration [39, 40].  

Based on the hypothesis that PARPs appears to play an important role in HIV infection, we investigated 

the transcriptome of SIV-infected macaques with and without detectable virus in the brain to investigate 

whether PARPs expression is associated with SIV neuropathogenesis and biological processes 

translatable to HIV brain infection. We focused our analysis on characterizing the transcriptome profiles of 

the frontal cortex, as severity of cognitive impairment has been previously associated with the degree of 

frontal cortex neurodegeneration [41, 42]. In what follows, we report, for the first time, significant 

dysregulation of PARPs expression in SIV-infected brain tissues with detectable virus, associated with 

neurodegenerative processes. Our findings suggest that PARPs may represent new potential biomarkers, 

as well as therapeutic targets for HIV/SIV brain infection.  

 

Methods 

Animal cohorts and sample collection 

Frontal cortex tissue samples were collected from two cohorts of animals intravenously infected with 

SIVmac251 [24], which originally consisted of five CD8+ lymphocyte-depleted (D) and six non-CD8-
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depleted (N = naturally progressing to SAIDS) Rhesus macaques, as previously described (Table S1) 

[43]. Procedures on the CD8+ lymphocyte-depleted and naturally progressing cohort were conducted with 

the approval of New England Regional Primate Center at Harvard [19] and University Tulane University’s 

Institutional Animal Care and Use Committee [43], respectively. Animals were kept in the same facility 

under similar conditions to minimize batch effects. Additional information on the treatment and handling of 

macaques in this cohort can be found in the study of Strickland et al. [44]. Gross pathology of the 

naturally progressing animals can be found in Rife et al. [43], and of the CD8+ lymphocyte-depleted ones 

in Table S1.  All tissues collected during necropsy, following SAIDS onset and humane sacrifice, with the 

exception of animals N06, N07, D01, and D02, which were euthanized at 21 days post-infection (DPI) [43] 

(Table S1), were snap frozen in optimal cutting temperature medium and stored at -80° C. A single 50-

100 mg section of frontal cortex tissue was used for RNA isolation. Viral DNA was extracted from frontal 

cortex tissues and detected by single genome sequencing (SGS) of the SIV envelope gene sequence as 

previously described [10, 43].  

 

RNA isolation and Next Generation Sequencing (RNA-Seq) 

Total RNA was extracted with Qiagen RNeasy Lipid Tissue Mini Kit (Cat No: 74804) according to 

manufacturer protocol. Quantity and quality of RNA, from post mortem frontal cortex tissue samples, was 

assessed using the Invitrogen Qubit 2.0 and Agilent Tapestation 2200, respectively. Frontal cortex RNA 

sequencing libraries were prepared with Illumina TruSeq Stranded mRNA HT kit and sequenced on the 

2x100 paired-end Illumina NextSeq platform at the University of Florida Interdisciplinary Center for 

Biotechnology Research. 

 

RNA-Seq data analysis 

Paired-end reads were trimmed using trimmomatic (v 0.36) [45], and quality control on the original and 

trimmed reads was performed using FastQC (v 0.11.4) [46]. Trimmed paired-end reads were mapped to 

the Macaca mulatta genome available at Ensembl 

(http://dec2015.archive.ensembl.org/Macaca_mulatta/Info/Index). Sequences were aligned with STAR 

(v2.6.1)  [47].  Reads were submitted to the Sequence Read Archive with the BioProject PRJNA624871. 
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We obtained an average of ~30.5 million reads for each sample, with an average of 55.9% of the reads 

mapped to the reference genome (Table S2), in line with typical percentage of transcriptome mapping 

[48] (Table S2). Gene expression was quantified using RSEM (v1.2.31) [49]. Differential expression 

analysis was performed using DESeq2 [50], using a fold-change threshold of 0.05 and a significance level 

P < 0.01. Gene Ontology, Disease Association Enrichment and Pathway Analysis of DEGs were 

determined using the Ingenuity Pathway Analysis (IPA) software (Quiagen) after importing the list of 152 

up-regulated (cut off of (log2 (Log2) Fold-Change (FC)) of 1) and five down-regulated DEGs (cut off of 

Log2(FC)-1), and P-value <= 0.05. The -log(p-value) of the pathway indicated the significance of overlap 

of the genes observed and the ones in the pathway and is calculated using the Fisher's Exact Test [51]. 

Prediction of activation or de-activation of a certain pathway is based on the z-score, using a z-score 

threshold of 1.3. Calculation of the z-score of a pathway, which assess the match of observed and 

predicted up/downregulation patterns, is based on comparison between the direction of the genes 

observed compared to direction of those same genes in the active state of the pathway [52].  

 

Quantitative PCR (qPCR) 

cDNA from frontal cortex was generated with Invitrogen Superscript IV and random hexamers according 

to manufacturer’s protocols, using aliquots from RNA isolated for RNA sequencing. Comparative qPCR 

was conducted in triplicate for each sample using Applied Biosystems TaqMan Universal PCR Master Mix 

(ThermoFisher Catalog number: 4304437) and probes (0.25 µM) for PARP9, PARP12, PARP14, and 

Glyceraldehyde 3-phosphate dehydrogenase (GAPDH). Comparative qPCR was conducted with a 10-

minute hold at 95°C, followed by 45 cycles of 95°C for 15 seconds and 60°C for 1 minute on the Applied 

Biosystems 7500 Fast Real-Time PCR System. Each sample’s mean CT value for each qPCR reaction 

was normalized by subtracting the sample’s mean CT for GAPDH to generate ΔCT. A standard deviation 

for the qPCR reaction was normalized with the standard deviation of GAPDH: SADJUSTED = (SPROBE2 + 

SGAPDH2)1/2. ΔΔCT was calculated for each sample by subtracting its ΔCT value from the mean ΔCT value 

of the samples without detectable virus in the brain. The fold difference in reference to the group of 

macaques without detectable virus in the brain was calculated with 2 -ΔΔCT and error bars were calculated 
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with 2 -ΔΔCT ± SADJUSTED. Statistical significance was tested using a Welch's t-test, the hypothesis that two 

populations have equal means [53]. 

 

Results 

 

Transcriptomic profiles are independent of CD8+ lymphocytes depletion 

SGS of SIV env gp120 detected viral sequences in frontal cortex tissue of eight out of eleven animals: all 

five of the CD8+ lymphocyte-depleted and three of the non-depleted ones (Table S1). However, while the 

number of positive PCRs at end point dilution varied between seven and 24 in most animals, only one in 

animal D08 and two in N09 were detected, suggesting low level of brain infection, as previously shown 

[43]. Macaques with seven or more SIV sequences in the frontal cortex were all diagnosed with SIVE or 

meningitis at necropsy, with the exception of N02 (Table S1), which also displayed absence a viral 

compartmentalization in the brain [43]. 

For all animals, RNA-Seq of frontal cortex samples resulted in high coverage (Table S2). Comparison of 

gene expression profiles between CD8+ lymphocyte-depleted and non-depleted macaques showed only 

one significant difference – the nerve growth factor (NGF) gene, which resulted under-expressed in 

depleted animals with a fold change of Log2(FC)=3.3 – indicating that animals could be grouped, for 

further comparisons, independently of depletion status. Analysis of transcripts normalized expression 

among macaques corroborated that depleted and non-depleted animals were inter-mixed (Figure 1). 

However, the analysis also revealed that macaques with < 3 sequences were clustering with macaques 

with no detectable sequences in the brain. Therefore, in order to minimize gene expression noise within 

the data due to inter-animal variability, macaques’ gene expression profiles were separated on the basis 

of a cut-off of n>3 SIV sequences detected by SGS in the brain (Figure 1). Based on this cut-off, two non-

overlapping groups could be defined: macaques with detectable (DV) or low/undetectable (NDV) SIV in 

the brain (Figure 1). 

 

Elevated antiviral gene response in macaques with detectable virus in the brain 
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Differential expression analysis between DV and DNV macaque groups identified 102 up-regulated, and 

two down-regulated, differentially expressed genes (DEGs) in macaques with detectable virus in the brain 

(Table S3). One of the two down-regulated DEGs (Table S3), NPAS4 (Log2(FC)-1.2) is a synaptic 

plasticity-promoting gene [54] crucial for synaptic connections in excitatory and inhibitory neurons and 

neural circuit plasticity [55]. Among the 102 up-regulated DEGs (Table S3), EPSTI1 (Log2(FC)2.8) plays 

a role in ensuring M1 versus M2 macrophage differentiation [56]; SLFN13 (Log2(FC)2.3) restricts HIV 

replication [57]; MAMU-A (Log2(FC)1.9) and MAMU-A3 (Log2(FC)1.7), comprising the major 

histocompatibility complex class IA in Rhesus monkeys, are linked to disease progression during SIV 

infection [58] (Table S3). Evidence of antiviral response is shown by up-regulation of components of 

interferon response, such the type I interferon (IFN)-stimulated genes (ISGs) ISG15 (Log2(FC)4.2) [59] 

and ISG20 (Log2(FC)4.7) [60], as well as of DDX60 (Log2(FC)3.9), a promotor of RIG1-like receptor-

mediated signaling [61] (Table S3). Proteasome activity, influenced by PSMB8 (Log2(FC)3.3) and 

PSMB9 (Log2(FC)3.0), is crucial for regulation of neurotransmission through protein turnover in neuronal 

synapses [62], as well as for long-term memory establishment in the CNS [63] (Table S3). PSMB8 and 

PSMB9 have been previously implicated in research studying SIVE-induced neuronal dysfunction [64] 

(Table S3). Lastly, NCF1 produces superoxide anions causing increased oxidative stress, which is linked 

to nervous system damage [65, 66], and activation of STAT1 (Log2(FC)1.9) provides further evidence of 

response to oxidative stress [67] (Table S3).  

 

Intensification of innate immune response in macaques with detectable virus in the brain 

Enrichment in activation of monocyte and macrophage cellular pathways (z-score = 2) was indicated by 

DEGs such as CD74 (Log2(FC)2.6), CD37 (Log2(FC)1.9), CSF1R (Log2(FC)1.2), and MNDA 

(Log2(FC)1.7) (Figure 2, Table S3). CSF1, in particular, has been associated with a positive feedback 

system wherein HIV infection increases CSF1 expression, followed by increased susceptibility of 

monocytes and macrophages to HIV replication upon exposure to CSF1 [68, 69]. Extending beyond the 

myeloid-mediated response, innate immunity pathways were identified as significantly differentiated: 

interferon signaling (z-score = 3.2), macrophage migration inhibitory factor (MIF)-regulation (z-score = 2) 

and Toll-like receptor (TLR) signaling pathways (z-score = 2) (Figure 2, Table S4, S5). In line to what 
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previously reported during acute SIV infection in the brain of rhesus macaques, we found that the 

interferon signaling pathway was predicated to be activated (z-score = 3.2) in absence of high expression 

of either IFNa or IFNg genes [70] (Figure 2, Table S3). Genes that were upregulated in this pathways 

were: IFI35 (Log2(FC)1.0), IFI6 (Log2(FC)2.0), IFIT1 (Log2(FC)2.8), IFIT3 (Log2(FC)3.3), IRF9 

(Log2(FC)1.8), ISG15 (Log2(FC)4.2), MX1 (Log2(FC)2.9), OAS1 (Log2(FC)2.5), PSMB8 (Log2(FC)3.3), 

STAT1, (Log2(FC)1.9) and STAT2 (Log2(FC)1.4) (Table S3, S4, S5). Our results reflect previous 

transcriptomic studies that showed that the frontal cortex of SIV-infected macaques at terminal stage of 

SIVE was characterized by upregulation of STAT1, protein induced by cortical neurons, and ISG15, 

protein product of infiltrating macrophages [32]. While MIF is a cytokine constitutively expressed by 

monocytes and macrophages in large amounts [71], it is an integral mediator of the innate immune 

system (TLR4), whereas TLRs initiate NF-κB and a number of other signaling pathways that broadly 

induce pro-inflammatory cytokines (Figure 2, Table S4). Dysregulation of reactive oxygen species 

processes was indicated with NCF1 (Log2(FC)3.3), encoding for a NADPH oxidase that produces 

superoxide anions, inflammation, and organ injury through interaction with toll-like receptors such as the 

DEG TLR4 (Log2(FC)1.5) [72]. Intensification of innate immune response was also indicated by several 

DEGs, such C1QB (Log2(FC)2.0), C1QC (Log2(FC)2.3), and C3 (Log2(FC)1.5), involved in activation of 

complement and coagulation cascades (z-score = 2) (Figure 2, Table S3, Table S4). Such complement 

cascades work to enhance the phagocytosis, proteolysis, inflammation, and overall magnitude of immune 

action [73]. Complement system cascades have been linked to HIV-induced neurodegeneration in other 

research studies [74, 75] and to endothelial damage leading to reduced integrity of the blood brain barrier 

[76] (Figure 2, Table S4 and S5). In line with this observation, numerous genes within the 

neuroinflammation signaling pathway were over-expressed, leading to prediction that this pathway may 

be activated (z-score = 3.6) (Figure 2, Table S4 and S5), and consequent possibility that inflammation 

was occurring in the frontal cortex of the SIV-infected macaques with detectable virus in the brain. The fcy 

receptor-mediated phagocytosis in macrophages and monocytes pathway (z-score = 2) was also 

predicted to be activated (Figure 2, Table S4 and S5). Fc-mediated phagocytosis has been suggested as 

a successful mechanism for rapid control and clearance of HIV, as well as for reservoir eradication [77]. 
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Upregulation of PARPs in macaques with detectable virus in the brain 

Transcripts of four PARPs were up-regulated in the SIV-infected frontal cortex: PARP9 (Log2(FC)1.8), 

PARP10 (Log2(FC)1.9), PARP12 (Log2(FC)1.9), and PARP14 (Log2(FC)2.7) (Figure 3a, Table S3, Table 

S6). Over expression of these PARPs was also corroborated by quantitative PCR (Figure 3b). Expression 

of PARP1, a member of the PARPs family that has been the focus of HIV research due to their role in 

viral integration, replication, and transcription [39, 40, 78-82], as well the other PARPs, was not 

significantly over or under regulated (Table S6), as also confirmed by qPCR of mRNA transcripts (Figure 

3b). PARPs are known to be activated by DNA strand breaks [83, 84], such ones occurring in HIV 

integration, as well as by interferon response [85]. While there are mixed reports as to whether [40, 81] or 

not such genes are necessary for HIV integration [86, 87], their function as a transcriptional repressor of 

HIV and inhibitor of cellular translation is known [82, 85]. Upregulation of PARP9, PARP10, PARP12 and 

PARP14 and TNFSF10 predicts the activation of the death receptor signaling pathway (z-score = 2.2), 

which is associated with programmed cell death (Figure 2, Table S4 and S5). Activation of pathways 

associated with interferon and death receptor signaling are likely to be associated with neuronal 

apoptosis, similarly to what reported for infection of neurotropic West Nile virus in the brain [88]. 

 

Discussion 

The CNS has gained importance as a potential reservoir during persistent HIV infections and the renewed 

focus of intense efforts on eradication strategies [89-91]. We have presented evidence of activation of two 

pathways that implicate a significant myeloid response to SIV infection in the brain of a well-established 

model of HIV disease progression, even in macaques euthanatized early. The result agrees with HIV and 

SIV entry in the CNS during early infection [9, 10]. Presence of virus in frontal cortex was linked to 

upregulation of gene expression, as well as neuropathology with the exception of animal N09 [43]. It is 

interesting to note, however, that virus compartmentalization (distinct neurotropic subpopulation) in the 

brain, which has been linked to neuropathogenesis  [10, 19, 20], was also absent in this animal [43]. 

Therefore, while virus induced dysregulation of gene expression seems to play an important role, the 

emergence of an SIV neurotropic sub-population may be a necessary condition for the onset of 

neuroAIDS, at least in the macaque model. 
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Akin to previous studies [70], our findings indicate that frontal cortex of macaques with detectable SIV in 

the brain have significant upregulation of several genes. In particular, our results support that SIV in the 

frontal cortex alters transcriptional pathways associated with innate immune response, 

neuroinflammation, oxidative stress, and cellular death, interferon/STAT1 pathway, and 

monocyte/macrophage migration in line with previous studies [32, 92-95]. Over expression of a high 

number of genes may be due to inflammation and activation of several transcription factors, signaling 

molecules, and interferon-associated genes, and by presence of virus in the brain. As also shown 

previously in macaques with acute SIV infection [70], increased interferon, innate immunity pathways, and 

other antiviral responses mediated by macrophages indicated general signs of infection in the brain. For 

the first time and differently to what previously reported [70], however, we found over expression of 

PARPs, which regulate different aspects of cell metabolism [36] during SIV infection. PARP9 and 

PARP14 cross-regulate macrophage activation [96], while PARP10 and PARP12 are interferon induced 

genes [85], and have shown antiviral activities such decreasing replication of avian influenza virus [97] 

and Zika virus [98], respectively. Overall, PARPs’ activity relationship with host and virus is quite complex, 

and both pro and antiviral responses have been reported [99]. PARP1-mediated cascade of progression 

to neurodegeneration and neuroinflammation has been shown in Parkinson’s and Alzheimer’s disease 

[100]. Yet,  PARP1 resulted neither over or under expressed in animals with SIV infection in the frontal 

cortex, suggesting that its contribution to neuroAIDS may not be significant, despite its known role in HIV 

suppression by regulating HIV infection and integration [39, 40]. On the other hand, four of the 18 PARP 

genes – PARP9, PARP10, PARP12, PARP14 – were clearly upregulated, suggesting that inflammation 

may be a byproduct of PARPs activity. Excessive activation of PARPs may cause cell death [101], 

followed by release of cellular components into the CNS, amplification of the immune response, and 

eventually neurodegeneration. 

In summary, we found evidence that PARPs dysregulation could provide new, key indicators of SIV brain 

infection and neuropathogenesis. Moreover, since PARP inhibitors  have shown promising 

neuroprotective properties [35], similar inhibitors may be employed against HIV-related toxicity and 

inflammation in the brain. Additional statistical studies using a larger number of animals and in vitro 

experiments are needed to determine what is the role of each PARP, and which proteins within PARP-
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mediated pathways may offer promising candidates as HAND biomarkers or novel therapeutic targets. 

Nevertheless, our study provides novel insights that may inform drug screening and development efforts 

aimed at identifying specific antiviral therapies and a new class of potential therapeutic candidates for 

HAND.  

 

Conclusions.  

Our study indicates that PARPs are over-expressed during SIV infection of the brain. PARPs may role in 

SIV-associated neurodegenerative processes. Inhibition of PARPs may provide an effective novel 

therapeutic target for HIV-related neuropathology. 
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Figures legends 

 

Figure 1. Multi-Dimensional Scaling (MDS) plot for the normalized expression data. Distance based 

the matrix of FPKM values quantified using RSEM v1.2.31 for all transcripts in all samples of macaques 

with detectable virus in the brain (n>3 sequences) in red, and macaques with low/undetectable virus in 

the brain (n<3 sequences) in blue. The plot shows good separation of the gene expression between the 

two groups, and non-overlapping. 

 

Figure 2. Predicted significant activated or de-activated intracellular molecular pathways from frontal 

cortex with SIV infection. Active or non-active state of pathways were predicted using the IPA library of 

canonical pathways, and significance was based on z-score greater than 1.3. The figure shows the 

number of genes being differentially expressed per pathway. In orange or blue is indicated the activation 

score (z-score).  

 

Figure 3. Differential expression of PARPs in the frontal cortex of macaques with detectable virus 

in the brain. (a) FPKMs (Fragments Per Kilobase of transcript per Million mapped reads) of PARP1, 

PARP9, PARP12 and PARP14 transcripts in macaques with detectable virus in the brain (red) and in 

macaques without detectable virus (blue). (b) Quantitative PCR analysis of mRNAs levels of PARP1, 

PARP9, PARP12 and PARP14 expressed in frontal cortex for macaques with detectable virus as relative 

to the averaged mRNA expression of the PARPs found in macaques without detectable virus. Colors 

indicate different macaques, while symbols are indicating the same macaque as shown in panel a. 

Asterisks indicate p < 0.001. 
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