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Extracellular microelectrodes frequently record neural activity from more 
than one neuron in the vicinity of the electrode.  The process of labeling 
each recorded spike waveform with the identity of its source neuron is 
called spike sorting and is often approached from an abstracted statistical 
perspective. However, these approaches do not consider 
neurophysiological realities and may ignore important features that could 
improve the accuracy of these methods.  Further, standard algorithms 
typically require selection of at least one free parameter, which can have 
significant effects on the quality of the output. We describe a Heuristic 
Spike Sorting Tuner (HSST) that determines the optimal choice of the free 
parameters for a given spike sorting algorithm based on the 
neurophysiological qualification of unit isolation and signal 
discrimination.   A set of heuristic metrics are used to score the output of 
a spike sorting algorithm over a range of free parameters resulting in 
optimal sorting quality. We demonstrate that these metrics can be used to 
tune parameters in several spike sorting algorithms. The HSST algorithm 
shows robustness to variations in signal to noise ratio, number and relative 
size of units per channel. Moreover, the HSST algorithm is 
computationally efficient, operates unsupervised, and is parallelizable for 
batch processing. 

 
NEW & NOTEWORTHY HSST incorporates known 
neurophysiological priors of extracellular neural recordings while 
simultaneously taking advantage of powerful abstract mathematical tools. 
Rather than simply selecting free parameters prior to running a sorting 
algorithm, HSST executes a sorting algorithm across a range of input 
parameters, using heuristic metrics to detect which spike-sorting output is 
most physiologically plausible. This novel approach enables unsupervised 
spike-sorting exceeding the performance of previous methods, thereby 
enabling the processing of large data sets with confidence. 
 
neurophysiology; spike sorting; heuristics, metrics, single-unit 
 

INTRODUCTION 

Investigations in the central and peripheral nervous systems 
often focus on extracting information about the spiking activity of 
individual neurons. When extracellular electrodes are used to 
record this activity, action potentials, or spikes, can be recorded 
simultaneously from multiple neurons in the immediate vicinity of 
a single electrode tip (Lemon, 1984; Pedreira, Martinez, Ison, & 
Quian Quiroga, 2012). Importantly, neurons recorded from the 
same electrode may exhibit very different patterns of activity and 
be correlated to different behavioral features. Each neuron 
produces a stereotypical voltage waveform at the electrode based 
on physical factors including cell geometry, neuron-electrode 
distance and tissue impedance (Camuñas-Mesa & Quiroga, 2013; 
Gold, 2006; Hild & Tasaki, 1962). Determining which waveforms 
are associated with the same source neuron is a process known as 
spike sorting (Chen, Carlson, & Carin, 2011; Gerstein & Clark, 
1964; Hill, Mehta, & Kleinfeld, 2011; Keehn, 1966; Letelier & 
Weber, 2000; Lewicki, 1999; Prochazka, Conrad, & Sindermann, 
1972; Quiroga, Nadasdy, & Ben-Shaul, 2004; Shoham, Fellows, & 
Normann, 2003; Yuan, Yang, & Si, 2012). Only after the 
waveforms are sorted can hypotheses be tested that depend on the 
temporal behavior of those neurons (Hubel & Wiesel, 1959).  

Spike sorting is frequently approached as a multi-step process 
and is broken down into approximately three steps: 1) spike 
detection, 2) feature extraction, and 3) clustering (Gibson, Judy, & 
Markovic, 2008). Many techniques and algorithms have been 
developed to address the spike sorting problem (Abeles & 
Goldstein, 1977; Lewicki, 1999; Rey, Pedreira, & Quian Quiroga, 
2015). These methods are typically supervised (i.e. manual sorting 
by visual waveform inspection), semi-supervised (i.e. manual 
inspection of automatically generated sorts) or unsupervised (i.e. 
sorting performed purely algorithmically). All approaches have 
specific strengths and weaknesses. Manual sorting is typically 
based on visual inspection, which can lead to inter- and intra-sorter 
variability (Harris, Henze, Csicsvari, Hirase, & Buzsáki, 2000;  
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Wood, Black, Vargas-Irwin, Fellows, & Donoghue, 2004). Manual 
sorting is also extremely time intensive and impractical for 
applications with large datasets. Supervised or semi-supervised 
methods avoid these pitfalls, but often fail when sorting spikes that 
have a low signal-to-noise ratio (SNR). Nevertheless, manual or 
supervised techniques remain common practice in many labs. 

Sorting algorithms necessarily have parameters that must either 
be set explicitly by the user or automatically by the algorithm itself. 
These parameters are often selected to reflect underlying 
assumptions about the data (e.g. expected number of neurons, 
variance in waveform shapes). For unsupervised algorithms, 
correctly estimating these parameters largely determines 
performance; poorly chosen parameters can create erroneous 
results, with waveforms from the same neuron classified into 
separate groups (over-sorting) or waveforms from multiple 
neurons classified together (under-sorting). Many common sorting 
algorithms suffer from these problems, requiring data to be 
inspected manually and resorted, effectively losing the advantage 
of an unsupervised method.  

For a truly unsupervised method to sort a wide variety of data, 
the algorithm must accurately estimate these parameters, adding to 
the complexity of classification. Often the choice of parameters 
results in either an unrealistically large numbers of clusters with 
low waveform variability or a small number of clusters with 
unreasonably high waveform variability. It is difficult or 
impossible to determine a priori how many true neurons are present 
in a recording, since many of the measurable features (including 
the SNR, relative size of the proposed clusters, variance of 
waveforms within a cluster, etc.) are highly variably across 
datasets. For a basic example, the K-Means algorithm (MacQueen, 
1967) has a single parameter K, which fixes the number of clusters 
discovered by the algorithm. Setting an incorrect value for K results 
in over- or under-sorting errors. To solve this problem, many 
algorithms utilize purely mathematical techniques to optimize the 
parameter selection process. By fixing constraints on the 
relationship between waveform variability and the number of 
clusters, these algorithms generally use statistical optimization 
methods to fit the parameters. Many use dimensionality reduction 
techniques to optimize parameter selection (Hulata, Segev, & Ben-
jacob, 2002). To separate the waveforms, they collapse data 
variability onto a lower dimensional space. However, the 
underlying neural dynamics which govern spike generation are 
often lost or disregarded through this process. Rather than discard 
this information, we seek to utilize it by building a series of 
heuristic metrics to judge the sort quality of the output of a sorting 
algorithm. These metrics can be combined to create a composite 
measure, referred to here as the validation score. The validation 
score is used to compare results obtained across a range of values 
for one or more sorting parameters. 

Metrics to evaluate sorting quality have been developed 
previously (Fee, Mitra, & Kleinfeld, 1996; Harris, Hirase, 
Leinekugel, Henze, & Buzsáki, 2001; Joshua, Elias, Levine, & 
Bergman, 2007; Pouzat, Mazor, & Laurent, 2002). Most focus on 
only a single statistical attribute of the data, such as cluster isolation 
or apply only to a particular sorting algorithm. Given the 
limitations of using only statistical metrics, many users prefer 
manual waveform inspection to determine quality (Hill et al., 2011; 
Schmitzer-Torbert, Jackson, Henze, Harris, & Redish, 2005), 
which is highly subjective, time intensive, and prone to human 

error and variability. Our heuristic metrics evaluate many different 
parameters of the data, inspired by the types of features that human 
evaluators typically identify, which are in turn motivated by 
neuroscientific and electrophysiological principles of extracellular 
recording.  

We propose the Heuristic Spike Sorting Tuner (HSST) as a 
framework to maximize sort quality and avoid the pitfalls of 
standard methods to enable truly unsupervised spike sorting. 
Importantly, the parameter tuning provided by the HSST 
framework is applied to all steps in the spike signal processing 
chain, to allow iterative tuning of parameters affecting spike 
detection, feature extraction, and clustering.  

Experienced users of spike-sorting software will recognize that 
many algorithms may work well for one specific dataset but may 
perform poorly for another. HSST avoids this pitfall, by parallel 
sorting a dataset (across a range of parameters) and using a 
validation score to select the best output. A set of heuristic metrics 
(which explore individual feature spaces of the extracted waveform 
snippets) test each output, scoring the sorted result based on a set 
of focused criteria. HSST combines the results of these many 
metrics to build a strong classifier, and is able to determine the best 
output of a sorting algorithm without any human input. 

METHODS AND MATERIALS 

Spike sorting is frequently approached as a multi-step process 
and is broken down into three steps: 1) spike detection, 2) feature 
extraction, and 3) clustering (Gibson et al., 2008). The HSST 
framework adds a fourth step: parameter validation and selection. 
For example, spike waveforms are often detected by setting an 
amplitude threshold and extracting a short segment of the 
continuous data surrounding the threshold crossing event. Next, a 
feature extraction process is used to identify attributes of the spike 
waveforms that are uniquely associated with individual neurons. 
These features or attributes can include amplitude measures (e.g. 
peak to peak, positive or negative peaks), but a common approach 
is to apply principal components analysis (PCA) (Pearson, 1901) 
or other dimensionality reduction methods to extract a low 
dimensional representation of the spike waveforms that capture the 
discriminable features. Finally, the process of sorting the spike 
waveforms (Table 1) into different “units” is performed by 
partitioning the spike features into separable groups using 
clustering algorithms. HSST provides a framework for auto-tuning 
parameters in spike detection and sorting algorithms.  

Spike 
Waveform 

A snippet of the recorded signal containing 
the neural action potential 

Dataset Set of all waveforms 
Spike 
Sorting 
Algorithm 

Algorithm labels each waveform in a dataset 
as belonging to a neural source  

A Unit Group of waveforms labeled as generated by 
the same neuron 

A Sort Set of all units in a dataset 
Sort 
Parameter 

Parameter of a spike sorting algorithm 
controlling isolation of units, size of units, 
number of units, etc. 

  Table 1: Spike sorting definitions used throughout this paper. 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted May 25, 2020. ; https://doi.org/10.1101/2020.05.21.108902doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.21.108902


UNSUPERVISED SPIKE SORTING FRAMEWORK 
 

 

Overview of the HSST Framework  

The primary objective of the HSST is to enable sorting 
algorithms to correctly identify well-isolated spikes. To best 
accomplish this, a parallel algorithm (Figure 1) is used to detect the 
best parameter set after sorting, rather than the traditional way of 
estimating the best set of parameters, prior to sorting. The 
framework sorts a dataset N times with the user’s preferred sorting 
algorithm. Each time, it uses a different set of parameters or initial 
conditions, yielding N results. The framework has a fixed cost 
function to score each resulting sort, selecting the output which 
best groups detected spikes into distinguishable clusters. 

Feature Spaces 

The HSST framework uses a set of feature spaces derived from 
the broadband neural data. The features are broadly separable into 
two groups: amplitude features and temporal features. The 
amplitude features include:  

1) Minimum and maximum amplitude of the spike waveform 
2) Distribution of waveform amplitudes within a unit 
3) Distribution of the derivatives of the waveform  
4) Similarity of a waveform to the unit’s mean waveform 
5) Similarity of a waveform to another unit’s mean waveform 
6) Number of inflection points in a unit’s mean waveform 

The temporal features include:  
1) Distribution of inter-spike-intervals (ISI) 
2) Location of a unit’s min/max peaks across units 

Heuristic Metrics  

The strength of the HSST framework lies in considering a large 
set of metrics each contributing a vote, generating a strong, robust 
classifier. Ten heuristic metrics are used to identify potential 
sorting errors that we grouped into three Error Categories (Table 
2); over-sorted errors, under-sorted errors, and noise errors.  

These metrics and categories were selected based on the goal of 
identifying features of waveforms that should be sortable, rather 
than trying to tease apart low amplitude signals where it is often 
difficult or impossible to distinguish one neuron from another. For 
a unit containing waveforms with an SNR that should be able to be 
sorted, there can be both under-sorting errors as well as over-
sorting errors. An over-sorting error occurs when a unit contains 
waveforms from just a single neuron, but not all of the waveforms 
from that neuron. An under-sorting error occurs when a unit has 
waveforms from multiple neurons. Finally, a noise error occurs 
when a unit contains waveforms with low SNR that represent 
multi-unit activity or other noise artifacts.  

The eleven metrics vote pass or fail on each unit in a sort (Figure 
1D). A pass means a particular metric did not find a particular error 
type in a unit, while a fail means an error type is found. See the 
section on metrics below for details on how each is tabulated.  

Unit Scores 

Each unit is assigned a “Unit Score” (Figure 1E) based on the 
criteria outlined in Table 2. The Unit Score ranges between 0 and 
1; the higher the unit score, the more likely that unit contains spike 

 
Figure 1: HSST flow diagram for sorting a particular dataset. (A-B) The raw electrical signal is thresholded to extract snippets. (C) Snippets are sorted using a given 
sorting algorithm using a range of parameters. Each parameter set yields a unique sorting result, Sorts 1-5 in this example. (D) The units identified in each sort are 
assigned a score based on each metric. Sort 4 is scored as an example. Green check marks mean a unit passed this particular metric, i.e. the absence of a particular error 
type. Red crosses mean an error type was found. Based of those results, each unit is labeled either over-sorted, under-sorted or noise (E). The Sort Score is the average 
of each of the unit scores, weighted by the number of waveforms in each unit. Each Sort Score, called the Sort Quality Index (SQI), is ranked. The highest scoring sort 
is selected as the output of HSST.  

Error 
Categories 

Definition Metric Name 

 
 

Over-sorted 

A unit which contains 
some waveforms from 
a source neuron, but 
fails to contain all of 
them 

Dissimilar Peaks 

Mean Waveform 

 

 
Under-
sorted 

 

A unit which contains 
waveforms from 
multiple source 
neurons 

Cross Correlation 
Threshold Slope 
Max Amplitude 
Residuals 

 
 

Noise 

 

A unit which contains 
multi-neuron activity, 
recording artifacts, 
electrical noise, etc 

Stationary Point 
ISI Violations 
Exponential Fit 
Low SNR 
Under-Sorted 

Table 2: HSST definitions of evaluated unit quality. Each unit can be labeled as 
any combination of the three error categories. If any metric (right most column) 
in each category fails, the unit being sorted is labeled with that error category. 
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waveforms from a single neural source. Each unit begins with a 
perfect score of 1 (a well sorted unit) and loses 1/3rd of a point for 
each type of sorting error present in the unit (over-sorted, under-
sorted and/or noise).   

Sort Quality Index (SQI) 

The sort quality index (SQI) is the ranking used to determine 
which sort has best grouped waveforms according to their source 
neuron. By maximizing the SQI, we can generate the best overall 
performance of a particular algorithm. The parameter set with the 
highest SQIs are the most likely to have correctly labeled each 
waveform with its true neural source. 

The SQI is calculated as the average of each of the unit scores 
within a sort (Figure 1E), weighted by the number of waveforms in 
each unit. The value can range from 1 (all units contain the activity 
of a single source neuron) to 0 (units have waveforms from a 
mixture of multiple source neurons and/or noise).    

Illustration of Framework Logic and Function 

Using a computationally generated dataset (see Datasets section 
for full details), we demonstrate the full breadth of calculations 
used to determine the optimal sorting output (Figure 1). Our initial 
dataset contains three neurons in close vicinity to the electrode (50 
µm), with multiple other neurons further away (>200 µm). The 
dataset is sorted with K-Means five times, each with a different 
parameter, K = 2, 3, 4, 5, 6. The unit scores for each sort are ranked 
(Figure 1D) and averaged (Figure 1E) to give a sort quality index 
(SQI). Each unit score is normalized by the number of waveforms 
in that unit. If a single unit is identified as noise (the yellow unit in 
Figure 1D), it is not included in the averaging to obtain the final 
score. It is desirable to group any noise waveforms together and 
isolate them from the rest of the dataset, therefore the largest noise 
unit is not counted in the final average, but any additional noise 
units are. We can see that Sort 3 yields a result most resembling the 
ground truth. HSST scores this sort the highest SQI (Figure 1F).  

Metrics for Detecting Over-sorting Errors 

Over-sorted units are units where the waveforms from a single 
neuron are split into two or more units. Intuitively, this means that 
waveforms from a single source neuron are incorrectly labeled as 
two or more distinct neural sources. Over-sorting will cause 
underestimation of neuronal firing rates and could significantly 
modify calculated firing patterns.  

The output of each of these metrics is binary: pass or fail; if any 
over-sorting metric detects an error, then the unit fails and is 
labeled over-sorted. If the unit passes all over-sorting metrics 
individually, meaning each metric verifies that no error type exists 
in the unit, then those waveforms are appropriately sorted and do 
not overlap with other unit’s waveforms. These metrics are only 
used if multiple units are identified in a given sort. If only a single 
unit is identified, these metrics all pass.  

Dissimilar Peaks: If the waveforms of a single neuron are 
separated into two different units, we would expect the 
distributions of the positive and negative waveform extrema for 
those units to be similar. For this metric, all units are pairwise 
compared. The mean and standard deviation for both the positive 
and negative waveform values is first calculated for each unit. The 
D’ statistic (Vallbo & Johansson, 1966) is then used to compute the 

D’ distance between the positive and negative extrema for all pairs 
of units (Figure 2B,D). The D’ statistic ranges from 0 to positive 
infinity, and a value less than one indicates statistically significant 
overlap. Three conditions are required for a pair of units to be 
identified as over-sorted using this approach: 1) the positive 
extrema distributions must have a D’ distance less than one, 2) the 
negative extrema distributions must have a D’ distances less than 
one, and 3) the overlapping extrema fall within 0.125 milliseconds 
(2-3 sample points) of each other. The third condition places a 
reasonable temporal constraint on the timing of the positive and 
negative extrema.  Any pair of units that meet all three criteria are 
considered to be over-sorted and fail this metric. If any of the 
conditions are unmet, the metric passes, and thus are well-sorted.  

Mean Waveform Sum of Squared Errors: In order to compare 
waveform shapes as a whole (instead of only the extrema), we 
calculate two distributions: 1) the sum of squared errors between 
the mean waveform of a specific unit and all the individual 
waveforms found in that unit, and 2) the sum of squared errors 
between the mean waveform of that unit and all the waveforms of 
a second unit. These two distributions are combined and multi-
modality is assessed (Figure 2C,F). If the combined distribution is 
unimodal, the unit is identified as over-sorted and fails this metric. 
This process is iteratively applied to each unit, such that every unit 
is compared to every other unit in the sort group. If no overlap with 
any other unit is found, then the metric passes. 

Metrics for Detecting Under-sorting Errors  

An extracellular recording of an action potential from each 
source neuron will produce a stereotypical waveform shape. The 
distribution of waveform shapes recorded from a single source 
neuron can be approximated by a mean waveform with some mean-
zero Gaussian distribution at each sample point. However, an 
under-sorted unit–a unit with waveforms from more than one 
source neuron–will violate this assumption of mean-zero Gaussian 
distribution. With these assumptions, we can test for unimodality 
along different dimensions in the waveform feature space to 

 
Figure 2: Over-Sorted Metrics. Examples of two well-sorted units (A), shown in 
green and red, in the waveform space. The D’ distance (or sensitivity index) is 
used to evaluate the overlap between the positive/negative extrema distributions 
between all units pairwise in a given sort (B).  We can also compute a distribution 
of the sum of squared errors between the mean waveform and each waveform in 
the unit (C). For two well-sorted units, these distributions do not overlap. We also 
show examples of two over-sorted units (D) in the waveform space. Analogous 
to our analysis in (B) and (C), we see these units on the bottom overlap 
significantly in both feature spaces (D,E).  
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examine whether multiple neural sources are present within a 
single unit. Similarly to the previous category of metrics, the output 
of each of these metrics is pass or fail. If any one of these metrics 
detects an error type, the unit fails and is deemed under-sorted (has 
multiple neural sources). If all metrics pass, by verifying no error 
present, then the unit is well sorted (only one neural source). 

These metrics rely on determining the number of modes (or 
statistically separable groups) in some feature space of the data. 
Many other techniques (Hartigan & Hartigan, 1985; Rozal & 
Hartigan, 1994; Sawitzki, 1996) have been developed to detect 
multi-modality, but due to the variability of neural data, we 
developed our own standard way of detecting multi-modality 
(Appendix, Figure A1).  

Four different waveform feature spaces are analyzed for multi-
modality using the methods described above. Each feature space is 
used to compute a distribution; checking each for multi-modality 
constitutes a different metric. Below we describe calculations to 
compute each distribution. 

Residuals: We compute a measure of residuals by calculating the 
mean waveform of the unit and the variance about that average 
waveform (Figure A3). At each time point, the distribution across 
all waveforms in the unit is checked for multi-modality (Figure 
3B). In addition, if the measured variance of that distribution lays 
outside the estimated standard deviation, the unit is considered 
multi-modal.  

Peak-Waveform Amplitude: We calculate the maximum 
amplitude of each waveform in the unit and check that distribution 
for multi-modality (Figure 3C). 

Threshold Slope: We calculate the slope of each waveform as it 
crosses the threshold value (Figure 3D). This distribution is 
checked for multi-modality.  

Waveform Similarity: We compute a waveform similarity 
measure by calculating the cross correlation between the mean 
waveform of the unit and each individual waveform in that same 
unit. The maximum value of each cross-correlation is the similarity 
between that individual waveform and the mean waveform 
(Jackson & Fetz, 2013). We check for multi-modality in a 
histogram of similarity from each waveform (Figure 3E).  

Metrics for Detecting Noise Errors 

Low SNR neural recordings are common, especially on 
multichannel microelectrode arrays. These waveforms are 
typically the most challenging to sort. In many research 
applications, it is beneficial to collect all the noise waveforms into 
a single unit labeled as noise or multi-unit activity. Therefore, we 
might expect that if the spike detection threshold was low, such a 
noise unit would exist. The purpose of the metrics described below 
is to detect and isolate those noise waveforms from the rest of the 
units. The output of each of these metrics is a pass or fail; if any of 
the noise metrics detects an error type, the unit poorly sorted and 
contains noise waveforms. However, if all metrics verify no error 
present, the unit passes and does not contain noise waveforms. 
Below we detail each metric’s algorithm individually.  

Inter-Spike Intervals (ISI): A count of inter-spike interval (ISI) 
refractory violations is a reliable metric for a poorly isolated unit. 
Biologically, all neurons have absolute refractory periods of 
approximately one millisecond, meaning that a neuron cannot fire 
at a rate greater than 1000 spikes per second. In practice, neuronal 
firing rates are much lower, with the fastest neurons peaking at 
several hundred spikes per second (Gittis, Moghadam, & Lac, 
2010). For our study with generated data, we assumed our 
generated neural activity fired a random rate less than 1 kHz. If 
more than 5% of the ISI measured were less than 1 millisecond, the 
unit is identified as noise (Figure 4C,F).  

Single Stationary Point: Extracellular recordings of neural 
spiking activity tend to exhibit bi- or tri-phasic spike waveforms. 
If we identify a unit with a single “bend” or “shoulder” in the mean 
waveform, it is likely to be a noise unit. We identify shoulders in 
the mean waveform by examining the crossing points of two curves 
(Figure 4B). The first curve is the derivative of the mean 
waveform. The second curve is the slope from the first sample 
point of the waveform to the nth sample point. Not all crossing 
points are significant however. The standard deviation of the 
absolute difference between the two curves is calculated. Only 
crossing points with at least two consecutive points between them 
which have a difference greater than one standard deviation are 
counted in the total. If one or zero “bends” are detected, then the 
unit is identified as noise (Figure 4B,E).  

 
Figure 3: Under-Sorted Metrics. (A) A well-sorted unit is analyzed for multi-modality in four different waveform features spaces (B-E). (B) The waveform amplitude 
metric examines a slice of each waveform amplitude at each time point. (C) The maximum amplitude metric looks at the max amplitude of each waveform. (D) The 
threshold slope metric examines the slope of the waveform as it crosses the threshold. (E) Similarity metric between each waveform and the mean waveform of the 
unit. (F) The under-sorted unit on the bottom has examples of each waveform feature space for each metric (G-J). Note that for each metric, the green distributions a 
well-sorted unit) are unimodal. However, the under-sorted unit, which contains waveforms from multiple different neurons has a bimodal distribution for each metric. 
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Inter-Spike-Interval Exponential Fit: If we model the 
background multi-unit activity or electrical noise as a stochastic 
mathematical process, for example a normal random process, we 
can detect noise units by identifying the characteristics of noise 
generated from our model. When we set the spike threshold to an 
arbitrary value, and “detect” spikes from data generated from this 
model, the histogram of times between the points above that 
threshold, or inter-spike intervals (ISI), can be approximated by an 
exponential curve. Therefore, if a unit’s ISI histogram fits an 
exponential curve with a normalized mean squared error (NMSE) 
rate of 15% or less, this unit is categorized as noise (Figure 4C,F).  

Signal-to-Noise Ratio (SNR): Keeping with HSST’s primary 
objective to enable sorting algorithms to correctly identify well-
isolated spikes, we therefore introduce a final, optional metric to 
eliminate low SNR units. Units whose mean waveform are below 
an SNR of 1, fail this metric and are labeled as noise. 

We use an iterative process to calculate SNR from the raw 
waveform (Figure A2). Signal are considered data points greater 
than four standard deviations from the mean of the raw waveform. 
These data points are removed and a new standard deviation is 
calculated from the remaining data. This process is repeated until 
the estimate of standard deviation converges (Figure A2). One 
standard deviation of the leftover data of the final round becomes 
our estimate of noise. If the raw waveform is not provided, the user 
will need to provide an estimate of the noise. (Again, this metric is 
optional to help users looking to get only high SNR spikes. Users 
can also manually determine this SNR threshold for their particular 
need if so desired).  

Datasets 

In order to accurately compare the performance of spike sorting 
algorithms, it is necessary to know the ground truth regarding the 
identity of each recorded spike. In experimental 
electrophysiological recordings, the ground truth is unknown, so 

we used a computational simulation to generate test datasets. The 
NeuroCube (Camuñas-Mesa et al 2013) model was used to 
simulate a recording electrode in a volume of conductive tissue 
containing electrically active neurons. This model includes an 
electrode as a single point in a 1 mm cube of conductive tissue, 
containing several neurons 50-200 µm away from the electrode as 
well as hundreds of background neurons (> 200 µm away). To 
compare performance results between different sorting algorithms, 
we used the same dataset used for testing the WaveClus algorithm 
(Quiroga et al., 2004). This dataset (Figure 5) contained 4 groups, 
each with 3 neurons in close proximity to the simulated recording 
electrode, and hundreds of neurons further away to simulate 
background neural noise. Two groups contained three neurons with 
very similar waveform shapes (Figure 5A,B) while two groups 
contained neurons with dissimilar waveform shapes (Figure 5C,D).  

In order to understand the effects of SNR on sorting accuracy, 
we tested on each group at four different distances from the 
electrode (50 µm, 100 µm, 150 µm, and 200 µm), generated by the 
model defined in Equation A1. This resulted in testing each 
algorithm 16 times, on each of the four groups at four distances.  

To test sorting accuracy on datasets with different numbers of 
close proximity neurons, we ran additional tests using the four 
groups at a fixed distance of 150 µm. We varied the number of 
close proximity neurons by removing neural waveforms from each 
dataset. One set had the original 3 source neurons (plus noise), 
another set 2 neurons (plus noise), and the final set, 1 source neuron 
(plus noise). This resulted in testing each algorithm 12 times, each 
of the 4 groups with the 3 different sets of neurons. 

The HSST framework was also tested on real neural data 
consisting of 80 datasets recorded from microelectrodes implanted 
in the dorsal root ganglion (DRG) of a cat’s L6 and L7 spinal roots 
(Debnath et al., 2014). For these real world datasets, no ground 
truth existed; thus, expert human sorters identified all units with an 
SNR greater than 5, calculated as the ratio of peak signal voltage 
to estimated peak noise voltage. High SNR units were used 
exclusively so that just those waveforms that could be conclusively 
identified as originating from the same neuron were compared. 
Humans are typically good at identifying units with high SNR, 
giving us reasonable confidence about the accuracy of these unit 
identifications.  

 
Figure 4: Metrics for Determining Noise. Example waveforms of a well-sorted 
unit (A) and a noise unit (D). Shoulder points (B) can be identified by the 
threshold crossings of the two derivative curves (black and red) of the mean 
waveform. The red derivative, g[t], is slope between sample point t and sample 
point t+1. The black derivative, h[t], is the slope between sample point 1, and 
sample point t. The green line shows inflection which occur when the difference 
between the red and black lines is greater than one sigma. Shoulder points are 
identified by dotted vertical lines. A histogram of Inter-Spike-Intervals (ISI) and 
an exponential fit (C). Since the fit is poor, this unit is not considered a noise unit. 
The exponential fit to the ISI distribution in F shows a good fit, indicating that 
this unit is likely a noise unit.  

 
Figure 5: The mean waveform from each source neuron (shown in red, blue and 
green) from the 4 groups in the WaveClus dataset (Similar Shape 1 & 2, Different 
Shape 1 & 2) is shown.  
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Sorting Algorithms 

HSST is fundamentally an unsupervised tool to enable existing 
sorting algorithms to choose their free parameters. We used 
implementations of six widely used sorting algorithms to compare 
their performance and evaluate HSST at selecting their correct 
parameters. GMM is a Gaussian mixture model with a variable 
number of clusters (Neal & Hinton, 1999). KM is a K-Means 
algorithm (MacQueen, 1967). WaveClus is the algorithm proposed 
by Quiroga et al., 2004. DukeSort is the method proposed by Chen 
et al., 2011 and M-Sorter is the method proposed by Yuan et al., 
2012. UltraMegaSort2000 is the method proposed by Hill et al 
2011. Code was gathered from public resources provided by the 
authors while GMM and KM are MATLAB implementations. 

RESULTS 

HSST Parameter Selection  

The HSST framework operates by sorting a dataset with a 
specific algorithm across range of input parameters and selects the 
optimal sort. For generated data sets used in the following analysis, 
classification error for these optimal sorts was measured by the 
number of waveforms assigned incorrectly to the wrong neuron. 
The classification error varied with distance from the recording 
electrode (Figure 6) and therefore, the corresponding SNRs. The 
Gaussian Mixture Model (GMM) algorithm sorted the data with a 
range of 6 different parameter sets, each yielding a different 
classification error. The optimal parameter selection made by 
HSST was compared to the classification error to judge the 
accuracy of the HSST algorithm.  

Parameter Selection and Poor 
Sorting Errors 

When determining the 
optimal sorting parameters for 
a given algorithm, we defined 
two types of errors, selection 
error and sorting error, to test 
the accuracy of HSST.  

Parameter selection errors 
occur when HSST selected a 
parameter which didn’t 
minimize the classification 
error (i.e. selects 4 clusters 
when only three are present). 
Poor Sorting errors occurred 
when the sorting algorithm 
itself poorly grouped the 
waveforms, and all outputs are 
poor (Figure A4). 

As an example of selection 
error, in Figure 6A, the light 
blue line shows a dataset sorted 
by GMM using six different 
parameter sets. Parameter set 4 yielded the lowest classification 
error; however, HSST chose parameter set 5, because two units 
were considered too similar when sorting with parameter set 4. Due 
to low SNR, the distributions of waveform shape of the two 
neurons overlapped, making it difficult to distinguish between the 
two units. This selection is an error, because parameter set four 
yielded the lowest classification error. 

Poor sorting errors occurred when the sorting algorithm fell into 
a local minimum, as illustrated in Figure A4. Here, four clusters 
were present, yet the algorithm divided the noise cluster into three 
pieces and combined all three source units. We generated the data 
therefore the correct number of clusters is known to be four; 
however, the classification error was high for this parameter. This 
is an outcome desirable to avoid. Unless the user can account for 
them and predict when they will occur, these errors can render a 
sorting algorithm useless. With this in mind, HSST is capable of 
producing optimal sorts, despite with these errors.  

As an example, in Figure 6B on the dark blue line, parameter set 
5 yielded the lowest classification error. Parameter set 5 yielded the 
“wrong” number of clusters, since we generated these data to 
include three neurons and background noise (totaling four 
clusters). However, due to a failure of the GMM algorithm, 
parameter set 4 yielded a non-optimal result (Figure A4). Even still 
HSST selected the parameter set which minimizes classification 
error (set 5). 

This example illustrates the strength of HSST. Even if the 
theoretical optimal parameter set is known (in this case four 
clusters are known to be present) a sorting algorithm may not reach 
an optimal sort output. Unless a sorting algorithm is guaranteed to 
reach the global minimum (very difficult to prove and not true for 
the vast majority of current sorting algorithms), it still could fall 
into a local minimum, resulting in a poor classification result.  

As shown in Figure 7, parameter selection error of the HSST 
framework had a minimal impact. Frequency and classification 
error is plotted for each of the 16 generated datasets sorted for all 

 
Figure 7: Frequency and Size of Alpha 
Error Occurrences.  
(A) Percentage of parameter selection 
error caused by HSST selecting non-
optimal parameter by sorting algorithm.  
(B) Shows the number of points in A in 
each row (one row for each sorting 
algorithm).   

 
Figure 6: HSST Parameter Selection Error. On each plot, classification error is 
shown on the Y axis, and the parameter setting is shown on the X axis. The 
colored lines indicate measured SNRs, corresponding to the distance from the 
recording electrode (the lowest SNR corresponding to distance 200 um, while the 
highest SNR corresponds to distance of 50 um). The Gaussian Mixture Model 
(GMM) algorithm was used to generate the sorts for each data set. The main 
parameter of the GMM algorithm sets the number of clusters. The Parameter 
Value in the above plots correspond to the number of clusters. The black markers 
indicate the parameter setting chosen by the HSST algorithm. We can see that in 
nearly every case, HSST selects the parameter set with the least classification 
error.  
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sorting algorithms. Only the cases with differences greater than 0 
(meaning HSST did not select the optimal parameter) are shown. 
When we used HSST in combination with the GMM sorting 
algorithm, the non-optimal parameter set was only selected one 

time out of 16 datasets, resulting in an increase of just 8% 
classification error above the absolute minimum error achievable 
with the optimal parameter set for that instance. This data point 
corresponds to the light blue curve in Figure 6. For 90% of all 
cases, HSST selected either the optimal parameter, or a parameter 
within 10% classification error of the optimal parameter.  

Classification error across SNR 

In Figure 8, the WaveClus (Quiroga et al., 2004) datasets were 
sorted using the six sorting algorithms discussed in the methods 
(each using HSST to select their optimal parameter sets) and 
classification error rates were compared.  

Several general trends emerged our analysis. As expected, as the 
distance from the electrode increases (i.e. SNR decreases), 
performance degrades. Several human experts manually sorted the 
same datasets, and their average performance is shown in black 
with grey error areas. The error areas show the max/min values of 
the human sorters.  Surprisingly, simple algorithms such as K-
Means and GMM performed just as well as humans and often 
outperformed the other more complex algorithms when combined 
with HSST.  

We analyzed the sensitivity of each algorithm to changes in SNR 
(proportional to distance between neuron and recording electrode), 
and the sensitivity of the algorithms to changes in the range of 
parameters (Figure 9A). As shown in the grey boxes, we showed 
the classification error produced by the range of parameters given 
to each of the algorithms (Figure 9A) This range was calculated by 
selecting each of the input parameter sets and evaluating the 
resulting classification error. The colored boxes show the range of 
error of only the optimal parameters selected by HSST. For 

example, the range of input 
parameters given to GMM 
yielded a large range of 
error regardless of SNR. 
However, the range of 
parameter selected by HSST 
produced low classification 
error. On the other hand, for 
UltraMegaSort, the range of 
error yielded by all 
parameters is much tighter. 
This algorithm is not as 
sensitive to parameter 
selection, and therefore 
doesn’t benefit as much 
from HSST selecting its 
parameters.  

Variability in Number of 
Units 

We also analyized the 
performance sensitivity to 
changes of the number of 
proximal neurons (Figure 
9B), while SNR was held 
constant. As the number of 
neural sources decreased, 
identifying the number of 

 
Figure 9: Parameter Sensitivity to Changes in SNR (A). Boxplot showing range of error resulting from parameter selection. Colored 
boxes show range of error from HSST selection. Grey boxes show range of error from all parameters included in the sweep. Some 
algorithms have high sensitivity to changes in SNR, other show little change in variability of error.  
Parameter Sensitivity to Changes in Number of Units (B). Modifying the number of clusters showed similar results to modifying 
SNR. As the number of clusters decreased, we saw improved performance on nearly every sorting algorithm. Simulated distance 
from the electrode was 150 µm.  

 
Figure 8: Classification Error. For each of the four datasets, 4 different values of 
SNR where sorted by each method. HSST sorted the data with each of the 
different methods across a wide range of parameters. Each of these algorithms 
(excluding WaveClus) required extensive parameter selection, with high 
sensitivity in accuracy to selection. HSST chose the best parameter from the 
given set. Error Bars denote expert human sorter variability. On each plot, 
classification error is shown on the Y axis, and SNR value of that dataset is shown 
on the X axis. Each dataset was injected with noise to produce four different SNR 
values on the X axis. 
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clusters became much easier 
as evidenced by a decrease in 
classification error.  We 
plotted the parameter range 
error (shown in grey) and the 
range of error of parameters 
selected by HSST (shown in 
color by sorting algorithm). 

Comparison to WaveClus 
(fully unsupervised version) 

To validate performance of 
the HSST algorithm against 
another unsupervised 
algorithm, we compared its 
accuracy against performance 
of an expert human sorter and 
an additional package in 
WaveClus codebase (Quiroga 
et al., 2004). This additional 
package has an automated 
method for estimating the two 
free parameters (temperature 
and minimum cluster size) of 
the Waveclus algorithm, 
making it a fully unsupervised. 
HSST’s performance in 
classifying waveforms was at 

least as good as a human and outperformed WaveClus (Figure 10).  

Real Neural Data 

To demonstrate performance on real neural data, we sorted data 
recorded from the cat dorsal root ganglia (DRG), when parameters 
in the algorithms were set by HSST. Since the ground truth is 
unknown in this dataset, expert human sorters labeled high SNR 
waveforms into units. We tested how well HSST could identify 
these units and label the rest of the waveforms as noise.  

Three statistical metrics were used to quantify performance 
(Figure 11) of these sorting algorithms: accuracy, sensitivity and 
specificity (Metz, 1978). Accuracy measured the percentage of 
correctly classified waveforms, either belonging to a high SNR unit 
or noise. To further understand how the waveforms were grouped 
by HSST, we plotted sensitivity (the likelihood of correctly 
labeling a waveform as a high SNR signal) and specificity 
(likelihood of incorrectly classifying a noise waveform as neural).  

A high accuracy score resulted from correctly labeling many 
waveforms; however, to analyze the individual failure modes of 
each algorithm (ie. did error result from missing neural activity or 
from labeling noise as signal), we needed sensitivity and 
specificity. Sensitivity measured correct identification of neural 
signal and specificity measured the rejection of noise. A high 
sensitivity score meant the classifier correctly labeled high SNR 
units, while a low sensitivity score meant the classifier incorrectly 
labeled high SNR waveforms as noise. High specificity scores 
meant noise waveforms were not included in high SNR units. 

Eighty datasets (each with one high SNR unit classified by an 
expert human sorter) were sorted using the six sorting algorithms 
compared previously (all of whom had HSST selecting their free 

parameters) (Figure 11). These results showed K-Means, GMM 
and DukeSort did the best job of reliably selecting these units, 
while WaveClus and M-Sorter usually included waveforms which 
didn’t belong in the cluster and UltraMegaSort2000 usually failed 
to find the high SNR unit. The bottom plot showed the difference 
between the total number of clusters identified by the expert human 
sorters and the number of clusters identified by the sorting 
algorithm. Each of these has zero mean, indicating HSST isn’t 
biased towards over or under selecting correct number of clusters.  

Speed and Calculation of HSST Sort Score 

To quantify the additional time (not including time for spike 
detection, feature extraction, or clustering) needed to score each 
sort result, we used HSST to score sort results for various numbers 
of waveforms and various numbers of units. Figure A5 showed 
total run time dominated by the sorting algorithm, while running 
HSST has very little overhead. Most algorithms have comparable 
runtimes, except for DukeSort which can take longer. These results 
show that computationally intensive algorithms do not necessarily 
translate to better performance. 

 
Figure 10: Average classification error 
between various sort methods on the 
generated data. Results are an average of 
the four datasets in Figure 11 (highest and 
lowest SNR values only) compared to 
average error of four expert human 
sorters. Because we are averaging across 
different datasets, the SNR values are 
approximately 2 (for the low SNR value) 
and 5 (the high SNR value). We see that 
the HSST (with a simple K-means sorting 
algorithm) can do at least as well as a 
human and does better than the other 
algorithms. Graph shows a boxplot, in 
which the middle bar shows the median 
value of the data, edges of the box show 
quartiles (25% and 75%) and whiskers 
show most extreme data points excluding 
outliners. 

 
Figure 11: DRG Sorting Results – (A) Accuracy, (B) Sensitivity, (C) 
Specificity. 80 datasets (classified by an expert human sorter, each with one 
high SNR unit) were sorted using six sort methods (all of whom had HSST 
selecting their free parameters). (D) The difference between the total number of 
clusters identified by the expert human sorters and the number of clusters 
identified by the sorting algorithm. Each of these histograms has zero mean 
with some standard deviation demonstrating no bias towards over or under 
selecting the number of clusters. 
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DISCUSSION  

The most vital aspect of this algorithm is its ability to determine 
the optimal parameters, given a finite set of parameters, for a 
specific sorting algorithm for the purpose of generating a reliable 
and physiologically plausible result. Our main design goal for the 
HSST was to consistently sort waveforms with high SNR, as these 
are the most likely signals to be used in further analyses. By using 
HSST for parameter selection, many sorting algorithms can avoid 
falling into local minima through over-optimizing on a narrow 
subset of training data. By sorting with a large range of parameters 
through HSST, they can achieve good results without requiring 
significant human oversight when sorting widely varying data 
(both SNR and number of clusters). By leveraging information 
known a priori about the biological constraints of neural firing (e.g. 
refractory period, multiphasic action potential waveform shape), 
we hope to improve the performance of sorting algorithms. 

Every sorting algorithm has a set of parameters (whether they are 
exposed to the end user or not) which determine the results of the 
algorithm. From the obvious K-Means example where K sets the 
number of clusters, to M-Sorter, which requires the user to specify 
the minimum distance from the generated template, those 
parameters are often optimally tuned for each individual dataset. 
While potentially useful to the user when sorting only a few 
datasets, these parameters cannot be fixed across a wide variety of 
data. HSST is designed to account for biological constraints in 
selecting the optimal parameter values to achieve the best possible 
sort for a given algorithm. 

HSST is not immune to some limitations of parameter fixing, for 
instance the SNR metric discards low SNR units which are 
potentially undesirable. However, when discretizing data from a 
continuous data set, some parameter-fixing is inevitable, and in the 
case of the SNR metric, if the user does not want to discard low 
SNR units, they can simply set the SNR threshold rejection 
threshold to 0. The multi-modality function has several fixed 
parameters, including the valley depth to determine multi-
modality. These values where determined empirically, however, 
are easily translatable to an accuracy score or some other measure 
of overlap between two one-dimensional Gaussian distributions. 
The user can set these parameters accordingly if the results are 
poor. Each of the parameters fixed in the HSST algorithm were 
held constant for all analysis done in this paper (Table A1). 

The final score is an average of the three category scores, over-
sorting, under-sorting, and noise. Some issue could be raised about 
the decision of how to incorporate each of the different metrics into 
those three scores. Certainly each of the three error categories 
could be strengthened by the addition of other metrics; however, 
there is little data/evidence to suggest a right or wrong way to 
classify each of these conditions other than evaluating their end 
result of parameter selection. One could also imagine determining 
a weighting vector to attach to each of the metrics, depending on 
the strength of each metric.  

Another topic for future study is the potential benefit of an 
iterative search of the parameter space, explored by HSST. One 
could argue the parameter space explored by K-Means or GMM is 
well understood and intuitive, while the more complex algorithms 
might have unintuitive multi-dimensional parameter spaces 
(yielding non-monotonic classification error results). A more 

complex parameter space might cause poor performance, allowing 
HSST to miss the optimal parameter.  

The HSST framework was designed for extensibility, allowing 
for additional sorting methods, additional metrics exploring new 
feature spaces, new detection/feature extraction processes or even 
a new process for searching the parameter space. The heuristic 
metrics provide the sort quality validation scores which judge the 
sorted results, allowing HSST to select the optimal parameter set. 

The HSST framework is publicly available for use with Matlab 
2018a (www.github.com/davidbjanes/HSST). The code for all 
algorithms tested in this study are also available. Templates for 
adding additional metrics, sorting algorithms, and detection/feature 
extraction methods are detailed in a README file. 

APPENDIX: Multi-Modality Function 
Many of the metrics used to detect under-sorting rely on determining the number 

of modes (or statistically separable groups) in some feature space of the data. Many 
papers and other techniques (Hartigan & Hartigan, 1985; Rozal & Hartigan, 1994; 
Sawitzki, 1996) have been developed to accomplish this task, but due to the 
variability of the data, a standard way of detecting multi-modal data was developed 
here (Figure A1), combining several previously developed methods.  
Procedure 

1. A one dimensional histogram (consisting of N bins) is generated from the data 
to be analyzed. N is the square-root of the number of data points (F & JW, 
1977, p. 49). 

2. The histogram is normalized (bin height corresponds to the percentage of total 
histogram area) and smoothed (each bin value is chosen as the median of itself, 
the bin immediately preceding and following it (Cocatre-Zilgien & Delcomyn, 
1992)).  

3. Consecutive bins which are less than 1% of the total area, beginning and 
ending the range of the histogram, are labeled “insignificant” and removed 
from analysis.  

4. All peak/valley pairs of the smoothed histogram are identified. Their 
differences in height are normalized between 0 (corresponding to the 1% 
significant bin area threshold) and 1 (the positive peak amplitude of the 
histogram). 

5. Any peak/valley pairs with a height difference of less than 0.25 are removed. 

 
Figure A1: Multi-modality Detector. Generic function to determine if more than 
one mode (group) is present in a 1 dimensional data set.  Histogram is formed 
from data in N bins (N is the square root of the number of data points (Mosteller. 
F. and Tukey (1977, p. 49)). Histogram is normalized by the sum of the bin area. 
A smoothed histogram generated by choosing each bin value as the median of 
the bin before and after it (Cocatre-Zilgien 1992); the output is filtered by a 
moving average (window size = 5 bins). All preceding and trailing bins less than 
1% are removed from analysis. Three identifiers are used to find number of 
modes. First, a Gaussian Mixture Model is generated with M components (M is 
equal to the number of local max peaks of the smoothed histogram); second, if 
consecutive middle bins are found below the 1% threshold then two or more 
modes are present; third, a local valley is found with both sides greater than the 
normalized height of .50 then two or more modes are present. 
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To indicate multi-modality within a set of data, the follow conditions were 
evaluated: 

1. Any valley whose neighboring peaks are both greater than 0.50 is an 
indication the data is not unimodal.  

2. For any valley whose neighboring peaks are both greater than 0.25, a 
Gaussian mixture model is generated using the number of local peaks as the number 
of components. Finding more than one local peak in the combined distribution is an 
indication the data is not unimodal. 

3. Finding three or more consecutive middle bins which are less than the 1% 
histogram area is an indication these data are not unimodal. 
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Figure A2: Noise estimation algorithm for determining SNR of neural signal. 
Iteration 0 shows the raw generated waveform. During each iteration, the 
standard deviation is estimated. The red dots indicate data points which lay more 
than four standard deviations from the mean of the entire waveform (shown in 
blue). A one millisecond snippet of the waveform is removed about that point 
(shown in red), and the next iteration estimates the updated distribution and 
removes more snips. This continues until the estimate for the standard deviation 
of the noise converges (shown on right column). 

 
Figure A4: Visualization of Parameter Selection and Poor Sorting Errors. 
Waveforms are shown in 2D PCA space. Color denotes different clusters. Ground 
truth classification of waveforms shown (A) in different colors. 2D PCA space is 
used purely for visualization of data. The light blue line in Figure 6A shows the 
classification error rate as a function of the parameter selection. We see HSST 
selects ‘K=5’ as the optimal parameter value, even though ‘K=4’, yields the 
lowest classification error rate (B). Here we show (C) the classification of 
waveforms of the same light blue line from Figure 6A, this time at the parameter 
value “K=4”. Ground truth classification of waveforms shown in Figure 6B in 
different colors. Looking at the dark blue line from Figure 6B, we see HSST 
selects ‘K=5’ as the optimal parameter value (E), even though the number of 
clusters in the known dataset is 4. A parameter value of 5 yields the lowest 
classification error rate, and HSST selects it appropriately. Here we show the 
classification of waveforms of the dark blue light in Figure 6B at “K=5”. In Panel 
F, we show the classification of waveforms of the dark blue light in Figure 6B at 
“K=4”. Even though this is the “correct” number of clusters, the algorithm 
performance is poor. 

 
Figure A3: Residual Metric for Determining Over-sorted Units. Simulated data 
from the WaveClus dataset was used to generate the figures.  
(A, D) Histogram slices showing the distribution of waveform amplitudes (color-
coded by Unit ID number) at various time stamps.  
(B) Histogram of waveform amplitudes (color-coded by Unit ID number) at time 
0.1ms after threshold crossing.  
(C) Empirical measure of variability of the Gaussian fit (individually estimated 
at each sample point) for Unit 2. Concentration about the mean is the percent of 
waveforms within one estimated standard deviation. A lower empirical measure 
means greater variably than the estimated fit. Higher concentration about the 
average means a higher empirical measure. We see that nearly all sample points 
are empirically measured to have a lower variance (greater percent of waveforms) 
than the estimated fit (Ideal Sigma = 1). No sample point is multi-modal. This 
unit would pass the metric.  
(E) Histogram of an under-sorted Unit 3. Unit 3 contains information from both 
Neuron 1 and Neuron 2 from (B). We see the Gaussian curve poorly fits the 
histogram.  
(F) If any sample point with a greater variance (lower percent of waveforms) than 
the ideal is multi-modal, the unit fails the metrics. We see several sample points 
which are multi-modal and have a greater variance than the estimated fit. This 
unit would fail the metric. 
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Equation A1: NeuroCube Model. r(t) is the recorded voltage of the simulated 
electrode. 500 different unique neural snippets are available. Each neuron n, is 
randomly assigned one of the 500 unique waveforms. N primary neurons are 
specified by the user (N < 6). Each primary neuron is guaranteed to have a 
different unique waveform. M background neurons are auto generated at a 
distance greater than 250um with a density specified by the user (M < 10E+7). 

 
Figure A5: Algorithm Speed. Box plot of 
speed of each algorithm including the 
overhead of running HSST at the end of each 
parameter set (as you can see with 
MATLAB-KM method, the total time 
averages less than two seconds, so the 
additional time of scoring a sort with HSST 
is of negligible consequence). The Y Axis 
shows seconds to sort and score (using a 
single set of parameters) a dataset running the 
given algorithm. The 80 datasets sorted and 

         
 

Parameter Location 
Amount of temporal overlap in 
D’Prime distributions 

Over-sorting Metric: Dissimilar Peaks 

Amount of overlap in SSE curves Noise Metric: ISI Exp. Fit 
Threshold for signal data points Noise Metric: SNR 
Number of consecutive bins Mutli-Modality Detector 
Size of valleys Multi-Modality Detector 

 
Table A1: List of all fixed parameters in the HSST algorithm. All these were 
fixed for all analysis throughout the paper. 
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