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In the present work, we performed a comprehensive intra-tissue and inter-

tissue network analysis of the human transcriptome. We generated an atlas

of communities in co-expression networks in each of 49 tissues and evalu-

ated their tissue specificity. UMAP embeddings of gene expression from the

identified communities (representing nearly 18% of all genes) recovered bi-

ologically meaningful tissue clusters, based on tissue organ membership or

known shared function. We developed an approach to quantify the conserva-

tion of global structure and estimate the sampling distribution of the distance

between tissue clusters via bootstrapped manifolds. We found not only pre-

served local structure among clearly related tissues (e.g., the 13 brain regions)

but also a strong correlation between the clustering of these related tissues rel-

ative to the remaining ones. Interestingly, brain tissues showed significantly

higher variability in community size than non-brain (p = 1.55 × 10−4). We
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identified communities that capture some of our current knowledge about bi-

ological processes, but most are likely to encode novel and previously inacces-

sible functional information. For example, we found a 17-member community

present across all of the brain regions, which shows significant enrichment

for the nonsense-mediated decay pathway (adjusted p = 1.01 × 10−37). We

also constructed multiplex architectures to gain insights into tissue-to-tissue

mechanisms for regulation of communities in the transcriptome, including

communities that are likely to play a functional role throughout the central

nervous system (CNS) and communities that may participate in the interac-

tion between the CNS and the enteric nervous system. Notably, new gene ex-

pression data can be embedded into our models to accelerate discoveries in

high-dimensional molecular datasets. Our study provides a rich resource of

co-expression networks, communities, multiplex architectures, and enriched

pathways in a broad collection of tissues, to catalyse research into inter-tissue

regulatory mechanisms and enable insights into their downstream phenotypic

consequences.

Introduction

The modern science of networks has contributed to notable advances in a range of disciplines,

facilitating complex representations of biological, social, and technological systems (1). A key

aspect of such systems is the existence of community structures, wherein groups of nodes are or-

ganised into dense internal connections with sparser connections between groups. Community

structure detection in genome-wide gene expression data may enable detection of regulatory

relationships between regulators (e.g., transcription factors or microRNAs) (2) and their targets

and capture novel tissue biology otherwise difficult to reach. Furthermore, it offers opportuni-
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ties for data-driven discovery and functional annotation of biological pathways (3).

We hypothesise that community structure is an important organising principle of the hu-

man transcriptome, with critical implications for biological discovery and clinical application.

Co-expression networks, in fact, encode functionally relevant relationships between genes, in-

cluding gene interactions and coordinated transcriptional regulation, and provide an approach

to elucidating the molecular basis of disease traits. Therefore, reconstructing communities of

genes in the transcriptome may uncover novel relationships between genes, facilitate insights

into regulatory processes, and improve the mapping of the human diseasome.

In this work, we develop a model of the human transcriptome as a multilayer network,

and we perform a comprehensive analysis of the communities obtained with this modelling in

order to further our understanding of its wiring diagram. A systematic analysis of the tissue

or cell-type specificity of the communities in the transcriptome may yield insights into gene

function in the genome and improve our ability to identify disease-associated genes. Indeed, an

important gap in our understanding of the role of gene expression in complex traits is how its

phenotypic consequence on disease or trait (4) is mediated by its membership in tissue-specific

biological modules as molecular substrates. Finally, inter-tissue analysis of the transcriptome

may identify novel regulatory mechanisms and enhance our understanding of trait variation and

pleiotropy (5).

Methods

GTEx Dataset. The GTEx V8 dataset (6–8) is a genomic resource consisting of 948 donors

and 17,382 RNA-Seq samples from 52 tissues and two cell lines. The resource provides a

catalog of genetic effects on the transcriptome and a broad survey of individual- and tissue-

specific gene expression. Of the 54 tissues and cell lines, 49 include samples with at least 70

subjects, forming the basis of the analysis of genetic regulatory effects (8). In this study, we
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leveraged the 49 tissues because of their sample size and our interest in co-expressed genes that

may in part arise from shared transcriptional regulatory programs (9).

Data Preprocessing. We restricted our analyses to protein-encoding genes based on the GEN-

CODE (10) annotation. Although the GTEx dataset had annotated genes with ENSEMBLE

IDs, we removed duplicates (using GENE IDs) and unmapped genes from downstream analy-

ses. After this preprocessing step, the resulting dataset is characterised by the following count

statistics:

• Unique genes across all tissues: 18,364

• Genes present in only 1 tissue: 412

• Genes present in all 49 tissues: 12,557

Accounting for Unmodelled Factors. In order to correct for batch effects and other unwanted

variation in the gene expression data, we used the sva R package, which is specifically targeted

for identifying surrogate variables in high-dimensional data sets (11). For each tissue gene

expression matrix, the number of components (latent factors) was estimated using a permutation

procedure, as described in (12).

Subsequently, using the function sva network, residuals were generated after regressing out

the surrogate variables. The residual values, rather than the original gene expression values,

were used in the downstream analyses. For convenience, we refer to the residual values as the

‘gene expression data’, since they represent the expression levels that have been corrected for

(unwanted) confounders.

Tissue-dependent Correlation and Adjacency Matrices. For each tissue, a correlation ma-

trix C = [zij] was created by calculating the Pearson correlation coefficient rij for every pair
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(i, j) of genes. Fisher z-transformation was then applied:

zij = 0.5× ln
(
1 + rij
1− rij

)
(1)

where ln is the natural logarithm function.

For each correlation matrix, we retained only the strongest correlations (i.e., transformed zij

less than −0.8 and greater than 0.8) to generate a co-expression network. An adjacency matrix

A = [Aij] was defined, for each tissue, such that Aij is equal to zij if gene i and gene j are

co-expressed (retained), and zero otherwise.

Community Detection. We sought to detect groups of genes in each tissue, with the aim of

finding communities whose internal connections are denser than the connections with the rest

of the co-expression network (13). We applied the Louvain community detection method (14)

in each tissue to generate a comprehensive atlas of communities. An asymmetric treatment for

the negative correlations was used, thus inducing negatively correlated genes to belong to dif-

ferent communities (15). The algorithm identifies communities by maximising the modularity

index (16), Q∗, as the algorithm progresses:

Q∗ =
1

v+

∑
ij

(
wij

+ − eij+
)
δMiMj

− 1

v+ + v−

∑
ij

(
wij
− − eij−

)
δMiMj

(2)

Here a positive connection between nodes i and j is denoted as wij
+ and has a value between

0 and 1; likewise, a negative connection is represented wij
− and can also have a value between

0 and 1. eij± is the chance-expected within-module connection weight and calculated, for each

positive/negative correspondent, as
s±i s±j
v±

, where s±i is the sum of positive or negative connection

weights of node i. v± is the sum of all positive or negative edges, and δMiMj
= 1 when nodes

i and j are in the same module or zero otherwise. In particular, the Louvain method iteratively

evaluates the gain in modularity if one node is moved from one formed community to another
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of its neighborhood. We leveraged the Brain Connectivity Toolbox Python package (available

on github: aestrivex/bctpy). The resolution parameter γ was set to its default value, 1.

UMAP Embeddings of Community-defined Gene Expression. To produce a lower dimen-

sional representation of the original dataset, we applied to it Uniform Manifold Approximation

and Projection (UMAP) (17), a manifold learning technique. Our goal was to generate a map

that reveals embedded structures and test whether biologically relevant clusters can be recov-

ered from the gene expression data. Towards this end, we analysed both the full master matrix

M of scaled gene expression (in the range [0, 1]), consisting of all genes (i.e., 18, 364), and a

submatrix consisting of only those genes that belong to a community in at least one tissue (i.e.,

3, 259). (Similarly to all of the results in the rest of the paper, we considered only Louvain

communities with at least 4 genes.)

We chose UMAP because of the substantial improvement in running time on our data (com-

pared to t-SNE, with its known computational and memory complexity that is quadratic in the

sample size (18)), and UMAP’s theoretical grounding in manifold theory (17). UMAP can also

capture non-linear effects in gene expression, and this was another reason why we chose it,

over more traditional dimensionality reduction techniques such as Principal Component Anal-

ysis (19). Additional implementation details can be found in Figure S1.

Persistence of the UMAP Global Structure. We quantified the conservation of, and vari-

ability in, the UMAP structure, including the relation among biologically meaningful clusters,

e.g., tissues. We characterised such a structure using the matrix [d(i, j)] of pairwise distances

for clusters i and j in {1, 2, . . . , L}. For the actual (original) gene expression data, we define

V(0) = [vij,0] as the resulting matrix of pairwise distances. Note V(0) is a symmetric matrix

with zeros along the diagonal. We sought to:
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• estimate the sampling distribution of d(i, j), and calculate its standard error and a confi-

dence interval

• correlate the matrix V(0) and the resulting matrix W from a perturbation of the original

structure

We approached the quantification problem through a (non-parametric) bootstrapping proce-

dure. From the master matrix M of gene expression, we generated a total of B bootstrapped

manifolds, each of equal size (here, each such sample was randomly drawn from 80% of the

data points, i.e., rows, in M). For the k-th sample, we constructed the matrix V(k) = [ ̂d(i, j)(k)]

of pairwise distances derived from the UMAP embeddings for tissues i and j. Here we used the

“induced metric” d : Rm × Rm → R from the embedding φ : Mg ↪→ Rm of the Riemannian

manifold Mg into Euclidean space, but our treatment here generalises to the intrinsic metric

g : Mg ×Mg → R, with g(φ−1(i), φ−1(j)), of the original manifold. The set { ̂d(i, j)(k)}Bk=1

allows us to calculate the mean and variance of the UMAP-derived estimator for d(i, j):

d(i, j) =
∑B

k=1
̂d(i, j)(k)
B

(3)

σ̂2
d(i,j) =

∑B
k=1

̂d(i, j)(k)
2

B − 1
−

(∑B
k=1

̂d(i, j)(k)
B − 1

)2

(4)

This approach provides a maximum likelihood estimate, i.e., σ̂d(i,j), of the standard error (20).

We used a heatmap to visualise d(i, j) for each tissue pair (i, j). An alternative could have been

to use a normalised “metric” (which is more robust to the scale from the embedding φ):

d*(i, j)(k) =
d(i, j)(k)

medians,t∈1,...,Ld(s, t)(k)
(5)

but we found this normalisation to be unnecessary in the GTEx data.

For two tissues i0 and i1, we define a “clustering conservation coefficient” to quantify the

preservation of the clustering of tissues i0 and i1 relative to all tissues {j}:

C(i0,i1) = corr(d(i0, j), d(i1, j)) (6)
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where corr is the correlation operator. In particular, this statistic allows us to formally test the

null hypothesis of no conservation of global structure for a given pair of tissues; under the null

hypothesis, √
L− 3

1.06
arctanh(C(i0,i1)) ∼ N(0, 1) (7)

This coefficient can be extended to a larger set of tissues, i0, . . . , il (e.g., the 13 brain regions),

using the first order statistic:

Ci0,...,il = min
s,t∈1,...,l

C(is,it) (8)

Furthermore, we calculated the relationship between the original V(0) and “perturbed” V(k) for

each sample k:

rk = corr(V(0),V(k)) (9)

and the resulting empirical distribution of the correlation values rk. We note that UMAP has a

stochastic element since it utilises stochastic approximate nearest neighbor search and stochastic

gradient descent for optimisation; however, the rk derived from a different run V(k) (rather than

from bootstrapping) quantifies the stability of the global structure in the presence of stochas-

ticity. Collectively, our approach provides a way to perform statistical inference on the UMAP

embedded structures.

Embedding new transcriptome data into UMAP learned space. To evaluate the relevance

of the trained model generated from the GTEx communities, we passed previously unseen data

Dtest to the model for embedding into the learned latent map (from the UMAP embedding of

GTEx training data, φ : Dtrain ⊂ Mg ↪→ Rm). We used The Cancer Genome Atlas (TCGA)

gene expression data in acute myeloid leukemia (21), breast cancer (22), and lung adenocarci-

noma (23) as test sets.
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Prediction Power of Communities for Tissues. We investigated the extent to which each

community’s gene expression profile is predictive of each of the tissues. The master matrix

M, representing the entire dataset under analysis, has 15, 201 rows representing each RNA-

Seq sample from each tissue collected from all subjects, and 18, 364 columns representing the

total number of genes available. If a value was non-existent (which may be due to the gene’s

expression being tissue-specific), we assumed a zero value, conveying no expression in that

tissue.

For each community, the expression values of the member genes were selected from M.

With this sliced table, 49 binary classifications were performed using Support Vector Machine

(SVM) (24), wherein for each classification, we predicted each tissue. Essentially, the sliced

table, which comprises the training data, for a k-member community can be viewed as a col-

lection of vectors {( ~x1, y1), . . . , ( ~xn, yn)}, where ~xi ∈ Rk is the gene expression profile of the

k genes for the i-th sample and yi ∈ {1, 0} indicates membership in the tissue to be predicted.

The goal of the classification is to separate the tissue to be predicted from the other tissues via

the largest margin hyperplane, which can be generically written as ~w · ~x + b = 0, where ~w is

normal to the hyperplane. SVM was used with a linear kernel and weights were adjusted to

be inversely proportional to class frequencies in the input data (this corresponds to setting the

class weight parameter in scikit-learn to “balanced”) (25). To avoid overfitting, each classifica-

tion was performed using a stratified 3-fold cross-validation procedure, in which the F1 score

metric

F1 =
2

(precision)−1 + (recall)−1
(10)

was used to report the prediction power across the three folds. We decided to use the F1 score

instead of other metrics, given that each binary classification was highly unbalanced, i.e., a given

tissue is the positive outcome and all the other 48 tissues are the negative outcome. (Louvain
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communities with less than 4 genes were filtered out from this analysis.)

Prediction of Tissues Given Reactome Pathways. For comparison, we investigated the ex-

tent to which biologically meaningful sets of genes encoding current biological knowledge are

predictive of tissues. For each Reactome (26) pathway, we selected the expression of member

genes from the master matrix M. If a gene from a Reactome pathway was not present, that

gene was ignored. Using the same stratified 3-fold cross validation procedure described in the

previous section, we performed 49 binary classifications.

Enrichment Analysis. To evaluate the degree to which a community corresponds to well-

known biological pathways, we performed enrichment analyses using the Reactome 2016 as

reference. We used the gseapy python package to make calls on the Enrichr web API (27),

and considered significant those pathways with a Benjamini-Hochberg-adjusted p-value below

0.05. (Louvain communities with less than 4 genes were considered “not enriched.”)

Multilayer Analysis. In order to investigate the tissue-shared profiles of gene communities, as

well as the relationships between gene expression traits across tissues, we proceeded to model

our system as a multilayer network (28). Formally, a multilayer network is defined as a pair

Λ = (G;D), where G := {G1, . . . , GL} is a set of graphs and D consists of a set of interlayer

connections existing between the graphs and connecting the different layers. Each graph l ∈ G

is a “network layer” with its own associated adjacency matrix Al. Thus, G can be specified

by the vector of adjacency matrices of the L layers: A := (A1, . . . , AL). Multilayer networks

allow us to represent complex relationships which would otherwise be impossible to describe

using single-layer graphs separately considered.

A special case of multilayer networks is a multiplex network, which we used to model the

GTEx transcriptome data. In this case, all layers are composed of the same set of nodes but may
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exhibit very different topologies. The degree of node i is the vector d[i] = (d
[i]
1 , . . . , d

[i]
L ), and

d
[i]
l may vary across the layers. Interlayer connections are established between corresponding

nodes across different layers. Layers represent different tissues, nodes represent genes, and

edges between two nodes are weighted according to the correlation weights. In the GTEx data,

the correlation matrices, previously described, define an adjacency matrix Al for each layer l

of the multiplex network. We applied community detection analysis to each layer separately

to identify communities of co-expressed genes in each tissue, using the Louvain community

detection method previously described.

Having identified communities of co-expressed genes for each tissue separately, we then

computed the so-called global multiplexity index (29) to investigate the relationships of com-

munities across different layers. This index quantifies how many times two nodes (genes) are

clustered in the same communities across different layers. If, for example, gene i and gene

j are clustered together in the layer of tissue T1 and of tissue T2, then the global multiplexity

index is two. In the matrix [gmi(i, j)] of global multiplexity indices for a multiplex architecture,

each element represents the number of times that two given genes, i and j, are clustered in the

same community. More formally, if L is the number of layers, g is the generic layer, and N the

number of nodes for each layer, then the global multiplexity index gmi(i, j) for gene i and gene

j, with i and j ∈ {0, . . . , N} is defined as follows:

gmi(i, j) =
L∑

g=1

δ(cgi , c
g
j ) (11)

where δ(cgi , c
g
j ) represents the Kroenecker delta function. The value of gmi(i, j) therefore in-

creases by 1 if the two nodes are found to be part of the same community in a layer. If two genes

share a high value of global multiplexity index, this may indicate a greater level of connectivity

and suggest greater functional similarity, as they appear multiple times in the same community

across different layers.
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We tested whether the UMAP embeddings of the transcriptome profiles of the communities

in a multiplex architecture – a subset of all communities previously interrogated – could also

recover biologically meaningful clusters. This analysis allowed us to estimate the topology of

the high-dimensional transcriptome data and test whether additional clusters could be uncovered

at increasingly finer scales.

Results

Spurious Co-expression and Confounding due to Unmodelled Factors. Disambiguating

true co-expression from artefacts is an important concern in the presence of hidden variables.

We therefore applied sva analysis to investigate unmodelled and unmeasured sources of ex-

pression heterogeneity. The number of factors or components identified by this analysis was

significantly correlated (r ≈ 0.95, p ≈ 5.4× 10−26) with the number of samples across tissues

(see Figure 1a). Notably, the greater number of such surrogate variables that we regressed out

for tissues with larger sample sizes recapitulates the approach used by the GTEx Consortium

(using a related adjustment method (30)) of using more inferred factors for tissues with larger

sample sizes (i.e., from 15 factors for tissue sample size N < 150 to 60 factors for N ≥ 350)

in order to optimise the number of eGenes from the eQTL analysis (8).

We then quantified the impact of confound correction (see Figure 1b) in co-expression anal-

ysis. The distribution of correlation (Pearson) values is closer to zero with less variance after

correction, suggesting that unmodelled factors may induce spurious (or artificially inflate) cor-

relations in gene expression. The effect of unmodelled factors is further illustrated in Figure 1,

Panels (b) and (c), where the distribution of correlation values for the covariate Age is shown for

whole blood. Before correction, those values are spread between around −0.4 and 0.4, whereas

after correction the corresponding values move towards the centre (zero) and become less dis-

persed. Notably, the variable Cohort (with possible values being Postmortem and Organ Donor
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in available tissues, except for some which also have Surgical values) seems to have undergone

the largest change in the correction process. This suggests that estimation of cohort effect on

gene expression can be substantially improved by accounting for unmodelled factors.

Atlas of Communities across Human Tissues. For each tissue, we identified communities

in the co-expression networks, using the Louvain algorithm (see Methods), to develop an atlas

across human tissues. On average, a tissue was found to have 108 communities (standard de-

viation [SD] = 31) (see Figure 2). We observed the highest number of communities (n = 251)

in “Kidney Cortex” and the lowest number (n = 73) in “Muscle Skeletal”. The nonsolid tis-

sues, consisting of “Cells EBV” and “Whole Blood”, have the highest number of genes (i.e., at

least 4,300 for each) that belong to a community. The size of a community varies considerably

within each tissue and its distribution differs across tissues. (See Table S1 and Figure S2 for the

distribution in all tissues.) Interestingly, the brain tissues (median SD = 9.9) show significantly

higher variability (Mann-Whitney U test p = 1.55 × 10−4) than non-brain tissues (median SD

= 5.18). Thus, tissues and tissue classes may differ in the overall topology of the communities

in co-expression networks, which likely contains a lot of tissue information.

We noticed that after removing the weaker correlations (−0.80 < zij < 0.80), most of the

subnetworks were already highly segregated from the rest of the entire network, indicating that

the Louvain communities could almost be completely formed by just this removal process. In

order to evaluate the segregation of such communities, we calculated the number of connec-

tions coming out of communities of each size. We found that for every tissue the mode was

zero, and the maximum number was never over 17. Given the thousands of genes in each tis-

sue’s co-expression network, the observed maximum number of connections between different

communities (i.e., at most 17) illustrates how strong the segregation is prior to the application

of the Louvain community analysis.
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Figure 1: Confounding due to unmodelled factors. a. Relationship between the number of in-
ferred factors and tissue sample size. Fitted line corresponds to a linear least-squares regression.
The two-sided p-value is based on the null hypothesis that the slope is zero, using the Wald Test
with t-distribution for the test statistic (31). b. The difference in the variance of the distribution
of Pearson correlation values for each tissue over all genes, before and after correction. Empty
cells correspond to tissues in which only one value of the confound is available. The “Cohort”
variable undergoes the most substantial change after the correction across all tissues. c. Distri-
bution of Pearson correlation between the expression of a gene in whole blood and age, before
and after correction. After the correction, the correlation values move towards zero and show
considerably less dispersion. d. The p-value distribution from Panel (a)’s values, in logarithmic
space. The enrichment for significant (low) p-values is greatly attenuated after the correction,
suggesting that unmeasured variables can induce spuriously significant correlations.
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Figure 2: Summary statistics on identified communities. a. Histogram shows the distribution
of community count in the various tissues (mean = 108, SD = 31). b. The scatter plot displays
the community count and mean community size for each tissue, showing a significant correla-
tion (Spearman ρ = 0.39, p = 0.006). The highest number of communities was observed in
“Kidney Cortex” (n = 251). c. Plot provides the number of genes that belong to a community
in each tissue. The nonsolid tissues, “Cells EBV” and “Whole Blood”, show the highest number
of genes with membership in a community.
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Figure 3: Lower-dimensional representation of the transcriptome data restricted to the
communities. UMAP generates embedded structures through a low-dimensional projection of
the submatrix consisting of only the genes (n = 3, 259) that belong to a community in at least
one tissue. This subset of genes (17.7% of total) contains sufficient information to recover the
tissue clusters. In addition, known relationships between tissues, based on organ membership
and, separately, on shared function, are reflected in the UMAP projection.

More information on these communities is available on github: notebook 09 community info.

UMAP of Community-defined Gene Expression Manifold Reveals Tissue Clusters. Nearly

18% of the genes belong to a community in at least one tissue. Notably, gene expression from

this subset was able to recover the tissue clusters (see Figure 3) as fully as the complete set of

genes analysed here (see Figure S1).

Drawing conclusions about relationships between clusters (tissues) from UMAP (and re-

lated approaches) must be done with caution due to some known caveats (32) (see next sec-

tion for more details). However, starting from known relationships between tissues, we found

that the subset of community-based genes yielded biologically consistent embeddings from

UMAP. Indeed, the clustering of related tissues (based on organ membership), such as the 13

brains regions, or the clustering of other related tissues (based on shared function), such as the

hypothalamus-pituitary complex (which controls the endocrine system (33)), could be observed
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for the genes that belong to communities. Taken together, these results show that gene expres-

sion from the identified communities encodes sufficient information to distinguish the various

tissues in a biologically meaningful low-dimensional representation. We note, however, that not

all sets of genes with correlated expression produce the distinct separation of tissues observed

for the set of genes that belong to the communities (see below).

In theory, additional clusters may be present at different scales, e.g., within a tissue. There-

fore, we performed UMAP analysis on the single-tissue “Whole Blood” to test for the presence

of additional clusters. Notably, no well-defined clustering was observed with respect to cohort

(Figure S3), BMI (Figure S4), and the other covariates, indicating that the sva analysis was

successful in removing potential confounders (see Figure 1b).

Persistence of the UMAP Embeddings. We developed an approach to quantify the conserva-

tion and variability of the UMAP global structure and estimate the sampling distribution of the

local structure, e.g., the distance d(i, j) for a given pair of tissues i and j (see Methods). Using

500 bootstrapped manifolds, we found, for example, that, on average, (a) the 13 brain regions,

(b) the colonic and esophageal tissues, and (c) various artery tissues tended to cluster closely

together (see Figure 4). Figure S5 shows the relationship between the average distance between

tissue clusters and the variance in the distance, showing a significant positive correlation (Spear-

man ρ ≈ 0.38, p < 2.2 × 10−16). The tissue pairs (“Brain Cerebellum”, “Brain Cerebellar”)

and (“Skin Not Sun Epsd”, “Skin Sun Epsd”) had the lowest average distance between clusters

among all tissue pairs; the first pair consists of known duplicates of a brain region in the GTEx

data (7) and is thus expected to cluster together. Among the tissue pairs with the highest aver-

age distance, “Adipose Subcutaneous” with each of the colonic tissues (“Colon Sigmoid” and

“Colon Transverse”, each with average distance greater than 17) had low variance comparable

to tissue pairs with some of the smallest average distance. Additional global patterns can be
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easily observed. For example, the relationships of related tissues (e.g., “Skin Sun Epsd” and

“Skin Not Sun Epsd” with C(i0,i1) ≈ 0.62, p = 3.4× 10−5) to the remaining tissues were found

to be strongly preserved, using our clustering conservation coefficient (see Methods).

Embedding of test set into learned latent space. Interestingly, embedding of each of the

TCGA datasets into the learned latent space from the communities showed clustering with the

testis tissue. This result recapitulates two known results: (a) the GTEx finding that the testis is

an outlier relative to the other GTEx tissues in transcriptome profile (6) and (b) the role of the

so-called cancer-testis (CT) genes (34), which function as driver genes in cancer (35,36), evoke

immune responses in cancer patients as immunogenic antigens across a range of cancers (37),

and contribute to various neoplastic phenotypes. The implementation is available on github:

notebook 12 tcga.

Prediction of Tissues by Communities. We then tested individual communities for their abil-

ity to predict a tissue. By definition, we consider that a set of genes can predict a tissue when the

average F1 score is above 0.80 (see Methods). Some broad patterns are noteworthy. Most of the

communities from “Whole Blood” do not have prediction power for the other tissues (Figure 5a)

partly due to the stringency of our F1 threshold, which is likely to produce false negatives. This

observation indicates that the member genes in each such community from the source tissue

(“Whole Blood”) cannot “separate” the test tissue (say, “Lung”) from the remaining tissues

possibly due to lack of tissue specificity of the gene expression profile of the community. (Here

we tested a linear classifier, and the so-called “kernel trick” (38) may work in the non-linearly

separable gene expression profiles, though perhaps at the expense of biological interpretability.)

However, a community of only five genes can predict the brain region nucleus accumbens (basal

ganglia). For these communities, the member genes, collectively, are “differentially expressed”

between the test brain region and the remaining tissues. Thus, although the genes are present in
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Figure 4: Conservation of UMAP Global Structure. Using bootstrapped manifolds (see
Methods), we estimated the persistence of the global structure and pairwise relationships across
tissue clusters. Here we show the upper-triangular matrix of the average pairwise distances
across the bootstrapped manifolds. We found consistent clustering of known related tissues,
including the 13 brain regions, the colonic and esophageal tissues, and various artery tissues.
Note, for example, the highly correlated relationship, i.e., high “clustering conservation coeffi-
cient” (C(i0,i1) ≈ 0.62, p = 3.4 × 10−5) (see Methods), of the two skin tissues to all the other
tissues.
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“Whole Blood” (as a community), the expression profile in the test brain region is substantially

different or tissue-specific. “Cells cultured fibroblasts” is the tissue which can be predicted by

the largest number of “Whole Blood” communities (three) and, consistently, the largest number

from the other tissues.

Relationship between Reactome Pathways and Tissues. Consistent with our observations

for the communities, most Reactome pathways are not sufficient to predict any tissue (avail-

able on github: output output 06 02), while many are tissue-specific (i.e., can predict only

one tissue). However, we identified Reactome pathways that can predict more than half of

the tissues: GPCR LIGAND BINDING, GPCR DOWNSTREAM SIGNALING, and SIGNAL-

ING BY GPCR predict 34, 33, and 32 tissues, respectively. This observation is perhaps ex-

pected: G-protein-coupled receptors (GPCRs) comprise a large family of cell surface receptors

that form the essential sites of communication between the internal and external environments

of cells, with a central and widespread role in human physiology (39). Their gene expression

profile in each of the predicted tissues differs from the remaining tissues, potentially reflecting

their broad but tissue-specific function.

Prediction of tissues by Reactome pathways varies substantially. The brain tissues “Brain

Caudate” (basal ganglia), “Brain Frontal Cortex”, “Brain Hippocampus”, and “Brain Nucleus”

accumbens (basal ganglia) are not predicted by any Reactome pathway, likely reflecting the

fact that our current understandings (as encoded in these pathways) have been hampered by

the relative inaccessibility of these tissues. In contrast, the tissues cells cultured fibroblasts

and whole blood are the tissues most highly predicted (269 and 330 Reactomes, respectively).

Some tissues are predicted by less than 5 Reactome pathways, including the tissues “Brain

Amygdala” (two), “Brain Anterior Cingulate” cortex (BA24) (one), “Brain Cortex” (two), and

“Brain Hypothalamus” (two). More information on the relationship between communities and
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enriched pathways is available on github: notebook 10 reactomes per tissue.

Enrichment of Communities for Known Biological Processes. We quantified the extent to

which the communities in the various tissues reflect current biological knowledge (as encoded

in the Reactome pathways). We identified 114 communities (8.28% of all the communities

with more than 3 member genes) enriched for some Reactome pathway (i.e., at an adjusted

p < 0.05 for level of enrichment), thus contributing in complex ways to multiple biomolecular

processes. “Whole Blood” was the only tissue without any community enriched for known

pathways, and the “Esophagus Mucosa” was the tissue with the most communities enriched for

known pathways, with a total of 5 communities. Since the entire set of communities could fully

recover all tissues as clusters in the UMAP embeddings, these results suggest that the remainder

of the communities are likely to capture previously inaccessible and novel tissue biology.

Notably, our analysis may uncover the role of these communities in human diseases. For ex-

ample, a community of 15 genes in the “Brain Hippocampus” showed a significant enrichment

for diseases associated with glycosaminoglycan metabolism (adjusted p-value = 0.026; see Fig-

ure 5). Interestingly, glycosaminoglycans, which are major extracellular matrix components

whose interactions with tissue effectors can alter tissue integrity, have been shown to play a role

in brain development (40, 41), modulating neurite outgrowth and participating in synaptogene-

sis. Alterations of glycosaminoglycan structures from Alzheimer’s disease hippocampus have

been implicated in impaired tissue homeostasis in the Alzheimers disease brain (42). They have

also been found to be altered in the hippocampus of patients with temporal lobe epilepsy (43).

Multiplex Analysis of the Transcriptome. We analysed five multiplex networks to model the

various tissue interactions, of clear biological interest, in the GTEx dataset. For each multiplex

architecture, only the specific component tissues were used to construct the multiplex network,

and consequently we calculated the global community index for each multiplex architecture,
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Figure 5: Communities in co-expression networks, their prediction power for tissues, and
enrichment for known biological processes. a. Prediction power of “Whole Blood” commu-
nities, in F1 scores thresholded over 0.8. Most communities in “Whole Blood” do not have
prediction power for the remaining tissues. There are notable exceptions, such as a six-member
community that can predict seven brain regions. b. Enrichment analysis was performed on all
communities to determine the extent to which each community would capture known biological
processes. For example, a 15-member hippocampal community (characterised here) was found
to be significantly enriched for Reactome pathways. P-value refers to raw p-value. Note the
x-axis shows the minus log-transformed p-value. Red line corresponds to the raw p < 0.05
threshold. Colour gradient reflects the adjusted p-value. All Reactome pathways shown are the
ones that meet adjusted p < 0.05. c. Heatmap displays the gene-gene correlation values for
the member genes of the community in panel (b). While the relationships of individual mem-
ber genes to the pathways are known, their organisation into a community structure within a
tissue-dependent co-expression network is a novel finding, suggesting coordinated function.
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using only the component tissues of the multiplex network.

• All Tissues: Each layer represents one of the 49 tissues analysed. This architecture allows

us to investigate gene communities that are shared across all tissues, with potentially

universal function.

• Brain Tissues: The 13 layers correspond to the various brain regions. This architecture

facilitates identification of communities that may play a functional role throughout the

central nervous system (CNS).

• Brain Tissues and Whole Blood: This multiplex model consists of the 14 layers corre-

sponding to these tissues. This architecture allows us to study brain-derived communities

for which the easily accessible whole blood can serve as a proxy tissue.

• Brain and Gastrointestinal Tissues: The 16 layers correspond to the brain tissues

and 3 gastrointestinal tissues. This architecture may provide insights into the gut-brain

axis (44), which has attracted recent attention in the literature, e.g., in the study of neu-

ropsychiatric processes (45, 46) and the interaction between the CNS and the enteric ner-

vous system in neurological disorders (47).

• Non-Brain Tissues: The 36 layers consist of all tissues outside the brain. This architec-

ture may stimulate investigations into developmental and pathophysiological processes

outside the CNS.

Multiplex analysis provides an inter-tissue framework for the analysis of high-dimensional

molecular traits such as gene expression. The global multiplexity matrix was obtained for

each of the five proposed architectures. We extracted from the global multiplexity matrices

the groups of genes with the maximal global multiplexity index in the five architectures, i.e.,

the groups of genes that share a value of 49, 13, 14, 16, and 36 respectively, equal to the number
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of layers in the respective architectures. Among these groups of genes with the highest global

multiplexity index, we obtained the sub-clusters for each architecture, identifying the groups of

genes that always appear in the same community across the various layers. Revealing the shared

community structure across the layers improves our understanding of the functional and disease

consequences of the clusters of genes. We then investigated the biological pathways (Reac-

tome) in which such subgroups were involved for each architecture. Our goal was to test the

communities for enrichment for known biological pathways and therefore quantify the degree

to which the communities capture current understanding of biological processes as encoded in

the knowledge base.

We illustrate this approach here. (The complete results for all 5 architectures can be found

on our github page in the jupyter notebook 11 multiplex enrichment.ipynb.) In Figure 6a, we

show an example of a multiplex network. In this case, the multiplex network is constructed

from data in two brain tissues: “Brain Hippocampus” and “Brain Putamen” (basal ganglia).

Each layer represents a tissue, and nodes are labelled as the genes to which they correspond.

In the structure, we can see the presence of two communities (in this case, randomly drawn

from the full set) formed by the groups of genes: {FGA, ORM1, FGB} and {MYH11, ACAT2,

MYL9}. Corresponding genes are connected through the layers as shown, through interlayer

connections. We note that, based on our analysis, these two communities are indeed part of

the “Brain Tissues” multiplex architecture, present in all 13 component layers (brain regions).

Notably, all three genes that belong to the first community have been previously implicated as

biomarker and therapeutic target candidates for intracerebral hemorrhage (48). This observa-

tion is interesting given our Reactome pathway analysis results; the community is enriched for

“Common Pathway of Fibrin Clot Formation” (adjusted p = 8.8 × 10−4) and “Formation of

Fibrin Clot (Clotting Cascade)” (adjusted p = 1.7 × 10−3), indicating the genes’ involvement

in coagulation. All three members of the second community are myelin-associated genes (49),
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with MYH11 expression in putamen (basal ganglia) showing nominal association with increased

risk of myocardial infarction (p = 6.5 × 10−3) from PrediXcan analysis (50) of a large-scale

meta-analysis (51). Myelination-related genes have been associated with decreased white mat-

ter integrity in schizophrenia (52). We found a 17-member community in the “Brain Tissues”

multiplex that is significantly enriched for the nonsense-mediated decay (NMD) pathway (ad-

justed p = 1.01 × 10−37), which is known to be a critical modulator of neural development

and function (53). The pathway accelerates the degradation of mRNAs with premature ter-

mination codons, limiting the expression of the truncated proteins with potentially deleterious

effects. The community’s presence in all brain regions underscores its crucial protective func-

tion throughout the central nervous system.

The multiplex analysis we performed can also be used to investigate the relationship be-

tween two distinct systems. Here we illustrate this using the CNS and the gastrointestinal sys-

tem, possibly reflecting a coordinated transcriptional regulatory mechanism between the CNS

and the enteric nervous system (ENS). The ENS is a large part of the autonomic nervous sys-

tem that can control gastrointestinal behaviour (47). We found a 14-member community in

the “Brain and Gastrointestinal Tissues” multiplex, whose presence in all 16 layers suggests a

strong interaction between the CNS and ENS. Consistent with this hypothesis, the community

was found to be significantly enriched for the “metabolism of vitamins and cofactors” (adjusted

p = 6.5 × 10−7), which has been shown to be responsible for altered functioning of the CNS

and ENS (54). Although the involvement of the individual member genes in this pathway is

known, the finding that the genes are organised as a community structure, within co-expression

networks, which persists across the entire 16 layers of the various brain regions and the gas-

trointestinal tissues examined here is a novel one.

The empirical distribution of the global multiplexity index is presented in Figure 6b for

each of the five architectures. The maximal global multiplexity index in the five architectures
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a

c

b

Figure 6: Multiplex analysis. a. An example of a multiplex network constructed from data
in “Brain Hippocampus” and “Brain Putamen” (basal ganglia). Each layer denotes a tissue,
and nodes are the genes, which are connected via the interlayer connections. In the multiplex
example, we can see the presence of two communities. These two communities are indeed
part of the “Brain Tissues” multiplex architecture, present in all 13 component layers (brain
regions). All genes in the community {FGA, ORM1, FGB} have been previously implicated as
biomarker and therapeutic target candidates for intracerebral hemorrhage. b. Histograms show
the distribution of the global multiplexity index for each multiplex architecture, for when the
index is positive. The index quantifies how many times two genes belong to the same commu-
nities across different layers. All the 5 multiplex architectures follow a similar, skewed pattern.
The maximum global multiplexity index corresponds to the number of layers or tissues used to
define the multiplex network. Histograms, starting from the top, correspond to the following
multiplex architectures: All tissues; Brain tissues; Brain tissues and whole blood; Brain and
gastrointestinal tissues; Non-brain tissues. c. We performed UMAP on the subset of communi-
ties that exist across all layers of the central nervous system (“Brain Tissues”) multiplex. This
set of communities does not yield complete clustering of all tissues, but it uncovers a different
pattern of tissue clustering.
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represents the groups of genes that share a value of 49, 13, 14, 16, and 36 respectively, equal

to the number of layers (i.e., tissues) in the respective architectures. These genes appear in the

same community across all layers of the respective architectures.

For comparison with the UMAP embeddings of the set of all communities, we performed

similar analyses in the various multiplex networks. For example, we tested whether the com-

plete tissue clustering could be observed using just the subset of communities that exist across

all layers of the central nervous system multiplex. Interestingly, we discovered a different clus-

tering pattern, with cultured fibroblasts clustering separately from the rest of the tissues, which

no longer show well-defined clustering (Figure 6c). This finding suggests the presence of a

hierarchy of clusters in the transcriptome at increasingly finer scales.

Finally, a freely available genomics resource of communities, their predictive power for tis-

sues, and multiplex networks, and the software to construct a similar resource on a transcriptome

dataset can be accessed at https://github.com/tjiagoM/gtex-transcriptome-

modelling.

Discussion

We develop an inter-tissue multiplex framework for the analysis of the human transcriptome.

Given the complexity of pathophysiological processes underlying complex diseases, intra-tissue

and inter-tissue transcriptome analysis should enable a more complete mechanistic understand-

ing. For these phenotypes, studying the interaction among tissues may provide greater insights

into disease biology than an intra-tissue approach. Communities in co-expression networks are

here shown to be enriched for some known pathways, encoding current understandings of bi-

ological processes; however, we identify other communities that are likely to contain novel or

previously inaccessible functional information.

UMAP embeddings of the transcriptome of the entire set of communities (representing only
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18% of all genes) fully reveal the tissue clusters. Low-dimensional representation of the subset

of communities that are in the multiplex networks does not recover the tissue clusters, but un-

covers other clustering patterns, suggesting a hierarchy of clusters at increasingly finer scales.

We develop an approach to quantify the conservation of, and uncertainty in, the UMAP global

structure and estimate the sampling distribution of the local structure (e.g., distances among tis-

sue clusters), with broad relevance to other applications (such as cell population identification

in single-cell transcriptome studies (55)). Importantly, new gene expression data can be em-

bedded into our models, facilitating integrative analyses of the large volume of transcriptome

data that are increasingly available. We provide a publicly available resource of co-expression

networks, communities, multiplex architectures, and enriched pathways, and code to stimulate

research into network-based studies of the transcriptome.

Using the global multiplexity index, we investigate the tissue-sharedness of identified com-

munities. In fact, communities that are shared across multiple tissues may suggest the presence

of a tissue-to-tissue mechanism that controls the activity of member genes across the layers

in the network. Such regulatory mechanisms have been relatively understudied in comparison

with intra-tissue controls.

We identified tissue-dependent communities that are enriched for human diseases. For ex-

ample, we found a 15-member community in the “Brain Hippocampus” that is enriched for

diseases associated with glycosaminoglycan metabolism. These genetic disorders are due to

mutations in the biosynt“hetic enzymes, e.g., glycosyltransferases and sulfotransferases, for

glycosaminoglycans. Sulfated glycosaminoglycans include the chondroitin sulfate and der-

matan sulfate chains that are covalently bound to the core proteins of proteoglycans, which are

present in the extracellular matrices and at cell surfaces. Mutations affecting the biosynthesis

of these chains may lead to genetic diseases that are characterized by craniofacial dysmorphism

and developmental delay (56). The community structure we identified proposes a cooperative
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role for these genes, and the fact that they span multiple chromosomes suggests the presence of

coordinated transcriptional regulation.

Some of the communities are shared across multiple tissues; their dysregulation may thus

lead to pleiotropic effects and contribute to known and novel comorbidities. Here we modeled

these communities as belonging to layers of multiplex networks. For example, we identified

a 17-member community in the “Brain Tissues” multiplex network (i.e., spanning across all

brain regions sampled here), consisting primarily of ribosomal proteins (therefore, enriched for

proteins involved in translation [adjusted p = 2.53×10−35]), with significant overrepresentation

for the viral mRNA translation pathway (adjusted p = 1.06 × 10−38), NMD (adjusted p =

1.01× 10−37), and other Reactome pathways. Viral mRNAs in the cytoplasm can be translated

by the host cell ribosomal translational apparatus, and indeed viruses have evolved strategies

to recruit the host translation initiation factors necessary for the translation initiation by host

cell mRNAs (57). NMD, a surveillance pathway that targets mRNAs with aberrant features

for degradation (58), may interfere with the hijacking of the host translational machinery (59).

In the brain, NMD, as a post-transcriptional mechanism, affects neural development, neural

stem cell differentiation decisions, and synaptic plasticity, and thus defects in the pathway can

cause aberrant neuronal activation and neurodevelopmental disorders (53). Detecting this co-

expression network of ribosomal proteins therefore provides a sanity check to our approach,

but the identified community structure and the presence of this in the multiplex may suggest a

highly coordinated regulatory mechanism across the tissues (60).

In summary, we performed network analysis on the most comprehensive human transcrip-

tome dataset available to gain insights into how structures in co-expression networks may con-

tribute to biological pathways and mediate disease processes. The rich resource we generated

and the network approach we developed may prove useful to other omics datasets, facilitating

studies of inter-tissue and intra-tissue regulatory mechanisms, with important implications for
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our mechanistic understanding of human disease.

Data Availability

The protected data for the GTEx project (for example, genotype and RNA-sequence data) are

available via access request to dbGaP accession number phs000424.v8.p2. Processed GTEx

data (for example, gene expression and eQTLs) are available on the GTEx portal: https://

gtexportal.org. Results and code (for reproducibility) are available on github at https:

//github.com/tjiagoM/gtex-transcriptome-modelling
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