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ABSTRACT 

The majority of polygenic risk scores (PRS) have been developed and optimized in individuals of 

European ancestry, and may have limited generalizability across other ancestral populations. 

Understanding aspects of PRS that contribute to this issue and determining solutions is 

complicated by disease-specific genetic architecture and limited knowledge of trans-ethnic 

sharing of causal variants and effect sizes. Motivated by these challenges, we undertook a 

simulation study to assess the relationship between ancestry and the potential bias in PRS 

developed in European populations. Our simulations show that the magnitude of this bias 

increases with increasing divergence from European ancestry, and this is attributed to population 

differences in linkage disequilibrium and allele frequencies of European discovered variants, likely 

as a result of genetic drift. Importantly, we find that including into the PRS variants discovered in 

African ancestry individuals has the potential to achieve unbiased estimates of genetic risk across 

global populations and admixed individuals. We confirm our simulation findings in an analysis of 

HbA1c in the UK Biobank. Given the demonstrated improvement in PRS prediction accuracy, 

recruiting larger diverse cohorts will be crucial—and potentially even necessary—for enabling 

accurate and equitable genetic risk prediction across populations.  
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INTRODUCTION 

Increasing research into polygenic risk scores (PRS) for disease prediction highlights their clinical 

potential for informing screening, therapeutics, and lifestyle1. While their use enables risk 

prediction in individuals of European ancestry, PRS can have widely varying and much lower 

accuracy when applied to non-European populations2–4. Although the nature of this bias is not 

well understood, it can be attributed to the vast overrepresentation of European ancestry 

individuals in genome-wide association studies (GWAS), which is 4.5-fold higher than their 

percentage of the world population; conversely, there is underrepresentation of diverse 

populations such as individuals of African ancestry in GWAS, which is one fifth their percentage3. 

Potential explanations for the limited portability of European derived PRS across populations 

includes differences in population allele frequencies and linkage disequilibrium, the presence of 

population-specific causal variants or effects, or potential differences in gene-gene or gene-

environment interactions4. Recent methods developed to improve PRS accuracy in non-

Europeans have prioritized the use of European discovered variants and population specific 

weighting5–7. However, only small gains in accuracy are possible with limited sample sizes of non-

European cohorts4.  

 

PRS have been applied and characterized within global populations, but there is limited 

understanding of PRS accuracy in recently admixed individuals and whether this varies with 

ancestry. Studies applying PRS in diverse populations3,4,8 or exploring potential statistical 

approaches to improve accuracy in such populations6,9 typically present performance metrics 

averaged across all admixed individuals. Only one study to date has suggested that PRS 

accuracy may be a function of genetic admixture (i.e., for height in the UK Biobank5). However, it 

is unknown if the relationship between PRS accuracy and ancestry exists in the absence of 

population-specific trait effects or what the best approach for applying PRS to admixed individuals 

will be when there exists adequately powered GWAS in non-European populations.   
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To help answer these questions, here we systematically and empirically explore the relationship 

between PRS performance and ancestry within African, European, and admixed populations 

through simulations. We highlight PRS building approaches that will achieve unbiased estimates 

across global populations and admixed individuals with future recruitment and representation of 

non-Europeans in GWAS. We also investigate reasons for loss of PRS accuracy, and attribute 

this to population differences in linkage disequilibrium (LD) tagging of causal variants by lead 

GWAS variants, as well as allele frequency biases due to genetic drift in Europeans. Finally, we 

confirm our simulation findings by application to data on HbA1c levels in individuals of European 

and individuals of African ancestry from the UK Biobank.  

 

METHODS 

Simulation of Population Genotypes 

We used the coalescent model (msprime v.7.310) to simulate European (CEU) and African (YRI) 

genotypes, based on HapMap populations, for chromosome 20 as described previously by Martin 

et al.2 Genotypes were modeled after the demographic history of human expansion out of Africa11, 

assuming a mutation rate of 2 x 10-8. We simulated 200,000 Europeans and 200,000 Africans for 

each simulation trial, for a total of 50 independent simulations (20 million total individuals). We 

generated founders from an additional 1,000 Europeans and 1,000 Africans (10,000 total across 

the 50 simulations) to simulate 5,000 admixed individuals (250,000 total across the 50 

simulations) with RFMIX v.212 assuming two-way admixture between Europeans and Africans 

with random mating and 8 generations of admixture. 

 

True and GWAS Estimated Polygenic Risk Scores 

We generated true genetic risk scores for all European, African, and admixed individuals within 

each simulation trial.2 Briefly, m variants evenly spaced throughout the simulated genotypes were 
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selected to be causal and the effect sizes were drawn from a normal distribution with mean 0 and 

standard deviation h2/m, where h2 is the heritability; complete trans-ethnic sharing of effect sizes 

in Africans and Europeans was assumed. The true PRS was computed as the summation of all 

variant effects multiplied by their genotype for each individual. Finally, environmental ‘noise’ 

explaining the remainder of the phenotypic variation (1-h2) was added to the genetic risk defining 

the total trait liability2. Cases were selected from the extreme tail of the liability distribution, 

assuming a 5% disease prevalence. An equal number of controls and 5,000 testing samples were 

randomly selected from the remainder of the distribution; all 5,000 admixed individuals were also 

used for testing. 

 

The estimated PRS were constructed from GWAS of the simulated genotypes (modeled after 

chromosome 20) in Europeans and Africans, each with 10,000 cases and 10,000 controls. Odds 

ratios (ORs) were estimated for all variants with minor allele frequency (MAF) > 1% and statistical 

significance of association was assessed with a chi-squared test. For each population, variants 

were selected for inclusion into the estimated PRS by p-value thresholding (p = 0.01, 1x10-4, and 

1x10-6) and clumping (r2 < 0.2) in a 1 Mb window within the GWAS population, where r2 is the 

squared Pearson correlation between pairs of variants. A fixed-effects meta-analysis was also 

performed to calculate the inverse-variance weighted average of the ORs in Africans and 

Europeans, and LD r2 values for clumping used both datasets as the reference.  

 

For each individual, an estimated PRS was calculated as the sum of the log(OR) (i.e., the PRS 

‘weights’) multiplied by their genotype for all independent and significant variants at a given 

threshold. The PRS were constructed for testing samples with variants and weights each selected 

from European or African GWAS, or a fixed-effects meta of both combined. An additional local 

ancestry variant weighting approach was also explored for admixed individuals. Accuracy was 

measured by Pearson’s correlation (r) between the true and estimated PRS within each 
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population, averaged across simulation trials. Ninety-five percent confidence intervals for r were 

calculated following a Fisher z-transformation for approximate normality, averaged across the 50 

trials for each simulation scenario. The statistical significance of differences in accuracy between 

PRS approaches was assessed within each ancestry group with a z-test (also following Fisher 

transformation), taking the median p value across trials.  

 

Local Ancestry Weighting PRS 

In addition to genotypes of simulated admixed individuals, RFMIX12 also outputs the local ancestry 

for every individual. Thus, we used this information to create a local ancestry weighted PRS. For 

every individual and PRS variant, the weight varied based on the individual’s ancestry at that 

position. If at a given variant the local ancestry was European, then the weight from the European 

GWAS was used; similarly, if the local ancestry was of African descent then the weight from the 

African GWAS was used. If the local ancestry was heterogeneous, then the weight from the fixed-

effects meta was used. In this way each individual has a PRS constructed from the same 

independent variants with personalized weights that are unique to the individual’s local ancestry. 

 

Application to Real Data 

We obtained genome-wide summary statistics for HbA1c from a recent study that performed a 

within-ancestry fixed-effects meta-analysis in diabetes-free controls for 123,665 individuals of 

European ancestry and 7,564 individuals of African ancestry13. PRS were constructed from 

associated and independent GWAS variants within each population by p-value thresholding (p= 

{5x10-8, 1x10-7, 5x10-7, 1x10-6, 5x10-6, 1x10-5, 5x10-5, 1x10-4, 5x10-4, 1x10-3, 5x10-3, 0.01, 0.05, 0.1, 

0.5, 1}) and clumping (LD r2 < 0.2) of variants within 250kb with PLINK14. Additionally a fixed-

effects meta-analysis of the two populations was performed using METASOFT v2.0.115. 
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PRS performance was evaluated using genotype and phenotype data for 394,472 individuals of 

European ancestry and 5,886 individuals of African ancestry with HbA1c levels available from the 

UK Biobank, imputation and quality control previously described16. Ancestry was defined based 

on self-report; however, samples that did not fall within five standard deviations of the population 

mean for the first two principal components were excluded. For each individual, their PRS was 

computed as the weighted sum of the genotype estimates of effect on HbA1c from the above 

study, multiplied by the genotype at each variant. For each population-specific variant set, weights 

from either the European or African HbA1c summary statistics or the fixed-effects meta-analysis 

were used. A total of 96 polygenic risk scores were evaluated exploring the impact of ancestral 

population (two scenarios), p-value threshold (16 scenarios), and variant weighting (three 

scenarios). The proportion of variation explained by each PRS (partial-R2) approach was 

assessed for UKB European-ancestry and African-ancestry individuals separately. The partial-R2 

was calculated from the difference in R2 values following linear regression of HbA1c levels on age 

and sex, with and without the PRS also included.  

 

RESULTS 

Generalizability of European Derived Risk Scores to an Admixed Population 

We constructed PRS from our simulated European datasets and applied them to independent 

simulated European, African, and admixed testing populations. On average, 1552 (range = [1134-

1920]) variants were selected for inclusion into the PRS at p-value < 0.01 and LD r2 < 0.2 (Table 

1). The average accuracy, measured by the correlation (r) between the true and inferred genetic 

risk, was much higher when applying the PRS to Europeans (r = 0.77; 95% CI = [0.76, 0.78]) than 

to Africans (r = 0.45; 95% CI = [0.43, 0.48]; Figure 1). This is in agreement with decreased 

performance seen in real data when applying a European derived genetic risk score to an African 

population2–4. 

 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 24, 2020. ; https://doi.org/10.1101/2020.05.21.108845doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.21.108845
http://creativecommons.org/licenses/by-nc-nd/4.0/


To understand the relationship between ancestry and PRS accuracy, admixed individuals were 

stratified by their proportion of genome-wide European (CEU) ancestry: high (100%>CEU>80%), 

intermediate (80%>CEU>20%), and low (20%>CEU>0%). PRS performance decreased linearly 

with decreasing European ancestry (Figure 1). Average accuracy (Pearson’s correlation) for the 

high, intermediate, and low European ancestry groups was 0.73 (95% CI = [0.68, 0.77]), 0.61 

(95% CI = [0.59, 0.63]), and 0.52 (95% CI = [0.45, 0.6]), respectively (Figure 1). In comparison to 

Europeans, the performance of the European derived PRS was significantly lower in individuals 

with intermediate (20% decrease, p = 1.27x10-47), and low (32% decrease, p = 6.48x10-16) 

European ancestry, and with African-only ancestry (41% decrease, p = 8.00x10-155). There was 

no significant difference for individuals with high (5.3% decrease, p = 0.09) European ancestry. 

These trends remained consistent when varying the genetic architecture (Supplementary Figure 

1), specifically decreasing the number of causal variants (m) and varying the trait heritability (h2), 

as well as the p-value threshold used for variant selection (Supplementary Figure 2). 

 

Population Specific Weighting of European Selected Variants 

Using a well-powered GWAS from our simulated African cohort (10,000 cases and 10,000 

controls), we aimed to explore the potential accuracy gains achieved from a PRS with European 

selected variants, but with population specific weighting of these variants. We applied three 

different weighting approaches to incorporate non-European effect sizes: (1) effect sizes from an 

African GWAS for all variants; (2) effect sixes from a fixed-effects meta-analysis of European and 

African GWAS for all variants, both having 10,000 cases and 10,000 controls; and (3) population 

specific weights based on the local ancestry for an individual at each variant in the PRS (Figure 

2).  

 

The most accurate PRS approach varied by the proportion of European ancestry. Populations 

with greater than 20% African ancestry benefited significantly from the inclusion of population 
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specific weights (Figure 2). Intermediate European ancestry benefitted most from using fixed-

effects meta-analysis weighting instead of European weights (r = 0.64 vs. 0.61, p = 0.02). In 

contrast, variant weighting from an African GWAS instead of from European had higher accuracy 

in low European ancestry (r = 0.65 vs. 0.53, p = 0.009) and African-only (r = 0.64 vs. 0.45, p = 

2.02x10-44) populations. Individuals with high European ancestry had similar accuracy with 

weights from a fixed-effects meta-analysis as from European (r = 0.73 in both, p = 0.79), but 

decreased performance with the inclusion of weights from an African GWAS (r = 0.62 vs. 0.73, p 

= 0.01).  

 

No clear benefits were observed for local ancestry informed weights compared to weights from a 

European or African GWAS or fixed-effects meta-analysis. Individuals with high, intermediate, 

and low European ancestry had similar accuracy using local ancestry informed weights as with 

the best weighting in each ancestry group: r = 0.72 vs. 0.73 (from fixed-effect or European 

weights; p = 0.86); r = 0.63 vs. 0.64 (from fixed-effect weights; p = 0.26); and r = 0.63 vs. 0.65 

(from African weights; p = 0.50), respectively (Figure 2).  

 

Performance of Non-European PRS Variant Selection and Weighting Approaches 

In our simulations, population specific weighting of PRS SNPs discovered in Europeans improved 

PRS accuracy; however, the disparity between performance in Europeans versus Africans and 

admixed ancestry individuals remained large. We aimed to explore the potential improvements in 

PRS that could be gained by including variants discovered in large, adequately powered African 

ancestry cohorts. Following clumping and thresholding of significant variants using LD and 

summary statistics from the simulated African populations, an average of 5269 (range = [4462-

6071]) variants were included in the PRS (Table 1) reflective of the greater genetic diversity and 

decreased LD compared to Europeans17. In contrast, when constructing a PRS using the same 

LD and p-value criteria applied to a fixed-effects meta-analysis of European and African ancestry, 
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an average of only 92 (range = [38-197]) variants were included in the PRS. This substantially 

smaller number was a result of few variants being statistically significant in both populations. Of 

the total number of variants included from the European GWAS, African GWAS, and fixed-effects 

meta, only 1.15%, 0.54%, and 15.0% on average were the exact causal variant from the 

simulation; an additional 3.72%, 5.34%, and 33.3% tagged at least one causal variant with r2 > 

0.2 (and were within ±1000 kb of that causal variant) in Europeans and 3.45%, 2.42%, and 28.1% 

in Africans (Table 1). The limited overlap between true causal and GWAS selected variants is a 

result of causal variants in our simulation arising from the total spectrum of allele frequencies, and 

therefore more likely to be rare, while GWAS is better powered to detect common variants in the 

study population from which they were identified2. These common variants may not adequately 

tag rare variants due to low correlation18.    

 

Overall, we constructed twelve PRS with variants selected from GWAS in Europeans or Africans 

or a fixed-effects meta of both (three scenarios) and weights from the same approaches plus an 

additional local ancestry specific weighting method (four scenarios) (Figure 2). For Europeans, 

the highest PRS accuracy was achieved with European selected variants and weights (r = 0.77; 

95% CI = [0.76, 0.78]); however, a similar accuracy was observed for weights from a fixed-effects 

meta (r = 0.76; p = 0.53). For Africans, the highest PRS accuracy was with African selected 

variants and weights from a fixed-effects meta (r = 0.75; 95% CI = [0.73, 0.76]), similar 

performance was observed with African variants and weights (r = 0.74, p = 0.28). For admixed 

individuals, the highest performing PRS depended on the population ancestry percentage. In 

individuals with high European ancestry (>80%), the best PRS was with European selected 

variants and fixed-effects meta or European weights (r = 0.73; 95% CI = [0.68, 0.77]). For 

individuals with intermediate (20%-80%) or low (<20%) European ancestry, the most accurate 

PRS was from using African selected variants and weights from a fixed-effects meta-analysis (r 

= 0.68; 95% CI = [0.66, 0.69] and 0.71; 95% CI = [0.66, 0.76], respectively). Again, no benefit was 
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observed with the inclusion of local ancestry specific weights for any set of PRS variants. Using 

a more stringent p-value threshold and including fewer variants into the PRS did not result in a 

change of the best PRS variants and weights (Supplementary Figure 2). 

 

Inclusion of Variants from Diverse Populations 

We found that including in the PRS variants discovered in African GWAS with population specific 

weights results in less disparity in PRS accuracy across ancestries compared to European 

selected variants, confirming that GWAS in non-bottlenecked populations may yield a more 

unbiased set of disease variants19. For example, applying to Africans a PRS derived from GWAS 

variants discovered in Africans (with PRS weights from the African study) results in a 15.7% higher 

accuracy compared to using a PRS comprised of variants discovered in a European GWAS (also 

with African weights). In contrast, the gains in accuracy achieved by sourcing variants from 

ancestry-matched studies were much lower in Europeans. Compared to a PRS with variants from 

an African GWAS (with European weights), a PRS derived from a European GWAS (also with 

European weights) only gave a 3.9% higher accuracy. We also observed better generalization of 

PRS based on African selected variants across all admixed groups (Figure 2). 

 

Based on simulations, the best PRS for admixed individuals with at least 20% African ancestry 

selects variants based on an African GWAS with variant weights from a fixed-effects meta-

analysis. This assumes equal sized African and European cohorts (10,000 cases and 10,000 

controls). When decreasing the number of African cases, we still see considerable improvements 

over using a European derived (European selected variants and weights) PRS, especially for low 

European ancestry (CEU < 20%) where even with 10-fold fewer African samples we see a 14.1% 

increase in PRS accuracy compared to the European derived risk score (Figure 3). 

 

Allele Frequency and Linkage Disequilibrium of GWAS variants 
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We sought to understand what factors impacted PRS generalizability across the different variant 

selection approaches. GWAS performed in Europeans and Africans (for SNPs with MAF ³ 0.01) 

were both more likely to identify significant variants that were more common in their own 

population than in the other. Approximately 60% of variants identified in Europeans had minor 

allele frequencies less than 1% in Africans and vice-versa; however, as expected, the smaller 

number of variants selected by a meta-analysis of the two populations tended to have more similar 

minor allele frequencies (Figure 4a). Although European and African GWAS were both better 

powered to detect variants at intermediate frequencies within the same study population, due to 

genetic drift GWAS in Europeans may be unable to capture derived risk variants that have 

remained in Africa, whereas GWAS in Africans are not subject to this bias19. 

 

We also examined LD tagging of causal variants by GWAS selected variants within our simulated 

European and African populations. This entailed computing the LD scores for every causal 

variant, where the LD score was the sum of the LD r2 between that causal variant and every 

GWAS tag variant within ±1000 kb. The LD scores calculated in Europeans and Africans were 

highly correlated (Pearson’s r > 0.7) for the GWAS and fixed-effects meta selected variants. 

Variants selected from a fixed-effects meta had the highest LD score correlation between 

populations, as expected given that the variants reached significance in both populations and 

therefore were more common with similar LD patterns (Figure 4b). Since LD score correlation did 

not vary largely between simulations, we examined the raw LD scores for a single simulation in 

order to understand differences in LD score magnitude not captured by the Pearson’s correlation.  

 

We found that European selected variants had higher LD scores in Europeans compared to in 

Africans; however, variants selected from an African GWAS tagged causal variants in both 

populations more strongly (Figure 4c). This is unlikely to be due to the larger number of African 
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selected variants, as the results were unchanged following normalization of LD scores by size of 

the PRS (Supplemental Figure 3). Fixed-effects meta-analysis variants had similar LD score 

magnitudes. However, while a greater proportion of the fixed-effects meta selected variants were 

causal, fewer were strong tags for causal variants not directly identified, highlighting the potential 

need to allow for greater heterogeneity of effects for tag variants20.  

 

Application to Real Data 

To corroborate our simulation findings, we undertook an analysis of 96 PRS developed for the 

prediction of HbA1c levels in 394,472 Europeans and 5,886 African-ancestry individuals from the 

UK Biobank. We tested variant selection strategies based on p-value thresholding and LD 

clumping of genome-wide summary statistics13 computed in European (n = 123,665) or African (n 

= 7,564) cohorts and variant weights from the same approaches with an additional weighting from 

a trans-ethnic fixed-effects meta. Across the different p-value thresholds (Methods) we found a 

strong overlap (>98%) between PRS variants selected from independent European summary 

statistics and those available in UK Biobank Europeans (following imputation); however, overlap 

in UK Biobank Africans was much lower ranging from 60% to 77% (Supplementary Table 1). In 

contrast, variants selected from summary statistics based on an independent African ancestry 

population had strong overlap (>97%) across all p-value thresholds for both populations 

(Supplementary Table 1).  

 

In UK Biobank Europeans, the best performing PRS (European variants, European weights, p < 

5x10-5) explained 2.5% of the phenotypic variance. In UK Biobank African ancestry individuals, 

with approximately 13.1% European ancestry5, the best performing PRS (African variants, fixed-

effect meta weights, p < 0.5) explained only 0.41% of the phenotypic variance. Although the 

proportion of variation explained by the PRS (partial-R2) was consistently lower in UK Biobank 

Africans compared to Europeans, prediction was improved through the use of African selected 
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PRS variants (Supplementary Figure 4). This improvement was apparent at more inclusive p-

value thresholds (p > 0.05), likely a reflection of the underpowered African GWAS with 16-fold 

fewer samples than the European GWAS13. Interestingly, we found that the proportion of variation 

explained in UK Biobank Europeans also increased when using African GWAS variants with 

increasing p-values, supporting our simulation finding that variants identified in African ancestry 

populations can be used for prediction in Europeans with limited bias.    

  

DISCUSSION 

Our work shows that incorporating variants selected from European GWAS into a PRS can result 

in less accurate and biased prediction in non-European and admixed populations. We 

demonstrate the anticipated improvements in PRS prediction accuracy that may be achieved with 

the inclusion of diverse individuals in GWAS, providing further evidence that supports the need to 

actively recruit non-European populations.  

 

Our simulation finding that prediction accuracy of a European derived PRS varies with proportion 

of European ancestry in admixed African and European populations is consistent with a recent 

study of height where there was a 1.3% decrease for each 10% increase in European ancestry5. 

This decrease in prediction accuracy has been attributed to linkage disequilibrium and allele 

frequency differences, as well as differences in effect sizes across populations contributing to 

height5. Our work adds further insights into this reduction in PRS accuracy, showing that (1) it 

exists in the absence of trans-ancestry effect size differences, and (2) variants selected from an 

African population may not have these same biases. Although GWAS in African populations also 

identify variants with population allele frequency differences, they have more consistent LD 

tagging of causal variants across populations. These observations support the hypothesis that 

well-powered African GWAS will be able to more accurately capture disease associated loci that 

are more broadly applicable across populations, due to having undergone less genetic drift19. 
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Current methods for improving PRS accuracy in diverse populations have prioritized the inclusion 

of variants from European GWAS, as these have higher statistical power to identify trait 

associated loci. For example, one such approach uses a two-component linear mixed model to 

allow for the incorporation of ethnic-specific weights6. Another method creates ancestry-specific 

partial PRS for each individual based on the local ancestry of variants selected from a European 

GWAS7. This approach was found to improve trait predictability, compared to a traditional PRS 

with population specific or European weights, in East Asians for BMI but not height7. In contrast, 

our simulation found that PRS accuracy was higher with African or fixed-effects meta weighting 

than with local ancestry in African populations. Note that unlike the previous method,7 while our 

simulation is not impacted by incorrect local ancestry inference, we include weights from a fixed-

effects meta and do not weight our combined PRS by proportion of overall ancestry. Our results 

suggest that true equality in performance will be difficult to obtain solely based on European-

identified variants even with local ancestry-adjusted weights. Although local ancestry weighting 

may have greater benefits when complete trans-ethnic sharing is not assumed, we show that in 

the absence of population-specific factors, the optimal PRS approach involves using variants 

identified in an African population and population-specific weighting. Other approaches have 

focused on a mixture of PRS taking advantage of existing well-powered GWAS studies and 

supplementing with additional information that can be gained from a smaller study in the 

population of interest9. While this approach may offer relative improvement in PRS accuracy for 

non-Europeans compared to a European-derived PRS, our simulation suggests that the inclusion 

of significant tag variants discovered in Europeans may unnecessarily hinder predictive 

performance in non-Europeans.  

 

An important novel finding of our work that the inclusion of variants from an African-ancestry 

population results in less disparity in PRS accuracy across other populations, illustrates the need 
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to recruit diverse populations in GWAS and make these data readily available. Large consortia 

such as H3Africa, PAGE, the Million Veterans Program, and All of Us are undertaking efforts to 

support this initiative. Based on our analysis of HbA1c in the UK Biobank, we find that 

improvement in PRS prediction accuracy is currently possible by incorporating findings from 

GWAS in African ancestry populations, albeit with lower power. In addition to smaller sample 

sizes, this potential improvement may be limited by ascertainment bias in what SNPs are included 

on genotyping arrays and poorer imputation in non-Europeans. GWAS arrays and their imputation 

have substantially higher coverage among Europeans, and this may result in decreased PRS 

portability of findings across traits; in such situations, whole genome sequencing in diverse 

populations may be needed in order to improve accuracy21,22. Our study and others support the 

immense genetic diversity that can be unlocked by studying underrepresented populations to both 

eliminate the disparity in genetics for prediction medicine and provide novel insights into disease 

biology for all populations19,21,23.  

 

Although our simulation study provides important insight into the future of PRS use, it has 

important limitations. First, while coalescent simulations allow for decreased computational 

burden, model assumptions may result in inaccurate long-range linkage disequilibrium especially 

for whole genome simulations24. However, given we only simulated chromosome 20, biases are 

expected to be modest24. In addition, our simulations assume random mating among admixed 

individuals and therefore do not reflect the more complex assortative mating that may be 

observed, which may impact the distribution of local ancestry tract lengths in our simulation and 

therefore hinder the improvement of PRS accuracy by local ancestry weighting25. Finally, we have 

only simulated individuals from Yoruba, a West African population, which may not be 

representative of the greater diversity in Sub Saharan Africa26. Future work must be done to 

ensure our findings can be extended to individuals from other regions of Africa.  
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Overall, our findings support the concern that while studies have demonstrated the potential 

clinical utility of PRS, adopting the current versions of these scores could contribute to inequality 

in healthcare4. Going forward, future studies should prioritize the inclusion of diverse participants 

and care must be taken with the interpretation of currently available risk scores. While statistical 

approaches may offer improvements in accuracy compared to current European-derived risk 

scores, in order to truly diminish the disparity and achieve PRS accuracies similar to in Europeans 

we must actively recruit and study diverse populations.  
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WEB RESOUCES 

Simulation code: https://github.com/taylorcavazos/PRS_Admixture_Simulation 

HBA1 summary statistics (Wheeler et. al.): https://www.magicinvestigators.org/downloads/ 
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TABLES 

 

Table 1. Summary of PRS Variants and Causal Tagging across Simulations 

 

 

 

Table 1 Legend: The set of PRS variants from each GWAS and the fixed-effects meta-analysis were selected by p-value 

thresholding (p < 0.01) and clumping (r2 < 0.2) across the 50 simulations. Each PRS variant was compared to the causal set of 

variants (m = 1000) within each simulation to determine the direct overlap between the two sets and the LD r2 between the PRS 

variant and every causal variant within a 1000 kb window. The total number of selected PRS variants that tag at least one causal 

variant at r2 greater than 0.8, 0.6, 0.4, or 0.2 is listed in the table.  

GWAS Population Total # PRS Variants (p<0.01) # Causal # in LD with a Causal Variant

European 1552 [1134-1920] 18 [10-26] r2> 0.8 r2> 0.6 r2> 0.4 r2> 0.2

LD in Europeans 27 [16-40] 32 [22-44] 39 [25-55] 58 [38-80]
LD in Africans 20 [9-36] 25 [16-42] 34 [24-54] 53 [35-70]

African 5269 [4462-6071] 28 [18-40] - - - -
LD in Europeans 94 [67-122] 132 [95-171] 183 [123-238] 280 [202-364]
LD in Africans 37 [26-48] 48 [34-61] 67 [50-89] 127 [81-170]

Fixed-Effects Meta 92 [38-197] 12 [5-22] - - - -
LD in Europeans 15 [6-26] 17 [6-28] 21 [9-39] 29 [16-47]
LD in Africans 13 [6-21] 14 [6-25] 17 [9-29] 24 [10-43]

* The number of variants is reported as the average and range [low-high] across the 50 simulations.
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FIGURES 

Figure 1. Accuracy of European Derived PRSs by Proportion of Total Ancestry 

 

 

Figure 1 Legend: Accuracy of PRS, with variants and weights from a European GWAS, decreases linearly with increasing 

proportion of African ancestry. Variants and weights were extracted from a GWAS of 10000 European cases and 10000 European 

controls. PRS accuracy was computed as the Pearson’s correlation between the true genetic risk and GWAS estimated risk score 

across 50 simulations in independent test populations of 5000 Europeans, 5000 Africans, and 5000 admixed individuals. Admixed 

individuals were grouped based on their proportion of genome-wide European ancestry. Simulations assume 1000 causal variants 

and a heritability of 0.5 to compute the true genetic risk. A p-value of 0.01 and LD r2 cutoff of 0.2 was used to select variants for the 

estimated risk score.  
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Figure 2. PRS Construction Approaches and Performance in Admixed Individuals 

 

 

 

Figure 2 Legend: Using significant variants from an African GWAS with population-specific weights results in less disparity 

in PRS accuracy across populations. PRS were constructed using variants and weights selected from either a European or 

African population (10000 cases, 10000 controls each) or a fixed-effects meta-analysis of both. An additional local ancestry specific 

method was used for PRS weighting. Performance, measured as the Pearson’s correlation between the true and GWAS estimated 

risk score, is shown across 50 simulations. Simulations assume 1000 causal variants and a heritability of 0.5 to compute the true 

genetic risk. A p-value of 0.01 and LD r2 cutoff of 0.2 was used to select variants for the estimated risk scores.  
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Figure 3. Impact of African Sample Size on PRS Accuracy and Generalization 

 

 

 

Figure 3 Legend: PRS accuracy in diverse populations can be improved by including data from an African GWAS with 

smaller sample sizes than in Europeans. The number of African samples used in the GWAS and subsequent PRS construction 

was decreased to reflect availability of diverse samples in real data. Analysis was conducted assuming 100, 500, 1000, 5000, and 

10000 (matched size of European dataset) African cases. Average accuracy and the 95% confidence interval were reported across 

the 50 simulations for different variant selection and weighting approaches. Simulations assume 1000 causal variants and a 

heritability of 0.5 to compute the true genetic risk. A p-value of 0.01 and LD r2 cutoff of 0.2 was used to select variants for the 

estimated risk score. 
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Figure 4. Allele Frequency Distribution of GWAS Selected Variants and LD Tagging of Causal Variants 

 

 

 

Figure 4 Legend: GWAS significant variants are more common in the study population from which they were discovered; 

however, African GWAS variants may result in better LD tagging across populations. Variants were selected from a European 

or African GWAS or a fixed-effects meta of both populations. 4a. GWAS variants were binned by their minor allele frequency 

estimated from the European, African, and admixed populations. The error bar represents the 95% CI across simulations. 4b. LD 

a)

b) c)
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scores were calculated for every causal variant by adding up the LD r2 for each GWAS tag variant within ±1000 kb of the causal 

variant. LD scores calculated in a Europeans and Africans were compared by Pearson’s correlation. The results were summarized 

across simulations as the average and 95% CI. 4c. Raw LD scores for each causal variant (m = 1000) calculated in a European or 

African population for one simulation. Each panel shows the approach used for variant selection. Causal variants directly discovered 

through the GWAS are colored in grey. 
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