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Abstract: Phosphorelays are signal transduction circuits that combine four different 
phosphorylatable protein domains for sensing environmental changes and use that information 
to adjust cellular metabolism to the new conditions in the milieu. Five alternative circuit 
architectures account for more than 99% of all phosphorelay operons annotated in over 9000 
fully sequenced genomes, with one of those architectures accounting for more than 72% of all 
cases. 

Here we asked if there are biological design principles that explain the selection of preferred 
phosphorelay architectures in nature and what might those principles be. We created several 
types of data-driven mathematical models for the alternative phosphorelay architectures, 
exploring the dynamic behavior of the circuits in concentration and parameter space, both 
analytically and through over 108 numerical simulations. We compared the behavior of 
architectures with respect to signal amplification, speed and robustness of the response, noise 
in the response, and transmission of environmental information to the cell. 

Clustering analysis of massive Monte Carlo simulations suggests that either information 
transmission or metabolic cost could be important in selecting the architecture of the 
phosphorelay. A more detailed study using models of kinetically well characterized 
phosphorelays (Spo0 of Bacillus subtilis and Sln1-Ypd1-Ssk1-Skn7 of Saccharomyces cerevisiae) 
shows that information transmission is maximized by the natural architecture of the 
phosphorelay. In view of this we analyze seventeen additional phosphorelays, for which protein 
abundance is available but kinetic parameters are not. The architectures of 16 of these are also 
consistent with maximization of information transmission.  

Our results highlight the complexity of the genotype (architecture, parameter values, and 
protein abundance) to phenotype (physiological output of the circuit) mapping in 
phosphorelays. The results also suggest that maximizing information transmission through the 
circuit is important in the selection of natural circuit genotypes.    
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Background 
Organisms and cells use signal transduction circuits to detect environmental changes and make 
decisions on how to adjust their internal milieu to better survive those changes. Those circuits 
modulate the cellular response and its metabolic adjustments.  

Phosphorelays (PR) are a large and important class of signal transduction circuits in 
microorganisms and some plants1–4. A self-phosphorylating Sensor Kinase (SK) modulates its 
own phosphorylation state in response to the environmental signal. The phosphorylated SK 
transfers its phosphate to an aspartate residue in a Response Regulator (RR) protein. This 
response regulator transfers its phosphate to a Histidine phosphotransfer (Hpt) protein domain, 
which then transfers the phosphate to a final RR (Figure 1). The phosphorylation state of the 
circuit modulates cellular activity and adaptation. PR are important for making life or death 
decisions about sporulation 5,  in adapting to various stressors 6, such as changing levels of 
oxygen 7, or in developmental decisions made by many plants 8. 

The four-step nature of the PR phosphotransfer cascade creates steeper signal response curves 
than those of two component systems (TCS), a simpler signal transduction alternative to PR with 
only two phosphotransfer steps 9–15. This difference could explain the evolution of PR as an 
alternative to TCS signaling.  

Still, PR circuits can assemble the four-step phosphotransfer cascade using alternative protein 
domain assembly architectures 12–14,16–18. This raises the question of whether alternative PR 
architectures may have irreducible physiological differences for the behavior of the circuit or if 
those differences may be quenched easily by evolving appropriate parameter values 9,10,19–21. In 
this context, can we identify general physiological requirements that dominate the selection of 
PR circuit architectures and/or parameters?  

To address this question we used a comprehensive census of PR circuit architectures, and 
analyzed over 9000 fully sequenced microbial and plant genomes. We found that more than 
72% of all PR coded in a single operon have the same circuit architecture (M3 of Figure 1) 16. 
Four additional architectures account for another 27% of all other PR (architectures M1, M2, 
M2’, an M4 of Figure 1) 16. 

To understand the physiological differences between the five PR architectures we consider a set 
of physiological variables that are important for the function of PR. We analyze how adjusting 
those variables for improved circuit performance depends on the architecture, the protein 
abundance, and the parameter values of the PR. Our results suggest that optimizing different 
aspects of environmental information transmission to the cell could be crucial for selection of a 
specific PR architecture. They also suggest that fine tuning of parameter values and protein 
abundances could, in many cases, overcome intrinsic differences between the physiological 
responses of alternative circuit architectures. Together, the results reported here have 
consequences for understanding the evolution of PR signal transduction circuits and for the 
development of synthetic biology PR circuit applications.
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Results 
 

Physiological variables as a proxy for circuit performance in signal transduction 
The overall fitness of organisms is affected by how their molecular components organize into 
biological circuits 22,23. The organization of molecular circuits with common biological functions 
in different organisms may have alternative architectures. Often, these alternatives lead to 
improved circuit performance in the context of the organisms where they are observed. 
Understanding how the alternative architectures affect circuit performance requires that the 
physiological variables that are important for the biological function of the circuit are 
understood.  Over the last few decades, several of these physiological variables were identified 
as important in determining the performance of molecular signal transduction circuits. We 
compiled those variable and summarize them in Table 1.  

 

Comparing physiological variables between architectures  
To investigate if any physiological variable or combination thereof might explain the genomic 
frequency differences between the five alternative PR architectures shown in Figure 1, we 
started by creating mathematical models that permit estimating the variables from Table 1 for 
each of the architectures. Then, we analyzed those models and compared the variables between 
architectures in a controlled manner. 

We note that the comparisons consider variables that are physiologically relevant in two 
domains for the dynamic response of the circuits (Table 1): (i) the deterministic domain (≥~1000 
copies of the circuit per cell); (ii) the stochastic domain (<1000 copies of the circuit per cell). The 
methods used to calculate the different physiological variables depend on the regime being 
analyzed.  

In the deterministic domain, signal amplification, robustness, speed, and metabolic cost can be 
calculated analytically for each architecture (see Datafile_S1.zip for the analytical expressions). 
We compare which architecture has the highest value for each of these variables by taking the 
ratio of that variable between all possible pairs of architectures. A detailed analysis of the 
analytical ratios shows that the best performing architecture with respect to any variable 
depends on the parameter values. 

To investigate if, statistically, there were physiological differences between architecture with 
respect to the different physiological variables we used a Monte Carlo approach. We randomly 
generated sets of parameter values, tested the system they created and selected those that 
create realistic behavior for each architecture and permit comparing that behavior between 
architectures in a controlled manner (see methods for details). We stopped generating new sets 
when five thousand realistic systems were obtained for each architecture. Overall, we scanned 
for more than one hundred and sixty million parameter sets.  

Then, for each variable and set of parameter values, we calculated the numerical value of the 
physiological variables. Finally, for each variable, we selected the 10% of systems that performed 
better and calculated the percentage of each architecture contained in this high-performance 
set.  
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The percentages of systems for each architecture in the best performing systems are very 
different from the relative genomic frequency of the architectures. Because of this we ranked 
the five architectures from best (1) to worst (5). Results are summarized in Table 2.   

We then clustered the vectors of architecture ranks (Figure 2) using a Canberra distance metric. 
We find that Information transmission and cost are the physiological variable that generate a 
rank that is the most similar to that generated by genomic frequency.      

Controlling for the possibility of bias in parameter space: data-driven comparative 
analysis of the five architectures 
The previous results suggest that either cost of operating the circuit or information transmission 
or both could justify that architecture M3 is the most frequently found in genomic PRs. Still, 
given the percentage differences in architectural abundance between high performance and 
genomic PRs, it could be that we are analyzing parameter regions and protein abundances that 
are unexplored by nature, biasing our results. 

To control for this possibility, we searched the literature for experimentally determined 
parameter values for the individual reactions of PR. A similar search was done for the total 
amount of the individual proteins in the circuit. Then, using a Latin hypercube approach (see 
methods) we created parameter values sets combining those values.  Overall, five hundred 
combinations of parameters and concentrations were analyzed, percentages of abundance for 
each architecture in the set of systems that have the top 10% best performance were calculated 
as described above and clusters were built.  The results are similar to those described before 
(Figure 2).  

In order to clarify if cost or information transmission through the circuit are important factors in 
selecting PR architecture we performed two additional data driven sets of experiments. 

What physiological variables are optimized by native architectures in kinetically 
well characterized PRs? 
 

First, we focus on two systems for which abundant quantitative and kinetic information is 
available: The Spo0 PR in Bacillus subtilis and the Sln1 system in Saccharomyces cerevisiae. 

The Spo0 phosphorelay of Bacillus subtilis 
We first focused on the Spo0 phosphorelay in B. subtilis because this is the PR system with the 
most abundant and reliable experimental determinations of kinetic information 25–29. The 
architecture of this system is of type M1, and supplementary Appendix S1 gives the protein 
abundances and parameter values for the reactions. We then created four alternative PR 
architectures (M2 - M4) with the same parameter values and protein abundances adjusted to 
minimize differences in dynamic behavior with respect to the native circuit architecture. Then, 
we compared the architectures with respect to the variables in Table 1. We found that the cost 
of protein synthesis is an order of magnitude lower for architecture M3 than for M1 (Figure 3). 
Protein costs for architectures M1, M2’, and M4 are an order of magnitude higher than in M3 
and one order of magnitude lower than in M2. The robustness of signal transmission to 
environmental fluctuations in parameters is smaller in architectures M1 and M2’ and larger in 
M2, M3, and M4 (Figure 3). Architecture M4 is the fastest in responding to phosphorylating 
signals, and M4 and M1 are faster in a similar percentage of cases when the signal 
dephosphorylates the system (Figure 3). We clearly see that M1 transmits the highest amounts 
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of information about the environment over the regulatable signal range for the Spo0 
phosphorelay, whether the signal comes at the level of the SK (modulation of k1) or at the level 
of regulating dephosphorylation of the final response regulator (modulation of k26)  (Figure 4). 
We note that the amount of information lost through the channel is smaller for architecture M2. 

The Sln1/Ypd1/Ssk1 and Sln1/Ypd1/Skn7 phosphorelays of Saccharomyces cerevisiae 
S. cerevisiae uses a PR with architecture M2 to sense changes in the osmolarity of the medium 
and regulate its internal metabolism and membrane composition, adapting to those changes. 
The hybrid sensor kinase Sln1 senses changes in membrane curvature and ultimately modulates 
the phosphorylation state of the terminal response regulators Ssk1 and Skn7. Phosphorylation 
of Ssk1 acts as a molecular switch in controlling the yeast’s osmosensing mitogen-activated 
protein (MAP) kinase cascade30, while phosphorylation of Skn7 directly affects the transcription 
of SLN1-SKN7-responsive genes 31. Skn7 is also involved in regulating heat shock response in a 
Sln1-Ypd1 independent way 31. Reliable kinetic parameter values and protein abundances are 
available for this PR.  

We use those values to create a PR model where we consider the simultaneous presence of the 
terminal response regulators Ssk1 and Skn7. Then, create four independent alternative models, 
with architectures M1, M2’, M3, and M4 and parameter values equal to those of the native 
circuit architecture. Finally, we optimize protein abundance to minimize differences in the 
dynamic signal-response curve of each architecture with respect to that of the native 
architecture of the system. 

We find that the cost of architecture M2’ is one order of magnitude higher than that of each of 
the other architectures, which have a similar metabolic cost (Figure 3). The sensitivity of the 
steady state concentrations for the Ssk1 RR are low and similar in all alternative architectures 
except M4, where sensitivity is high. In contrast, the sensitivity of Skn7 concentration is highest 
in architectures M1 and M2 (Figure 3). Architecture M4 most frequently responds faster to 
signals that increase the phosphorylation levels of the proteins, followed by M2 (Figure 3). In 
contrast, architecture M1 is always the fastest if the change in environmental conditions 
decreases phosphorylation levels of the circuit. When it comes to transmitting information 
about the environment to Skk1 over the regulatable range of the circuit, architecture M2 is the 
best for a wider range of parameters. It surprised us that all non-native architectures are better 
information transmitters to Skn7 than M2 (Figure 4). It is interesting to note that only very high 
rates of dephosphorylation for one RR affect the information transmitted by the circuit to the 
other, increasing it significantly.   

Overall, these two systems suggest that transmission of information is an important 
determinant of architectural selection in PRs. 

 

Analyzing real PR examples: How do different PR architectures influence 
information transmission?  
 

A performance atlas for information transmission in the parameter space of PR 
architectures  
With the hypothesis that information transmission is important in the selection of PR 
architecture, we created a data-driven atlas that describes how architecture, protein 
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abundance, and parameter values influence information transmission in PRs. To create that atlas 
we compiled experimentally determined parameter values and proteins abundances for as 
many PR systems as we could find in the primary literature and in public databases (see 
methods). Then we used those parameters and protein abundances to calculate the capacity to 
transmit information of each alternative architecture with all possible combinations of protein 
abundances and kinetic values. Finally we ranked the five architectures with respect to 
increasing capacity of information transmission. The atlas is summarized in Supplementary Table 
S2. 

Experimentally determined protein abundances are consistent with amount of 
transmitted information being an important driver of PR architecture selection 

    
We identified and obtained protein abundances for seventeen PR systems that are present in 
the PAXDB database and belong to seven different organisms24 (Table S3). Then we matched 
these abundances with the performance in the atlas of amount of transmitted information as a 
function of parameter values, protein abundance and circuit architecture given in Table S2. In 
16 out of the 17 cases we find that the native architecture of the PR systems is consistent with 
maximizing the through-circuit transmitted information under experimentally known parameter 
conditions (Table 3). 

Discussion 
Implications 
Mutations in the genomes of organisms led to the emergence of variant architectures for 
biological circuits with similar biological function. Natural selection acting upon this variability 
led to fixing those architectures that are more efficient for the function of the circuit in the 
genome, contingent on life history. Elucidating the reasons why these architectures improve 
performance of the circuit reveals biological design principles that constrain evolution and 
explain the observed patterns. 

In some cases, biological design principles are general and apply to a whole class of biological 
circuits. For example, overall feedback inhibition of the final product to the initial reaction of a 
linear biosynthetic pathway leads to molecular systems that are faster, more responsive, and 
less sensitive to fluctuations than any other regulatory alternatives 32–34. As such that regulatory 
solution is widespread in the tree of life. However, in many cases, design principles appear 
casuistic and are specific to a single circuit. For example, the circuit that regulates competence 
in B. subtilis appears to have been selected over alternative designs because of its noisy response 
35, which enables bet edging in the competence response of the bacterium and improves its 
survival chances. 

In the case of PR, a specific architecture is observed in over 72% of all genomic PR 16 in a sample 
of more than 9000 organisms 4. This suggested that indeed there could be design principles for 
selecting the architecture of these circuits. To test this hypothesis we needed to understand 
what physiological variables influence the performance of the circuit. Then, we needed to study 
how architecture affects those variables, allowing natural selection between alternative PR 
architectures.  

Initially we compiled a list of physiological variables that are important for the function of these 
signal transduction circuits 9,10,42–47,12,27,36–41. We compared the alternative architectures to 
understand how they differed with respect to each of those variables. We then ranked the 
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alternative designs with respect to their performance for each variable. Our results show that 
no unique variable could be used to rank all the alternative PR architectures in the same order 
as their genome abundance. Still, an analysis of large scale “simulomics” results shows that 
maximizing information transmission through the circuit and minimizing metabolic cost leads to 
an abundance of PR architectures that is the closest to the observed genomic frequency of those 
architectures. 

This result led us to hypothesize that optimization of information transmission is an important 
driver of selection for PR architectures. To investigate this hypothesis we took a three step 
approach. First, we focused on two PR that are experimentally well characterized in terms of 
kinetic parameters and protein abundances. Simulation experiments revealed that the native 
architecture was the one that maximizes information transmission by the circuit. Second, we 
created a data-driven atlas of how architecture, protein abundance, and parameter values 
influence information transmission capacity. To create that atlas we compiled experimentally 
determined parameter values and proteins abundances for as many PR systems as we could find 
in the primary literature and in public databases. Then we used those parameters and protein 
abundances to calculate the capacity to transmit information of each alternative architecture 
with all possible combinations of protein abundances and kinetic values. Third, we took all PR 
for which experimental protein abundances are known and verified that the native architecture 
of the system is the one that maximizes information transmission in sixteen out of seventeen 
cases.  

Overall, the results of our analysis for well characterized PR circuits are consistent with the 
hypothesis that information transmission is a crucial driver of PR circuit selection in nature. This 
was previously suggested to be the case for MAP kinase signaling and other metabolic circuits 
in eukaryotes 48–55. Still, architecture selection is a complex function of the interplay between 
the architecture, protein amounts and kinetic parameters, and evolution can play with these 
“genotypic variables” to find instances of each architectures that are almost equivalent 
information transmission circuits. Although we did look for additional specific examples of PR, 
we could not find any for which a complete set of parameter values had been measured either 
by the same or by independent labs. For some of them there were partial sets of parameter 
values (The ArcA – ArcB, the EvgS – EvgA, and the BvgS – BVgA PR). Nevertheless, creating 
models for these systems would have required using more than half of the parameters from 
other systems. This would have created a situation where the model would not be driven from 
the data, but rather from other estimates. 

Our results provide evidence about design principles that could explain the evolutionary 
emergence of specific PR architectures. Those results also have consequences for synthetic 
biology. If we want to build synthetic PR that are stable in the genome, and have a significant 
level of quantitative understanding about the operating ranges for the circuit, then it should be 
designed using the architecture that has the highest capacity to transmit information over that 
range. 

Speculations 
Our analysis invites some speculation regarding the ranges of operability for many PR. If 72% of 
all PR have a M3 architecture, as a first hypothesis we could expect that these systems operate 
in the ranges where the M3 architecture outperforms the others. By looking at our performance 
in information transmission atlas, this implies that M3 architecture systems are likely to be 
operating at abundance ranges of the PR that are below 100 molecules per cell for the protein 
containing the SK domain. This is amenable to testing in future proteomic experiments. The M3 
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circuits are also expected to be operating over modulatable ranges of the self-phosphorylation 
and self-dephosphorylation rate constants of SK above 10-1 min-1. Similarly, 18% of the identified 
PR might be operating mostly over the range where architecture M2’ transmits a high amount 
of information about the system, and 6% over the range where M4 is a better information 
transmitter.  

In addition, we speculate that the type of environmental stimulus is also important in selecting 
the architecture. If the stimulus changes in a graded way and cells can be adjusted in a similar 
graded way, it makes sense that the architecture should allow for a high capacity transmission. 
For example, an architecture that allows the cell to distinguish between n+1 states (that is, with 
a capacity to transmit information of n+1 bits) provides for a better design that another 
architecture that only distinguishes between n states. On the other hand, if a very sharp 
response is required, architectures that can distinguish between a small number of states over 
a short operability range might be more effective. 

Another tempting speculation arises from our modelling of the Sln1 phosphorelay. Given its 
information transmission profile, it could be that Sln1-mediated activation of Skn7 and its 
dependent genes may not be an important function of the circuit. For the experimentally 
determined parameter values and protein concentrations, other architectures would transmit 
more information to that RR. This suggests to us that Skn7’s role in heat shock response might 
be much more important for the cell than its role in osmoregulation.  

Limitations 
Our study has several limitations. Here we discuss those we think are the most important. First, 
we may have underestimated the percentage of PR with architecture M1, as these PR may be 
coded under different promoters in separate parts of the genome. This could also be true for 
designs M2, M2’, and M3. Nevertheless, the amount of proteins of type SKRR, SKHpt, or SKRRHpt 
that are found without the remaining operon in genomes is much smaller than that of the same 
type of proteins that are assembled in operons with the remaining putative cognate proteins of 
the PR 4, which indicates that any underestimation of these architectures is likely to be small.  

Second, the performance landscape of PR can be strongly affected by how its expression is 
regulated 45,56–58. Nevertheless, transcriptional regulation occurs on a timescale of tens to 
hundreds of minutes, while the regulation of phosphorylation levels of the PR occurs on a 
timescale of minutes and this timescale can also strongly influence the performance of the gene 
expression regulatory circuit 57,59.   

Third, there might be a wider range of parameter values for each reaction of the PR in the wild 
and this could change our phenotypical mapping of PR behavior onto the phase and architectural 
spaces of the circuits. Nevertheless, if this is so, our results would still be valid for the regions 
that were analyzed and considering that expanded set of values would only increase the 
“genotypic space” without changing the mapping we present here.         

Fourth, our analysis of the capacity to transmit information focuses on steady state shifts. One 
could argue that the transient capacity could be a more important determinant of system 
performance. However, we tested how the transient capacity to transmit information compares 
to the corresponding steady state capacity and found that the latter is always a majorant of the 
former. 
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Methods 
   

Mathematical Modelling 
PR shown in Figure 1 represent more than 99% of all PR circuits present in the fully sequenced 
genomes of more than 9000 organisms. This information was obtained from 4. Two types of 
models were created for each architecture.  

S-system and GMA models 
We used the power law formalism for the large-scale mapping of dynamic behavior into 
parameter and concentration space. This formalism can be used to create quantitative models 
of circuits when little kinetic and/or mechanistic information is available 60. 

First, we created models for the five architectures using the S-system representation. This 
representation allows us to calculate analytical expressions for the steady state values of each 
of the deterministic physiological variables that we needed to evaluate. Then we used the 
generalized mass action representation to create models that could be evaluated numerically 
for each of the five architectures. These models were used to map the physiological behavior 
of each architecture in parameter space. All models are given in supplementary Appendix S1. 

Mechanistic Models 
We used a mass action description of reactions to create a mechanistically more detailed 
model for each architecture 60. These models are given in supplementary Appendix S1. They 
were parameterized with experimentally determined parameter values and protein 
concentrations compiled from the primary literature.  We used these models to create an atlas 
of performance with information transmission through the PR as a function of protein amount, 
parameter values, and circuit architecture.   

Estimating protein concentrations 
Proteins occupy approximately 20% of cell volume across the tree of life 61,62. Taking into account 
average protein sizes, average protein masses and factoring in cell volumes one can estimate 
that total protein concentration in cells is of the order of  ~ 1 µM (ranging between 0.4-1.4) 63, 
or 6.23 × 106 proteins per µm3. We then use the average cell volume for the different cell types 
to estimate the total amount of proteins per cell. 

In order to estimate biologically relevant protein amounts for each circuit topology we used 
whole-proteome relative abundance determinations (Table S3) reported by PaxDB 24. The 
database information is given in parts per million. By multiplying these number by total number 
of cell proteins, we calculate how many proteins exist for each experimental PR system, within 
the experimental error. 

With this information we can further estimate typical orders of magnitude for the ratios 
between protein abundances within a PR circuit.  In general, we find that protein abundances 
and ratios between protein abundances are bound and have a limited range in PR (Table S3).  

Parameter values for the mass action models 
To find experimentally determined parameter values for the individual reactions of the PR, we 
searched Medline and the Biomodels database 64. We searched for previous mathematical 
models for TCS and signal transduction PR. In addition we also search the primary literature for 
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known circuits that have been characterized biochemically and collected all different parameter 
values for the various reactions in the PR circuit. This information is compiled in Supplementary 
Table S4, revealing that kinetic parameters for corresponding reactions in experimentally well-
characterized systems are quite similar and, in most cases, within the same order of magnitude. 

Calculating the dynamic behavior of each model 
Steady state concentrations and stability 
We obtained steady state concentrations by numerically solving the GMA and mass action 
models for each set of parameter values. We then calculated the jacobian of the ODE system 
and the eigenvalues of that jacobian to determine the stability of the steady state. We compared 
the steady state stability of the PR circuits in two ways. As we selected for sets of parameter 
values that generate systems with stable steady states (see methods), all real parts of the 
eigenvalues of the steady state are negative. Taking this into account we compared the 
minimum of the real parts of the eigenvalues in each pair of models. This comparison allows us 
to compare the fastest time scale in which the two circuits respond to a transient perturbation 
to their steady states.  We also compared the maximum of the real parts of the eigenvalues 
between the two circuits in each pair. This allows us to compare the slowest time scale in which 
the two circuits respond to a transient perturbation to their steady states. 

Logarithmic gains and parameter sensitivities 
To estimate the response of a physiological variable to changes in environmental signals or 
model parameters, we compute 60  

𝐿𝐿(𝑋𝑋, 𝜃𝜃) =
𝑑𝑑𝐿𝐿𝑑𝑑𝑑𝑑(𝑋𝑋)
𝑑𝑑𝐿𝐿𝑑𝑑𝑑𝑑(𝜃𝜃)

= �
𝜃𝜃
𝑋𝑋

×
𝑑𝑑𝑋𝑋
𝑑𝑑𝜃𝜃
�
𝑆𝑆𝑆𝑆

 

Here, ss indicates evaluation at a reference steady state. 

Signal amplification 
To estimate signal amplification we calculated the logarithmic gains of the concentration of the 
phosphorylated form of the final response regulator (RR2) with respect to the cognate signal of 
the system (Signal), as given by: 

𝐿𝐿�𝑅𝑅𝑅𝑅2𝑝𝑝,𝑆𝑆𝑆𝑆𝑑𝑑𝑆𝑆𝑆𝑆𝑆𝑆� =
𝑑𝑑𝐿𝐿𝑑𝑑𝑑𝑑(𝑅𝑅𝑅𝑅2𝑃𝑃)
𝑑𝑑𝐿𝐿𝑑𝑑𝑑𝑑(𝑆𝑆𝑆𝑆𝑑𝑑𝑆𝑆𝑆𝑆𝑆𝑆)

=
𝑆𝑆𝑆𝑆𝑑𝑑𝑆𝑆𝑆𝑆𝑆𝑆
𝑅𝑅𝑅𝑅2𝑃𝑃

𝑑𝑑 𝑅𝑅𝑅𝑅2𝑃𝑃
𝑑𝑑 𝑆𝑆𝑆𝑆𝑑𝑑𝑆𝑆𝑆𝑆𝑆𝑆

 

Sensitivity to the total amount of protein 
To estimate sensitivity of the different phosphorylated forms of the PR proteins (Prot-P) with 
respect to the total amount of circuit proteins (Prtot), we calculated the logarithmic 
sensitivities, as given by: 

𝐿𝐿(𝑃𝑃𝑃𝑃𝑑𝑑𝑃𝑃 − 𝑃𝑃, 𝑆𝑆𝑆𝑆𝑑𝑑𝑆𝑆𝑆𝑆𝑆𝑆,𝑃𝑃𝑃𝑃𝑡𝑡𝑡𝑡𝑡𝑡) =
𝑑𝑑𝐿𝐿𝑑𝑑𝑑𝑑(𝑃𝑃𝑃𝑃𝑑𝑑𝑃𝑃 − 𝑃𝑃 )
𝑑𝑑𝐿𝐿𝑑𝑑𝑑𝑑(𝑃𝑃𝑃𝑃𝑡𝑡𝑡𝑡𝑡𝑡)

=
𝑃𝑃𝑃𝑃𝑡𝑡𝑡𝑡𝑡𝑡

𝑃𝑃𝑃𝑃𝑑𝑑𝑃𝑃 − 𝑃𝑃
𝑑𝑑 𝑃𝑃𝑃𝑃𝑑𝑑𝑃𝑃 − 𝑃𝑃
𝑑𝑑 𝑃𝑃𝑃𝑃𝑡𝑡𝑡𝑡𝑡𝑡

 

Global sensitivity to fluctuations in parameters 
To estimate sensitivity of the different phosphorylated forms of the PR proteins (Prot-P) with 
respect to fluctuations in each of the parameters (Pari), we calculated the logarithmic 
sensitivities, as given by: 

𝐿𝐿(𝑃𝑃𝑃𝑃𝑑𝑑𝑃𝑃 − 𝑃𝑃, 𝑆𝑆𝑆𝑆𝑑𝑑𝑆𝑆𝑆𝑆𝑆𝑆,𝑃𝑃𝑆𝑆𝑃𝑃𝑖𝑖) =
𝑑𝑑𝐿𝐿𝑑𝑑𝑑𝑑(𝑃𝑃𝑃𝑃𝑑𝑑𝑃𝑃 − 𝑃𝑃 )

𝑑𝑑𝐿𝐿𝑑𝑑𝑑𝑑(𝑃𝑃𝑆𝑆𝑃𝑃𝑖𝑖)
=

𝑃𝑃𝑆𝑆𝑃𝑃𝑖𝑖
𝑃𝑃𝑃𝑃𝑑𝑑𝑃𝑃 − 𝑃𝑃

𝑑𝑑 𝑃𝑃𝑃𝑃𝑑𝑑𝑃𝑃 − 𝑃𝑃
𝑑𝑑 𝑃𝑃𝑆𝑆𝑃𝑃𝑖𝑖
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Then, for each protein, we calculate the norm of the vector whose coordinates are the individual 
sensitivities of that protein, as described in 60. This is an aggregated measure of the robustness 
of circuits to fluctuations in parameter values 47,65. 

Metabolic cost of the circuit 
To calculate the metabolic cost of running a circuit we focused on two aspects. First we 
estimated the average size of each type of protein in each architecture from the data in 4. Then, 
we multiplied the number of amino acids of the individual proteins in the phosphorelay by the 
number of proteins in the cell and used this number as a proxy for the cost of each circuit. Then, 
we also focused on the reactions of the circuit that consume ATP (self-phosphorylation of the 
SK domain).   

Response times  
We performed two independent experiments per architecture and per set of parameter values 
to calculate the response times. First, we start with the system fully dephosphorylated and run 
a time course simulation using the same scan procedure for the self-phosphorylation and self-
dephosphorylation rate constant of SK. We then calculate the time it takes each of the 
architectures to reach 90% of the new steady state values. We repeated this experiment starting 
with fully phosphorylated proteins. 

Steady state noise: the coefficient of variation 
To estimate the intrinsic noise for each architecture and set of parameter values we 
numerically calculated the deterministic concentration of the systems, converted this 
concentration into number of copies of the PR, and ran twenty five stochastic simulations of 
twenty minutes. Then, for each variable we calculated the coefficient of variation (CV) as given 
by: 

𝐶𝐶𝐶𝐶𝑉𝑉𝑉𝑉𝑉𝑉𝑖𝑖𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉 𝑖𝑖 = 𝑆𝑆𝑡𝑡𝑉𝑉𝑆𝑆𝑆𝑆𝑉𝑉𝑉𝑉𝑆𝑆 𝐷𝐷𝑉𝑉𝐷𝐷𝑖𝑖𝑉𝑉𝑡𝑡𝑖𝑖𝑡𝑡𝑆𝑆 (𝑉𝑉𝑉𝑉𝑉𝑉𝑖𝑖𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉 𝑖𝑖)
𝑀𝑀𝑉𝑉𝑉𝑉𝑆𝑆 𝐷𝐷𝑉𝑉𝑉𝑉𝑣𝑣𝑉𝑉 (𝑉𝑉𝑉𝑉𝑉𝑉𝑖𝑖𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉 𝑖𝑖)

  

  

  
Amount of information transmitted through the circuit 
To calculate the information transmitted through the PR we simulated that system to steady 
state using Gillespie’s algorithm for stochastic simulation one hundred times per set of 
parameter values 66. The proxy for changes in the environmental information was taken to be 
the number of phosphorylated molecules of the SK domain, as this is the sensing domain of the 
PR. The output of the PR was considered to be the number of phosphorylated final response 
regulators. The information transmission through the circuit was estimated using the standard 
formula for mutual information between the two variables: 

𝑀𝑀𝑀𝑀(𝑆𝑆𝑆𝑆𝑃𝑃 → 𝑅𝑅𝑅𝑅2𝑃𝑃) = ��𝑝𝑝(𝑆𝑆𝑆𝑆𝑃𝑃𝑆𝑆,𝑅𝑅𝑅𝑅2𝑃𝑃𝑃𝑃)log (
𝑝𝑝(𝑆𝑆𝑆𝑆𝑃𝑃𝑆𝑆,𝑅𝑅𝑅𝑅2𝑃𝑃𝑃𝑃)
𝑝𝑝(𝑆𝑆𝑆𝑆𝑃𝑃𝑆𝑆)𝑝𝑝(𝑅𝑅𝑅𝑅2𝑃𝑃𝑃𝑃)

𝑅𝑅𝑅𝑅2𝑃𝑃𝑗𝑗

)

𝑆𝑆𝑆𝑆𝑃𝑃𝑖𝑖

 

The information transmission from the SK to the first RR was estimated from: 
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𝑀𝑀𝑀𝑀(𝑆𝑆𝑆𝑆𝑃𝑃 → 𝑅𝑅𝑅𝑅1𝑃𝑃) = ��𝑝𝑝(𝑆𝑆𝑆𝑆𝑃𝑃𝑖𝑖,𝑅𝑅𝑅𝑅1𝑃𝑃𝑗𝑗)log (
𝑝𝑝(𝑆𝑆𝑆𝑆𝑃𝑃𝑖𝑖,𝑅𝑅𝑅𝑅1𝑃𝑃𝑗𝑗)
𝑝𝑝(𝑆𝑆𝑆𝑆𝑃𝑃𝑖𝑖)𝑝𝑝(𝑅𝑅𝑅𝑅1𝑃𝑃𝑗𝑗)

𝑅𝑅𝑅𝑅1𝑃𝑃𝑗𝑗

)

𝑆𝑆𝑆𝑆𝑃𝑃𝑖𝑖

 

The information transmission from the Hpt domain to the final RR was estimated from: 

𝑀𝑀𝑀𝑀(𝐻𝐻𝑝𝑝𝑃𝑃𝑃𝑃 → 𝑅𝑅𝑅𝑅2𝑃𝑃) = ��𝑝𝑝(𝐻𝐻𝑝𝑝𝑃𝑃𝑃𝑃𝑖𝑖 ,𝑅𝑅𝑅𝑅2𝑃𝑃𝑗𝑗)log (
𝑝𝑝(𝐻𝐻𝑝𝑝𝑃𝑃𝑃𝑃𝑖𝑖 ,𝑅𝑅𝑅𝑅2𝑃𝑃𝑗𝑗)
𝑝𝑝(𝐻𝐻𝑝𝑝𝑃𝑃𝑃𝑃𝑖𝑖)𝑝𝑝(𝑅𝑅𝑅𝑅2𝑃𝑃𝑗𝑗)

𝑅𝑅𝑅𝑅2𝑃𝑃𝑗𝑗

)

𝐻𝐻𝑝𝑝𝑡𝑡𝑃𝑃𝑖𝑖

 

In these formulas, p(x) is the relative frequency of x, and p(x,y) is the joint relative frequency of 
x and y.    

We compare the information transmitted through the various steps of the circuit as a measure 
of information loss. The closer 𝑀𝑀𝑀𝑀(𝑆𝑆𝑆𝑆𝑃𝑃 → 𝑅𝑅𝑅𝑅1𝑃𝑃),𝑀𝑀𝑀𝑀(𝑅𝑅𝑅𝑅1𝑃𝑃 → 𝐻𝐻𝑝𝑝𝑃𝑃𝑃𝑃),  and 𝑀𝑀𝑀𝑀(𝐻𝐻𝑝𝑝𝑃𝑃𝑃𝑃 →
𝑅𝑅𝑅𝑅2𝑃𝑃) are, the smaller the amount of lost information. 

Comparison of dynamic properties between architectures  
The comparison between alternative architectures was done in a pairwise manner, to facilitate 
interpretation. 

Analytical comparison 
We calculated the analytical solutions for the S-system model of each architecture. Then we 
took the ratio of corresponding properties between all possible pairs of architectures, 
controlling the comparison in such a way that the phosphorylated levels of the final RR were the 
same in both elements of the pair. If the ratios could be demonstrated to be always larger or 
smaller than one, this would mean that the property being analyzed would always be large in 
one of the architectures. 

 Numerical comparison 
We took a reference architecture and generate a set of parameter values drawing from a 
random distribution of parameters with realistic boundaries. We did the same sampling for 
protein concentrations. Then we calculated the numerical properties of the pair of models being 
compared, discarding all sets of parameter values that led to systems with negative signal 
amplifications, unstable steady states, aggregated sensitivities to fluctuations in parameters and 
sensitivities of phosphorylated forms to total amounts of circuit protein that were too high, and 
response times that were too slow. We stopped generating sets of parameter values when 5000 
of those set met all criteria of realist performance described above. Overall, we tested several 
hundred million sets of parameter values in all comparisons.  

Mathematical modelling of the Spo0 and Sln1 phosphorelays  
Detailed mechanistic models were created for the Spo0 and Sln1 phosphorelays, as described 
in supplementary Appendix S1. These models use experimental data from 29 for Spo0 and from 
the SGD 67 for Sln1.  

Then, for each of the PR, four additional equivalent models were created, each assuming that 
the PR would have a different architecture. The parameter values for these alternative 
architectures were considered to be the same as those for the native circuit architecture. The 
concentrations for the proteins were optimized by first simulating the original model at different 
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signal intensities and calculating the steady state phosphorylation state of the final RR. Using 
these results we then performed the same experiments for each alternative architecture and 
allowed for the proteins that got fused or separated with respect to the cognate architecture to 
change in concentration by up to one order of magnitude below or above that in the natural 
architecture. We then selected the concentrations that led to the most similar signal-response 
curves using a least square minimum criteria for the differences between phosphorylated final 
RR.   

Calculating the cost of alternative architectures for the Spo0 and Sln1 
phosphorelays 
To calculate the cost of alternative architectures for the Spo0 and Sln1 we first counted the 
number of amino acids in the sequence for each protein in the original architecture. Then, we 
assumed that any alternative architecture would result from fusing or splitting the original 
proteins while conserving the same number of amino acids. Finally, we multiplied the number 
of amino acids of the individual proteins in the phosphorelay by the number of proteins in the 
cell and used this number as a proxy for the cost of each architecture. 

Software 
All models and analysis were done using Mathematica 68. The notebooks containing all code to 
generate each figure are given as supplementary data pack S1.  
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Figure captions 
Figure 1 – The five most abundant phosphorelay circuit architectures, as inferred from operon 
structure, account for over 99% of all detected phosphorelays. Architecture M1 is for a circuit 
where the four phosphorylatable domains exist in independent proteins. Architecture M2 is for 
a circuit with a hybrid Sensor Kinase (SK), which contains the SK and the first Response Regulator 
(RR1) domain in the same protein, while the remaining phosphorylatable domains exist in 
independent proteins. Architecture M2’ is for a circuit where the SK and the Hpt domains are in 
the same protein, while both RR domains exist in independent proteins. Architecture M3 is for 
a circuit where the SK, RR1 and the Hpt domains are in the same protein, while the final RR, RR2, 
is in an independent protein. Architecture M4 is for a circuit where all phosphorylatable domains 
exist in the same protein. A total of 5219 PR operons were surveyed, out of which 5182 fall in 
one of the five architectures shown here. 

Figure 2 – Clustering each architecture according to their abundance ranks in the ten percent 
best systems with respect to each of the physiological variables in Table 2. Variables that are 
absent in the clustering have an equal percentage of all architectures and therefore have 
equivalent ranking. 

Figure 3 – Effects of alternative architectures in the deterministic regime for the Spo0 
phosphorelay of Bacillus subtilis and the Sln1 phosphorelay of Saccharomyces cerevisiae.  In 
all cases, the protein amounts of the alternative architectures were optimized to make the 
steady state signal-response curves be as similar as possible (see methods). The black arrow 
indicates the native architecture. Panels A, B, and C pertain to the Spo0 phosphorelay. Panels D, 
E, and F pertain to the Sln1 phosphorelay. A, D – Cost of synthesizing the circuit under different 
architectures. X – axis: PR architecture.  Y – axis: total metabolic cost of the circuit proteins 
(arbitrary units). B, E – normalized sensitivity of the steady state concentration of the final 
response regulator to changes in parameters. X – axis: PR architecture.  Y – axis: euclidean norm 
of the sensitivities vector of the response regulator. C, F – Percentage of transient responses 
where each architecture is the fastest (outer donut) or slowest (inner donut) in reaching 90% of 
the new steady state under equivalent conditions. Left-side donuts from responses to 
phosphorylating signals. Right-side donuts from responses to dephosphorylating signals.  

Figure 4 – Effects of alternative architectures in the transmission of information through the 
Spo0 phosphorelay of Bacillus subtilis and the Sln1 phosphorelay of Saccharomyces cerevisiae. 
In all cases, the protein amounts of the alternative architectures were optimized to make the 
steady state signal-response curves be as similar as possible. A – Spo0 phosphorelay. Y-axis 
represents the accumulated mutual information over a range of 6 orders of magnitude for the 
self-dephosphorylation rate constant of kinA between variations in the number of 
phosphorylated kinA molecules and that of phosphorylated Spo0E molecules. k1 represents 
modulation of the kinA phosphorylation rate, while k18 represents modulation of SpoE 
dephosphorylation. Architecture M1 transmits the most information for comparable parameter 
values. B – Sln1 phosphorelay. Y-axis represents the accumulated mutual information over a 
range of 6 orders of magnitude for the self-dephosphorylation rate constant of Sln1 between 
variations in the number of phosphorylated Sln1 molecules and that of phosphorylated Ssk1 or 
Skn7 molecules. k1 represents modulation of the Sln1 phosphorylation rate, k18 represents 
modulation of Ssk1 dephosphorylation, and k26 represents modulation of Skn7 
dephosphorylation. Architecture M2 transmits the most information to Ssk1 for comparable 
parameter values.  
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Table 1 – Physiological variables used as proxy for performance in signal transduction circuit. 

Variables Circuit performance improves 
with*: 

Experimental support 

Signal amplification Higher amplification 9,10,36,69–72 

Noise attenuation^ Attenuated noise 57,72–74 

Information transmission^  Higher transmission 57,72–74 

Robustness to changes in 
parameter values 

High robustness (low 
sensitivity) 

9,10,36,58,69 

Speed of response to changes Rate of adaptation 9,10,29,36,48,71,75 

Metabolic cost of circuit Low cost 76,77 
*as a general trend; ^ Relevant in the stochastic domains of dynamic behavior. 
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Table 2 – Comparative results for the various physiological variables. Dark green indicate best performance. Dark yellow indicates worst performance.  

Physiological Variable M1 M2 M2’ M3 M4 
Signal amplification 4.3 % 10.3 % 36.2 % 33.8 % 15.4 % 

Robustness 21.6 % 26.1 % 18.5 % 17.5 % 16.3 % 
Intrinsic Noise SK 1.6 % 5.4 % 8.6 % 30.3 % 54. % 
Intrisic Noise RR2 19.8 % 17.8 % 18.1 % 23.5 % 20.8 % 

INRR2/INSK 6.1 % 15.3 % 15.1 % 31.2 % 32.3 % 
SK->RR1 MI 28.9 % 24.9 % 24 % 13.3 % 9 % 
SK->RR2 MI 29.4 % 24.3 % 24.5 % 11.1 % 10.7 % 

SK->RR2/SK->RR1 MI 9.6 % 8.8 % 18.5 % 14.9 % 48.2 % 
Response time 29. % 21.9 % 25.4 % 14. % 9.6 % 

Cost 1.9 % 5.1 % 8.3 % 31.2 % 53.4 % 
Genomic frequency  0.6 % 1.6 % 18.3 % 72.3 % 6.5 % 

 

Physiological Variable Rank M1 Rank M2 Rank M2’ Rank M3 Rank M4 
Signal amplification 5 4 1 2 3 

Robustness 2 1 3 4 5 
Intrinsic Noise SK 5 4 3 2 1 
Intrisic Noise RR2 3 5 4 1 2 

INRR2/INSK 5 3 4 2 1 
SK->RR1 MI 1 2 3 4 5 
SK->RR2 MI 1 2 2 4 5 

SK->RR2/SK->RR1 MI 4 5 2 3 1 
Response time 1 3 2 4 5 

Cost 5 4 3 2 1 
Genomic frequency rank 5 4 2 1 3 
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Table 3 – Observed native architectures and predictions of where in parameter space their observation is expected. 

Organism  Phosphorelay Ratios of abundance 
(order of magnitude) 

Estimated proteins per cell1 Predicted operational 
regions 

 
 
 
Escherichia coli  

TorS:TorR (M3) 1:1:1:10 100:1000 k1, k2>10-1 s-1 * 
EvgS:EvgA (M3) 1:1:1:100 100:10000 k1, k2>10-1 s-1 * 
BarA:UvrY (M3) 1:1:1:10 1000:10000 k1, k2>10-1 s-1 * 
ArcB:ArcA (M3) 1:1:1:10 10000:1000000 k1, k2>10-1 s-1 * 
RcsC:RcsD:RcsB (M2) 1:1:1:100 1000:1000:100000 k1>10-1 s-1** 

 
Shigella flexneri 

BarA:UvrY (M3) 1:1:1:1 1000:1000 M1 or M2’ 
ArcB:ArcA (M3) 1:1:1:10 10000: 100000 k1>10-1 s-1*+* 

 
Shewanella oneidensis 

    
SO0859:SO0860 (M3) 1:1:1:1 100000:100000 k1>10-1 s-1*++* 

Desulfovibrio vulgaris  DVU_3062:DVU_3061 (M3) 1:1:1:1 100000:100000 k1>10-1 s-1*++* 
     
 
Saccharomyces cerevisiae  
 

Sln1:Ypd1:Ssk1 (M2) 1:1:1:1 1000:1000:1000 ***** 
Sln1:Ypd1:Skn7 (M2) 
 

1:1:1:1 1000:1000:1000 ***** 

     
 
 
Schizosaccharomyces pombe 
 

Mak1:Mpr1:Mcs4 (M2) 1:1:1:10 1000:1000:10000 ****** 
Mak2:Mpr1:Mcs4 (M2) 1:1:1:10 1000:1000:10000 ****** 
Mak3:Mpr1:Mcs4 (M2) 1:1:1:10 1000:1000:10000 ****** 

 
Bacillus subtilis  

KinA:Spo0F:Spo0B:Spo0A (M1) 
 

1:100:1:100 12:4200:110:1700 k1, k2<10-1 s-1. *+ 

KinB:Spo0F:Spo0B:Spo0A (M1) 
 

1:100:1:100 93:4200:110:1700 k1, k2<10-1 s-1. *+ 

KinC:Spo0F:Spo0B:Spo0A (M1) 1:100:1:100 82:4200:110:1700 k1, k2<10-1 s-1. *+ 

                                                           
1 These numbers are calculated by multiplying cell volume (µm3), average number of proteins in cells per  µm3, and the protein abundance in parts per million: 
𝐶𝐶𝐶𝐶𝑆𝑆𝑆𝑆 𝐶𝐶𝑑𝑑𝑆𝑆𝑉𝑉𝑉𝑉𝐶𝐶 × 6.23 × 108 × 𝑃𝑃𝑃𝑃𝑑𝑑𝑃𝑃𝐶𝐶𝑆𝑆𝑆𝑆 𝑆𝑆𝑎𝑎𝑉𝑉𝑆𝑆𝑑𝑑𝑆𝑆𝑆𝑆𝑎𝑎𝐶𝐶𝑎𝑎 × 10−6   
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* As compared to architectures M1, M2, M2’. M4 does not allow for the observed abundance ratio between signal transduction domains. 

** As compared to M1, the only other architecture that allows for the observed ratio between abundances of signal transduction domains. Regulation by the 
environment expected at the SK phosphorylation step. 

*+* As compared to architectures M1, M2, M2’. M4 does not allow for the observed abundance ratio between signal transduction domains. Regulation by 
the environment expected at the SK phosphorylation step. 

*++* As compared to architectures M1, M2, M2’ and M4. Regulation by the environment expected at the SK phosphorylation step. 

***** See analysis of the system as a Sln1-Ypd1-Skn7-Ssk1 PR in the main text. 

******Outside the range of protein abundances tested in this work. Nevertheless, comparing the trends of similar abundance ratios for one order of 
magnitude less suggests that M2 would be the preferred architecture if we pool the abundances of Mac1, Mac2 and Mac 3 proteins together. 

*+ Comparison between architectures M1 and M2’, which are the only ones that allow for this ratio of abundance between domains. Consistent with 
experimental determinations of the rate constants (supplementary materials). 
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Table S1 – Correlation analysis of variable in different architectures: Spearman correlation 

Architecture M1 

 

Architecture M2 
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Architecture M2’ 

 

Architecture M3 
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Architecture M4 
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Table S2 – Performance atlas with respect to information transmission through the phosphorelay as a function of architecture, protein amounts, and 
parameter values
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Table S3 – Phosphorelay circuits for which there is abundance information. 

Organism (average cell 
volume in µm3) 

Phosphorelay Protein abundances 
(ppm) 

Estimated number of proteins 
per cell2 

Ratios of abundance 
(order of magnitude) 

 
Saccharomyces cerevisiae 
(~ 70 78) 
 

Sln1:Ypd1:Ssk1 
HKRR:Hpt:RR 

151:188:177 79 66000: 82000: 77000 1:1:1:1 

Sln1:Ypd1:Skn7 
HKRR:Hpt:RR 

151:188:175 79 66000: 82000: 77000 1:1:1:1 

     
 
 
Schizosaccharomyces 
pombe (~ 100 80,81) 
 

Mak1:Mpr1:Mcs4 
HKRR:Hpt:RR 

44:62:470 82 11000: 39000: 293000 1:1:1:10 

Mak2:Mpr1:Mcs4 
HKRR:Hpt:RR 

53:62:470 82 33000: 39000: 293000 1:1:1:10 

Mak3:Mpr1:Mcs4 
HKRR:Hpt:RR 

53:62:470 82 33000: 39000: 293000 1:1:1:10 

     
 
Cryptococcus neoformans 
(~ 50-70 83) 
 

CNH02350 
HKRRHptRR 

2.63 84 980 1:1:1:1 

CNC03340:CNM01530:CNB03090 
HKRR:Hpt:RR 

42:367:14 84 16000: 137000: 5000 10:10:100:1 

CNA03400:CNM01530:CNB03090 
HKRR:Hpt:RR 

3:367:14 84 1000: 137000: 5000 1:1:100:1 

     
     
     
     
     
     

                                                           
2 This number is calculated by multiplying cell volume (µm3) by the average number of proteins in cells per  µm3 times the protein abundance in parts per million: 
𝐶𝐶𝑉𝑉𝑉𝑉𝑉𝑉 𝑉𝑉𝑡𝑡𝑉𝑉𝑣𝑣𝑉𝑉𝑉𝑉 ×6.23×106×𝑃𝑃𝑉𝑉𝑡𝑡𝑡𝑡𝑉𝑉𝑖𝑖𝑆𝑆 𝑉𝑉𝑉𝑉𝑣𝑣𝑆𝑆𝑆𝑆𝑉𝑉𝑆𝑆𝑎𝑎𝑉𝑉𝑎𝑎

106
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Organism (average cell 
volume in µm3) 

Phosphorelay Protein abundances 
(ppm) 

Estimated number of proteins 
per cell3 

Ratios of abundance 
(order of magnitude) 

     
 
 
 
 
Arabidopsis thaliana  
(2000  85 ) 

AKH2:AHP1-AHP4 
HKRRRR:Hpt 

0.15:8-50 86 2000: 99000-623000 1:1:10:1 
1:1:100:1 

AKH3:AHP1-AHP4 
HKRRRR:Hpt 

1: 8-50 86 12000: 99000-623000 1:1:10:1 
1:100:1:1 

AKH4:AHP1-AHP4 
HKRRRR:Hpt 

0.62: 8-50 86 8000:99000-623000 1:1:10:1 
1:1:100:1 

    
AHK1:AHP2-AHP3:ARR1-
3,5,7,9,14,16 
HKRR:Hpt:RR 

0.3:15-50:0.01-2 86 4000: 187000-623000:100-
25000 

1:1:100:1 
1:1:100:10 
10:10:1000:1 

    
AHK5:AHp1-3, AHP5-6:ARR1-2 
HKRR:Hpt:RR 

0.1:9-50:2 86 1200: 112000-623000: 25000 1:1:100:10 

ETR1:AHP5:RR1-2 
HKRR:Hpt:RR 

2.5:0.02:2 86 31000: 250-623000: 25000 1:1:1:1 
10:10:1:10 

     
     
     
     
     

                                                           
3 This number is calculated by multiplying cell volume (µm3) by the average number of proteins in cells per  µm3 times the protein abundance in parts per million: 
𝐶𝐶𝑉𝑉𝑉𝑉𝑉𝑉 𝑉𝑉𝑡𝑡𝑉𝑉𝑣𝑣𝑉𝑉𝑉𝑉 ×6.23×106×𝑃𝑃𝑉𝑉𝑡𝑡𝑡𝑡𝑉𝑉𝑖𝑖𝑆𝑆 𝑉𝑉𝑉𝑉𝑣𝑣𝑆𝑆𝑆𝑆𝑉𝑉𝑆𝑆𝑎𝑎𝑉𝑉𝑎𝑎

106
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Organism (average cell 
volume in µm3) 

Phosphorelay Protein abundances 
(ppm) 

Estimated number of proteins 
per cell4 

Ratios of abundance 
(order of magnitude) 

 
 
 
Escherichia coli  
(~ 0.1-3 87,88) 

TorS:TorR 
HKRRHpt:RR 

0.34:6 89,90 212:3728 1:1:1:10 

EvgS:EvgA 
HKRRHpt:RR 

0.31:88 89,90 193:54800 1:1:1:100 

BarA:UvrY 
HKRRHpt:RR 

3.5:55 89,90 2180:34265 1:1:1:10 

ArcB:ArcA 
HKRRHpt:RR 

51:1065 89,90 30:6600 1:1:1:10 

RcsC:RcsD:RcsB 
HKRR:Hpt:RR 

3.:7.4:375 89,90 19:46: 2340 1:1:1:100 

 
Shigella flexneri 
 (~ 0.1-3 87,88) 
 

BarA:UvrY 
HKRRHpt:RR 

3.94:8.74 91,92 24:54 1:1:1:1 

ArcB:ArcA 
HKRRHpt:RR 

34.9:1094 220:.6800 1:1:1:100 

Pseudomonas aeruginosa 
(~ 0.5 93) 

PA0413:PA0416 
HKRRHpt:RR 

158:BDL 90,94  580:- 1:<1 

PA4112 
HKRRHptRR 

7.290,94 26 1:1:1:1 

 
Shewanella oneidensis  
(1-4  95) 

SO3207:SO3206:SO3209 
HKHpt:RR:RR 

452:17.1:768 90 2800: 110: 4800 10:1:10:10 
10:1:10:100 

SO0859:SO0860 
HKRRHpt:RR 

88:79 90 550:490 1:1:1:1 

Desulfovibrio vulgaris  
(2.4 96) 

DVU_3062:DVU_3061 
HKRRHpt:RR 

80:79 97,98 1200:1200 1:1:1:1 

                                                           
4 These numbers are calculated by multiplying cell volume (µm3), average number of proteins in cells per  µm3, and the protein abundance in parts per million: 
𝐶𝐶𝑉𝑉𝑉𝑉𝑉𝑉 𝑉𝑉𝑡𝑡𝑉𝑉𝑣𝑣𝑉𝑉𝑉𝑉 ×6.23×106×𝑃𝑃𝑉𝑉𝑡𝑡𝑡𝑡𝑉𝑉𝑖𝑖𝑆𝑆 𝑉𝑉𝑉𝑉𝑣𝑣𝑆𝑆𝑆𝑆𝑉𝑉𝑆𝑆𝑎𝑎𝑉𝑉𝑎𝑎

106
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Organism (average cell 
volume in µm3) 

Phosphorelay Protein abundances 
(ppm) 

Estimated number of proteins 
per cell5 

Ratios of abundance 
(order of magnitude) 

     
Salmonella enterica  
(0.8 93) 

RcsC:RcsD:RcsB 
HKRR:Hpt:RR 

3.4:3.9:327 90 17:19:1600 1:1:1:100 

 
Bacillus subtilis  
(1.5 93) 

KinA:Spo0F:Spo0B:Spo0A 
HK:RR:Hpt:RR 

1.3:446:12.4:185 90 12:4200:110:1700 1:100:1:100 

KinB:Spo0F:Spo0B:Spo0A 
HK:RR:Hpt:RR 

10:446:12.4:185 90 93:4200:110:1700 1:100:1:100 

KinC:Spo0F:Spo0B:Spo0A 
HK:RR:Hpt:RR 

8.8:446:12.4:185 90 82:4200:110:1700 1:100:1:100 

 

BDL: Below detection limit 

 

  

                                                           
5 These numbers are calculated by multiplying cell volume (µm3), average number of proteins in cells per  µm3, and the protein abundance in parts per million:  
𝐶𝐶𝑉𝑉𝑉𝑉𝑉𝑉 𝑉𝑉𝑡𝑡𝑉𝑉𝑣𝑣𝑉𝑉𝑉𝑉 ×6.23×106×𝑃𝑃𝑉𝑉𝑡𝑡𝑡𝑡𝑉𝑉𝑖𝑖𝑆𝑆 𝑉𝑉𝑉𝑉𝑣𝑣𝑆𝑆𝑆𝑆𝑉𝑉𝑆𝑆𝑎𝑎𝑉𝑉𝑎𝑎

106
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Table S4 – Numerical values of the rate constants of the 19 reactions in the PR models used in the stochastic simulations, represented in Figure 4. These values 
are based on 29. We found a range of variation in four of the rate constants (k1, k2, k10 and k19) 25–27,43. For the generality of the results, we used both the 
minimum and the maximum value of these four rate constants, obtaining 16 different combinations of numerical values. Each one of these 16 combinations 
of rate constant values was used in each one of the 5 PR models to obtain 100 stochastic trajectories. 

Rate Constant Experimental values Scanning Type of scanning 
k1 Min= 0.002 s-1   

Middle = 0.028 s-1 

Max = 20 s-1 

Yes Continuous, from 10-4 s-1 to 103 s-1 

k2 Min= 0 s-1  
Max = 0.00055 s-1 

Yes Continuous, from 10-4 s-1 to 103 s-1 

k3, k8, k11, k14, k17 0.000139 nM-1 s-1 No  –  
k4 0.083 s-1 No – 
k5 0.083 s-1 No – 
k9, k18 0.028 s-1 No – 
k10, k19 Min=0.0056 s-1   

Max=0.028 s-1  
Yes Discrete, with all possible 

combinations of k10 and k19 and 
𝑘𝑘10 ∈ {0.0056,0.028}  and  𝑘𝑘19 ∈
{0.0056,0.028}    

k12 0.139 s-1 No – 
k13, k16 0.22 s-1 No – 
k15 0.056 s-1 No – 
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Supplementary text S1 – Mathematical modelling 
Power law models 
Architecture M1 

The conceptual scheme we used to derive the power law mathematical models for 
architecture M1 is as follows 

 

GMA Model 

𝑑𝑑𝑋𝑋1
𝑑𝑑𝑃𝑃

= −
𝑑𝑑𝑋𝑋7
𝑑𝑑𝑃𝑃

= 𝛼𝛼1𝑋𝑋7𝑔𝑔17𝑋𝑋5
𝑔𝑔15 − 𝛼𝛼2𝑋𝑋1𝑔𝑔21𝑋𝑋6

𝑔𝑔26 − 𝛼𝛼3𝑋𝑋1𝑔𝑔31𝑋𝑋8
𝑔𝑔38 

𝑑𝑑𝑋𝑋2
𝑑𝑑𝑃𝑃

= −
𝑑𝑑𝑋𝑋8
𝑑𝑑𝑃𝑃

= 𝛼𝛼3𝑋𝑋1𝑔𝑔31𝑋𝑋8
𝑔𝑔38 − 𝛼𝛼4𝑋𝑋2𝑔𝑔42𝑋𝑋9

𝑔𝑔49 − 𝛼𝛼5𝑋𝑋2𝑔𝑔52 

𝑑𝑑𝑋𝑋3
𝑑𝑑𝑃𝑃

= −
𝑑𝑑𝑋𝑋9
𝑑𝑑𝑃𝑃

= 𝛼𝛼4𝑋𝑋2𝑔𝑔42𝑋𝑋9
𝑔𝑔49 − 𝛼𝛼6𝑋𝑋3𝑔𝑔63 − 𝛼𝛼7𝑋𝑋3𝑔𝑔73𝑋𝑋10

𝑔𝑔710 

𝑑𝑑𝑋𝑋4
𝑑𝑑𝑃𝑃

= −
𝑑𝑑𝑋𝑋10
𝑑𝑑𝑃𝑃

= 𝛼𝛼7𝑋𝑋3𝑔𝑔73𝑋𝑋10
𝑔𝑔710 − 𝛼𝛼8𝑋𝑋4𝑔𝑔84 

 

S-system Model 

𝑑𝑑𝑋𝑋1
𝑑𝑑𝑃𝑃

= −
𝑑𝑑𝑋𝑋7
𝑑𝑑𝑃𝑃

= 𝛼𝛼1𝑋𝑋7𝑔𝑔17𝑋𝑋5
𝑔𝑔15 − 𝛼𝛼2′𝑋𝑋1𝑔𝑔21′𝑋𝑋6

𝑔𝑔26′𝑋𝑋8
𝑔𝑔28′ 

𝑑𝑑𝑋𝑋2
𝑑𝑑𝑃𝑃

= −
𝑑𝑑𝑋𝑋8
𝑑𝑑𝑃𝑃

= 𝛼𝛼3𝑋𝑋1𝑔𝑔31𝑋𝑋8
𝑔𝑔38 − 𝛼𝛼4′𝑋𝑋2

𝑔𝑔42′𝑋𝑋9
𝑔𝑔49′ 

𝑑𝑑𝑋𝑋3
𝑑𝑑𝑃𝑃

= −
𝑑𝑑𝑋𝑋9
𝑑𝑑𝑃𝑃

= 𝛼𝛼5𝑋𝑋2𝑔𝑔52𝑋𝑋9
𝑔𝑔59 − 𝛼𝛼6′𝑋𝑋3𝑔𝑔63′𝑋𝑋10

𝑔𝑔610′ 

𝑑𝑑𝑋𝑋4
𝑑𝑑𝑃𝑃

= −
𝑑𝑑𝑋𝑋10
𝑑𝑑𝑃𝑃

= 𝛼𝛼7𝑋𝑋3𝑔𝑔73𝑋𝑋10
𝑔𝑔710 − 𝛼𝛼8𝑋𝑋4𝑔𝑔84 
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𝛼𝛼2′ =
𝑣𝑣2 + 𝑣𝑣3

𝑋𝑋1𝑔𝑔21
′𝑋𝑋6

𝑔𝑔26′𝑋𝑋8
𝑔𝑔28′�

𝑆𝑆𝑡𝑡𝑉𝑉𝑉𝑉𝑆𝑆𝑆𝑆 𝑎𝑎𝑡𝑡𝑉𝑉𝑡𝑡𝑉𝑉

; 

𝑣𝑣2 = 𝛼𝛼2𝑋𝑋1𝑔𝑔21𝑋𝑋6
𝑔𝑔26�𝑎𝑎𝑡𝑡𝑉𝑉𝑉𝑉𝑆𝑆𝑆𝑆 𝑎𝑎𝑡𝑡𝑉𝑉𝑡𝑡𝑉𝑉;𝑣𝑣3 = 𝛼𝛼3𝑋𝑋1𝑔𝑔31𝑋𝑋8

𝑔𝑔38�𝑎𝑎𝑡𝑡𝑉𝑉𝑉𝑉𝑆𝑆𝑆𝑆 𝑎𝑎𝑡𝑡𝑉𝑉𝑡𝑡𝑉𝑉 ; 

𝑑𝑑21′ =
𝑣𝑣2𝑑𝑑21
𝑣𝑣2 + 𝑣𝑣3

;  𝑑𝑑26′ =
𝑣𝑣2𝑑𝑑26
𝑣𝑣2 + 𝑣𝑣3

;𝑑𝑑28′ =
𝑣𝑣3𝑑𝑑28
𝑣𝑣2 + 𝑣𝑣3

 

𝛼𝛼4′ ==
𝑣𝑣4 + 𝑣𝑣5

𝑋𝑋2𝑔𝑔42
′𝑋𝑋9

𝑔𝑔49′�
𝑆𝑆𝑡𝑡𝑉𝑉𝑉𝑉𝑆𝑆𝑆𝑆 𝑎𝑎𝑡𝑡𝑉𝑉𝑡𝑡𝑉𝑉

; 

𝑣𝑣4 = 𝛼𝛼4𝑋𝑋2𝑔𝑔42𝑋𝑋9
𝑔𝑔49�𝑎𝑎𝑡𝑡𝑉𝑉𝑉𝑉𝑆𝑆𝑆𝑆 𝑎𝑎𝑡𝑡𝑉𝑉𝑡𝑡𝑉𝑉;𝑣𝑣5 = 𝛼𝛼5𝑋𝑋2𝑔𝑔52�𝑎𝑎𝑡𝑡𝑉𝑉𝑉𝑉𝑆𝑆𝑆𝑆 𝑎𝑎𝑡𝑡𝑉𝑉𝑡𝑡𝑉𝑉 ; 

𝑑𝑑42′ =
𝑣𝑣4𝑑𝑑42 + 𝑣𝑣5𝑑𝑑52

𝑣𝑣4 + 𝑣𝑣5
;  𝑑𝑑49′ =

𝑣𝑣4𝑑𝑑49
𝑣𝑣4 + 𝑣𝑣5

 

𝛼𝛼6′ =
𝑣𝑣6 + 𝑣𝑣7

𝑋𝑋3𝑔𝑔63
′𝑋𝑋10

𝑔𝑔610′�
𝑆𝑆𝑡𝑡𝑉𝑉𝑉𝑉𝑆𝑆𝑆𝑆 𝑎𝑎𝑡𝑡𝑉𝑉𝑡𝑡𝑉𝑉

; 

𝑣𝑣6 = 𝛼𝛼6𝑋𝑋3𝑔𝑔63�𝑎𝑎𝑡𝑡𝑉𝑉𝑉𝑉𝑆𝑆𝑆𝑆 𝑎𝑎𝑡𝑡𝑉𝑉𝑡𝑡𝑉𝑉;𝑣𝑣7 = 𝛼𝛼7𝑋𝑋3𝑔𝑔73𝑋𝑋10
𝑔𝑔710�𝑎𝑎𝑡𝑡𝑉𝑉𝑉𝑉𝑆𝑆𝑆𝑆 𝑎𝑎𝑡𝑡𝑉𝑉𝑡𝑡𝑉𝑉 ; 

𝑑𝑑63′ =
𝑣𝑣6𝑑𝑑63 + 𝑣𝑣7𝑑𝑑73

𝑣𝑣6 + 𝑣𝑣7
;  𝑑𝑑610′ =

𝑣𝑣7𝑑𝑑710
𝑣𝑣6 + 𝑣𝑣7

 

Architecture M2 

The conceptual scheme we used to derive the power law mathematical models for 
architecture M2 is as follows 

 

GMA Model 

𝑑𝑑𝑋𝑋1
𝑑𝑑𝑃𝑃

= 𝛼𝛼1𝑋𝑋7𝑔𝑔17𝑋𝑋5
𝑔𝑔15 − 𝛼𝛼2𝑋𝑋1𝑔𝑔21𝑋𝑋6

𝑔𝑔26 − 𝛼𝛼3𝑋𝑋1𝑔𝑔31 
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𝑑𝑑𝑋𝑋2
𝑑𝑑𝑃𝑃

= 𝛼𝛼3𝑋𝑋1𝑔𝑔31 − 𝛼𝛼4𝑋𝑋2𝑔𝑔42𝑋𝑋8
𝑔𝑔48 − 𝛼𝛼5𝑋𝑋2𝑔𝑔52 

𝑑𝑑𝑋𝑋7
𝑑𝑑𝑃𝑃

= −
𝑑𝑑𝑋𝑋1
𝑑𝑑𝑃𝑃

−
𝑑𝑑𝑋𝑋2
𝑑𝑑𝑃𝑃

 

𝑑𝑑𝑋𝑋3
𝑑𝑑𝑃𝑃

= −
𝑑𝑑𝑋𝑋8
𝑑𝑑𝑃𝑃

= 𝛼𝛼4𝑋𝑋2𝑔𝑔42𝑋𝑋8
𝑔𝑔48 − 𝛼𝛼6𝑋𝑋3𝑔𝑔63 − 𝛼𝛼7𝑋𝑋3𝑔𝑔73𝑋𝑋9

𝑔𝑔79 

𝑑𝑑𝑋𝑋4
𝑑𝑑𝑃𝑃

= −
𝑑𝑑𝑋𝑋9
𝑑𝑑𝑃𝑃

= 𝛼𝛼7𝑋𝑋3𝑔𝑔73𝑋𝑋9
𝑔𝑔79 − 𝛼𝛼8𝑋𝑋4𝑔𝑔84 

 

S-system Model 

𝑑𝑑𝑋𝑋1
𝑑𝑑𝑃𝑃

= −
𝑑𝑑𝑋𝑋7
𝑑𝑑𝑃𝑃

= 𝛼𝛼1𝑋𝑋7𝑔𝑔17𝑋𝑋5
𝑔𝑔15 − 𝛼𝛼2′𝑋𝑋1𝑔𝑔21′𝑋𝑋6

𝑔𝑔26′ 

𝑑𝑑𝑋𝑋2
𝑑𝑑𝑃𝑃

= −
𝑑𝑑𝑋𝑋8
𝑑𝑑𝑃𝑃

= 𝛼𝛼3𝑋𝑋1𝑔𝑔31 − 𝛼𝛼4′𝑋𝑋2
𝑔𝑔42′𝑋𝑋9

𝑔𝑔49′ 

𝑑𝑑𝑋𝑋7
𝑑𝑑𝑃𝑃

= −
𝑑𝑑𝑋𝑋1
𝑑𝑑𝑃𝑃

−
𝑑𝑑𝑋𝑋2
𝑑𝑑𝑃𝑃

 

𝑑𝑑𝑋𝑋3
𝑑𝑑𝑃𝑃

= −
𝑑𝑑𝑋𝑋9
𝑑𝑑𝑃𝑃

= 𝛼𝛼5𝑋𝑋2𝑔𝑔52𝑋𝑋9
𝑔𝑔59 − 𝛼𝛼6′𝑋𝑋3𝑔𝑔63′𝑋𝑋10

𝑔𝑔610′ 

𝑑𝑑𝑋𝑋4
𝑑𝑑𝑃𝑃

= −
𝑑𝑑𝑋𝑋10
𝑑𝑑𝑃𝑃

= 𝛼𝛼7𝑋𝑋3𝑔𝑔73𝑋𝑋10
𝑔𝑔710 − 𝛼𝛼8𝑋𝑋4𝑔𝑔84 

𝛼𝛼2′ =
𝑣𝑣2 + 𝑣𝑣3

𝑋𝑋1𝑔𝑔21
′𝑋𝑋6

𝑔𝑔26′�
𝑆𝑆𝑡𝑡𝑉𝑉𝑉𝑉𝑆𝑆𝑆𝑆 𝑎𝑎𝑡𝑡𝑉𝑉𝑡𝑡𝑉𝑉

; 

𝑣𝑣2 = 𝛼𝛼2𝑋𝑋1𝑔𝑔21𝑋𝑋6
𝑔𝑔26�𝑎𝑎𝑡𝑡𝑉𝑉𝑉𝑉𝑆𝑆𝑆𝑆 𝑎𝑎𝑡𝑡𝑉𝑉𝑡𝑡𝑉𝑉;𝑣𝑣3 = 𝛼𝛼3𝑋𝑋1𝑔𝑔31�𝑎𝑎𝑡𝑡𝑉𝑉𝑉𝑉𝑆𝑆𝑆𝑆 𝑎𝑎𝑡𝑡𝑉𝑉𝑡𝑡𝑉𝑉 ; 

𝑑𝑑21′ =
𝑣𝑣2𝑑𝑑21 + 𝑣𝑣3𝑑𝑑31

𝑣𝑣2 + 𝑣𝑣3
;  𝑑𝑑26′ =

𝑣𝑣2𝑑𝑑26
𝑣𝑣2 + 𝑣𝑣3

 

𝛼𝛼4′ =
𝑣𝑣4 + 𝑣𝑣5

𝑋𝑋2𝑔𝑔42
′𝑋𝑋9

𝑔𝑔49′�
𝑆𝑆𝑡𝑡𝑉𝑉𝑉𝑉𝑆𝑆𝑆𝑆 𝑎𝑎𝑡𝑡𝑉𝑉𝑡𝑡𝑉𝑉

; 

𝑣𝑣4 = 𝛼𝛼4𝑋𝑋2𝑔𝑔42𝑋𝑋9
𝑔𝑔49�𝑎𝑎𝑡𝑡𝑉𝑉𝑉𝑉𝑆𝑆𝑆𝑆 𝑎𝑎𝑡𝑡𝑉𝑉𝑡𝑡𝑉𝑉;𝑣𝑣5 = 𝛼𝛼5𝑋𝑋2𝑔𝑔52�𝑎𝑎𝑡𝑡𝑉𝑉𝑉𝑉𝑆𝑆𝑆𝑆 𝑎𝑎𝑡𝑡𝑉𝑉𝑡𝑡𝑉𝑉 ; 

𝑑𝑑42′ =
𝑣𝑣4𝑑𝑑42 + 𝑣𝑣5𝑑𝑑52

𝑣𝑣4 + 𝑣𝑣5
;  𝑑𝑑49′ =

𝑣𝑣4𝑑𝑑49
𝑣𝑣4 + 𝑣𝑣5

 

𝛼𝛼6′ =
𝑣𝑣6 + 𝑣𝑣7

𝑋𝑋3𝑔𝑔63
′𝑋𝑋9

𝑔𝑔69′�
𝑆𝑆𝑡𝑡𝑉𝑉𝑉𝑉𝑆𝑆𝑆𝑆 𝑎𝑎𝑡𝑡𝑉𝑉𝑡𝑡𝑉𝑉

; 

𝑣𝑣6 = 𝛼𝛼6𝑋𝑋3𝑔𝑔63�𝑎𝑎𝑡𝑡𝑉𝑉𝑉𝑉𝑆𝑆𝑆𝑆 𝑎𝑎𝑡𝑡𝑉𝑉𝑡𝑡𝑉𝑉;𝑣𝑣7 = 𝛼𝛼7𝑋𝑋3𝑔𝑔73𝑋𝑋9
𝑔𝑔79�𝑎𝑎𝑡𝑡𝑉𝑉𝑉𝑉𝑆𝑆𝑆𝑆 𝑎𝑎𝑡𝑡𝑉𝑉𝑡𝑡𝑉𝑉 ; 

𝑑𝑑63′ =
𝑣𝑣6𝑑𝑑63 + 𝑣𝑣7𝑑𝑑73

𝑣𝑣6 + 𝑣𝑣7
;  𝑑𝑑69′ =

𝑣𝑣7𝑑𝑑79
𝑣𝑣6 + 𝑣𝑣7

 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted May 26, 2020. ; https://doi.org/10.1101/2020.05.21.108001doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.21.108001


46 
 

Architecture M2’ 

The conceptual scheme we used to derive the power law mathematical models for 
architecture M2’ is as follows 

 

GMA Model 

𝑑𝑑𝑋𝑋1
𝑑𝑑𝑃𝑃

= 𝛼𝛼1𝑋𝑋7𝑔𝑔17𝑋𝑋5
𝑔𝑔15 − 𝛼𝛼2𝑋𝑋1𝑔𝑔21𝑋𝑋6

𝑔𝑔26 − 𝛼𝛼3𝑋𝑋1𝑔𝑔31𝑋𝑋8
𝑔𝑔38 

𝑑𝑑𝑋𝑋2
𝑑𝑑𝑃𝑃

= −
𝑑𝑑𝑋𝑋8
𝑑𝑑𝑃𝑃

= 𝛼𝛼3𝑋𝑋1𝑔𝑔31𝑋𝑋8
𝑔𝑔38 − 𝛼𝛼4𝑋𝑋2𝑔𝑔42𝑋𝑋7

𝑔𝑔47 − 𝛼𝛼5𝑋𝑋2𝑔𝑔52 

𝑑𝑑𝑋𝑋3
𝑑𝑑𝑃𝑃

= 𝛼𝛼4𝑋𝑋2𝑔𝑔42𝑋𝑋7
𝑔𝑔47 − 𝛼𝛼6𝑋𝑋3𝑔𝑔63 − 𝛼𝛼7𝑋𝑋3𝑔𝑔73𝑋𝑋9

𝑔𝑔79 

𝑑𝑑𝑋𝑋7
𝑑𝑑𝑃𝑃

= −
𝑑𝑑𝑋𝑋1
𝑑𝑑𝑃𝑃

−
𝑑𝑑𝑋𝑋3
𝑑𝑑𝑃𝑃

 

𝑑𝑑𝑋𝑋4
𝑑𝑑𝑃𝑃

= −
𝑑𝑑𝑋𝑋9
𝑑𝑑𝑃𝑃

= 𝛼𝛼7𝑋𝑋3𝑔𝑔73𝑋𝑋9
𝑔𝑔79 − 𝛼𝛼8𝑋𝑋4𝑔𝑔84 

 

S-system Model 

𝑑𝑑𝑋𝑋1
𝑑𝑑𝑃𝑃

= 𝛼𝛼1𝑋𝑋7𝑔𝑔17𝑋𝑋5
𝑔𝑔15 − 𝛼𝛼2′𝑋𝑋1𝑔𝑔21′𝑋𝑋6

𝑔𝑔26′𝑋𝑋8
𝑔𝑔28′ 

𝑑𝑑𝑋𝑋2
𝑑𝑑𝑃𝑃

= −
𝑑𝑑𝑋𝑋8
𝑑𝑑𝑃𝑃

= 𝛼𝛼3𝑋𝑋1𝑔𝑔31𝑋𝑋8
𝑔𝑔38 − 𝛼𝛼4′𝑋𝑋2

𝑔𝑔42′𝑋𝑋7
𝑔𝑔47′ 

𝑑𝑑𝑋𝑋3
𝑑𝑑𝑃𝑃

= 𝛼𝛼5𝑋𝑋2𝑔𝑔52𝑋𝑋7
𝑔𝑔57 − 𝛼𝛼6′𝑋𝑋3𝑔𝑔63′𝑋𝑋9

𝑔𝑔69′ 

𝑑𝑑𝑋𝑋7
𝑑𝑑𝑃𝑃

= −
𝑑𝑑𝑋𝑋1
𝑑𝑑𝑃𝑃

−
𝑑𝑑𝑋𝑋3
𝑑𝑑𝑃𝑃
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𝑑𝑑𝑋𝑋4
𝑑𝑑𝑃𝑃

= −
𝑑𝑑𝑋𝑋9
𝑑𝑑𝑃𝑃

= 𝛼𝛼7𝑋𝑋3𝑔𝑔73𝑋𝑋9
𝑔𝑔79 − 𝛼𝛼8𝑋𝑋4𝑔𝑔84 

𝛼𝛼2′ =
𝑣𝑣2 + 𝑣𝑣3

𝑋𝑋1𝑔𝑔21
′𝑋𝑋6

𝑔𝑔26′𝑋𝑋8
𝑔𝑔28′�

𝑆𝑆𝑡𝑡𝑉𝑉𝑉𝑉𝑆𝑆𝑆𝑆 𝑎𝑎𝑡𝑡𝑉𝑉𝑡𝑡𝑉𝑉

; 

𝑣𝑣2 = 𝛼𝛼2𝑋𝑋1𝑔𝑔21𝑋𝑋6
𝑔𝑔26�𝑎𝑎𝑡𝑡𝑉𝑉𝑉𝑉𝑆𝑆𝑆𝑆 𝑎𝑎𝑡𝑡𝑉𝑉𝑡𝑡𝑉𝑉;𝑣𝑣3 = 𝛼𝛼3𝑋𝑋1𝑔𝑔31𝑋𝑋8

𝑔𝑔38�𝑎𝑎𝑡𝑡𝑉𝑉𝑉𝑉𝑆𝑆𝑆𝑆 𝑎𝑎𝑡𝑡𝑉𝑉𝑡𝑡𝑉𝑉 ; 

𝑑𝑑21′ =
𝑣𝑣2𝑑𝑑21
𝑣𝑣2 + 𝑣𝑣3

;  𝑑𝑑26′ =
𝑣𝑣2𝑑𝑑26
𝑣𝑣2 + 𝑣𝑣3

;𝑑𝑑28′ =
𝑣𝑣3𝑑𝑑28
𝑣𝑣2 + 𝑣𝑣3

 

𝛼𝛼4′ =
𝑣𝑣4 + 𝑣𝑣5

𝑋𝑋2𝑔𝑔42
′𝑋𝑋7

𝑔𝑔47′�
𝑆𝑆𝑡𝑡𝑉𝑉𝑉𝑉𝑆𝑆𝑆𝑆 𝑎𝑎𝑡𝑡𝑉𝑉𝑡𝑡𝑉𝑉

; 

𝑣𝑣4 = 𝛼𝛼4𝑋𝑋2𝑔𝑔42𝑋𝑋7
𝑔𝑔47�𝑎𝑎𝑡𝑡𝑉𝑉𝑉𝑉𝑆𝑆𝑆𝑆 𝑎𝑎𝑡𝑡𝑉𝑉𝑡𝑡𝑉𝑉;𝑣𝑣5 = 𝛼𝛼5𝑋𝑋2𝑔𝑔52�𝑎𝑎𝑡𝑡𝑉𝑉𝑉𝑉𝑆𝑆𝑆𝑆 𝑎𝑎𝑡𝑡𝑉𝑉𝑡𝑡𝑉𝑉 ; 

𝑑𝑑42′ =
𝑣𝑣4𝑑𝑑42 + 𝑣𝑣5𝑑𝑑52

𝑣𝑣4 + 𝑣𝑣5
;  𝑑𝑑47′ =

𝑣𝑣4𝑑𝑑47
𝑣𝑣4 + 𝑣𝑣5

 

𝛼𝛼6′ =
𝑣𝑣6 + 𝑣𝑣7

𝑋𝑋3𝑔𝑔63
′𝑋𝑋9

𝑔𝑔69′�
𝑆𝑆𝑡𝑡𝑉𝑉𝑉𝑉𝑆𝑆𝑆𝑆 𝑎𝑎𝑡𝑡𝑉𝑉𝑡𝑡𝑉𝑉

; 

𝑣𝑣6 = 𝛼𝛼6𝑋𝑋3𝑔𝑔63�𝑎𝑎𝑡𝑡𝑉𝑉𝑉𝑉𝑆𝑆𝑆𝑆 𝑎𝑎𝑡𝑡𝑉𝑉𝑡𝑡𝑉𝑉;𝑣𝑣7 = 𝛼𝛼7𝑋𝑋3𝑔𝑔73𝑋𝑋9
𝑔𝑔79�𝑎𝑎𝑡𝑡𝑉𝑉𝑉𝑉𝑆𝑆𝑆𝑆 𝑎𝑎𝑡𝑡𝑉𝑉𝑡𝑡𝑉𝑉 ; 

𝑑𝑑63′ =
𝑣𝑣6𝑑𝑑63 + 𝑣𝑣7𝑑𝑑73

𝑣𝑣6 + 𝑣𝑣7
;  𝑑𝑑69′ =

𝑣𝑣7𝑑𝑑79
𝑣𝑣6 + 𝑣𝑣7

 

Architecture M3 

The conceptual scheme we used to derive the power law mathematical models for 
architecture M3 is as follows 
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GMA Model 

𝑑𝑑𝑋𝑋1
𝑑𝑑𝑃𝑃

= 𝛼𝛼1𝑋𝑋7𝑔𝑔17𝑋𝑋5
𝑔𝑔15 − 𝛼𝛼2𝑋𝑋1𝑔𝑔21𝑋𝑋6

𝑔𝑔26 − 𝛼𝛼3𝑋𝑋1𝑔𝑔31 

𝑑𝑑𝑋𝑋2
𝑑𝑑𝑃𝑃

= 𝛼𝛼3𝑋𝑋1𝑔𝑔31 − 𝛼𝛼4𝑋𝑋2𝑔𝑔42 − 𝛼𝛼5𝑋𝑋2𝑔𝑔52 

𝑑𝑑𝑋𝑋3
𝑑𝑑𝑃𝑃

= 𝛼𝛼4𝑋𝑋2𝑔𝑔42 − 𝛼𝛼6𝑋𝑋3𝑔𝑔63 − 𝛼𝛼7𝑋𝑋3𝑔𝑔73𝑋𝑋8
𝑔𝑔78 

𝑑𝑑𝑋𝑋7
𝑑𝑑𝑃𝑃

= −
𝑑𝑑𝑋𝑋1
𝑑𝑑𝑃𝑃

−
𝑑𝑑𝑋𝑋2
𝑑𝑑𝑃𝑃

−
𝑑𝑑𝑋𝑋3
𝑑𝑑𝑃𝑃

 

𝑑𝑑𝑋𝑋4
𝑑𝑑𝑃𝑃

= −
𝑑𝑑𝑋𝑋8
𝑑𝑑𝑃𝑃

= 𝛼𝛼7𝑋𝑋3𝑔𝑔73𝑋𝑋8
𝑔𝑔78 − 𝛼𝛼8𝑋𝑋4𝑔𝑔84 

 

S-system Model 

𝑑𝑑𝑋𝑋1
𝑑𝑑𝑃𝑃

= 𝛼𝛼1𝑋𝑋7𝑔𝑔17𝑋𝑋5
𝑔𝑔15 − 𝛼𝛼2′𝑋𝑋1𝑔𝑔21′𝑋𝑋6

𝑔𝑔26′ 

𝑑𝑑𝑋𝑋2
𝑑𝑑𝑃𝑃

= 𝛼𝛼3𝑋𝑋1𝑔𝑔31 − 𝛼𝛼4′𝑋𝑋2
𝑔𝑔42′ 

𝑑𝑑𝑋𝑋3
𝑑𝑑𝑃𝑃

= 𝛼𝛼5𝑋𝑋2𝑔𝑔52 − 𝛼𝛼6′𝑋𝑋3𝑔𝑔63′𝑋𝑋8
𝑔𝑔68′ 

𝑑𝑑𝑋𝑋7
𝑑𝑑𝑃𝑃

= −
𝑑𝑑𝑋𝑋1
𝑑𝑑𝑃𝑃

−
𝑑𝑑𝑋𝑋2
𝑑𝑑𝑃𝑃

−
𝑑𝑑𝑋𝑋3
𝑑𝑑𝑃𝑃

 

𝑑𝑑𝑋𝑋4
𝑑𝑑𝑃𝑃

= −
𝑑𝑑𝑋𝑋8
𝑑𝑑𝑃𝑃

= 𝛼𝛼7𝑋𝑋3𝑔𝑔73𝑋𝑋8
𝑔𝑔78 − 𝛼𝛼8𝑋𝑋4𝑔𝑔84 

𝛼𝛼2′ =
𝑣𝑣2 + 𝑣𝑣3

𝑋𝑋1𝑔𝑔21
′𝑋𝑋6

𝑔𝑔26′�
𝑆𝑆𝑡𝑡𝑉𝑉𝑉𝑉𝑆𝑆𝑆𝑆 𝑎𝑎𝑡𝑡𝑉𝑉𝑡𝑡𝑉𝑉

; 

𝑣𝑣2 = 𝛼𝛼2𝑋𝑋1𝑔𝑔21𝑋𝑋6
𝑔𝑔26�𝑎𝑎𝑡𝑡𝑉𝑉𝑉𝑉𝑆𝑆𝑆𝑆 𝑎𝑎𝑡𝑡𝑉𝑉𝑡𝑡𝑉𝑉;𝑣𝑣3 = 𝛼𝛼3𝑋𝑋1𝑔𝑔31�𝑎𝑎𝑡𝑡𝑉𝑉𝑉𝑉𝑆𝑆𝑆𝑆 𝑎𝑎𝑡𝑡𝑉𝑉𝑡𝑡𝑉𝑉 ; 

𝑑𝑑21′ =
𝑣𝑣2𝑑𝑑21 + 𝑣𝑣3𝑑𝑑31

𝑣𝑣2 + 𝑣𝑣3
;  𝑑𝑑26′ =

𝑣𝑣2𝑑𝑑26
𝑣𝑣2 + 𝑣𝑣3

 

𝛼𝛼4′ =
𝑣𝑣4 + 𝑣𝑣5
𝑋𝑋2𝑔𝑔42

′ �
𝑆𝑆𝑡𝑡𝑉𝑉𝑉𝑉𝑆𝑆𝑆𝑆 𝑎𝑎𝑡𝑡𝑉𝑉𝑡𝑡𝑉𝑉

; 

𝑣𝑣4 = 𝛼𝛼4𝑋𝑋2𝑔𝑔42�𝑎𝑎𝑡𝑡𝑉𝑉𝑉𝑉𝑆𝑆𝑆𝑆 𝑎𝑎𝑡𝑡𝑉𝑉𝑡𝑡𝑉𝑉;𝑣𝑣5 = 𝛼𝛼5𝑋𝑋2𝑔𝑔52�𝑎𝑎𝑡𝑡𝑉𝑉𝑉𝑉𝑆𝑆𝑆𝑆 𝑎𝑎𝑡𝑡𝑉𝑉𝑡𝑡𝑉𝑉 ; 

𝑑𝑑42′ =
𝑣𝑣4𝑑𝑑42 + 𝑣𝑣5𝑑𝑑52

𝑣𝑣4 + 𝑣𝑣5
 

𝛼𝛼6′ =
𝑣𝑣6 + 𝑣𝑣7

𝑋𝑋3𝑔𝑔63
′𝑋𝑋10

𝑔𝑔610′�
𝑆𝑆𝑡𝑡𝑉𝑉𝑉𝑉𝑆𝑆𝑆𝑆 𝑎𝑎𝑡𝑡𝑉𝑉𝑡𝑡𝑉𝑉

; 

𝑣𝑣6 = 𝛼𝛼6𝑋𝑋3𝑔𝑔63�𝑎𝑎𝑡𝑡𝑉𝑉𝑉𝑉𝑆𝑆𝑆𝑆 𝑎𝑎𝑡𝑡𝑉𝑉𝑡𝑡𝑉𝑉;𝑣𝑣7 = 𝛼𝛼7𝑋𝑋3𝑔𝑔73𝑋𝑋8
𝑔𝑔78�𝑎𝑎𝑡𝑡𝑉𝑉𝑉𝑉𝑆𝑆𝑆𝑆 𝑎𝑎𝑡𝑡𝑉𝑉𝑡𝑡𝑉𝑉 ; 
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𝑑𝑑63′ =
𝑣𝑣6𝑑𝑑63 + 𝑣𝑣7𝑑𝑑73

𝑣𝑣6 + 𝑣𝑣7
;  𝑑𝑑68′ =

𝑣𝑣7𝑑𝑑78
𝑣𝑣6 + 𝑣𝑣7

 

Architecture M4 

The conceptual scheme we used to derive the power law mathematical model for architecture 
M4 is as follows 

 

 

GMA Model 

𝑑𝑑𝑋𝑋1
𝑑𝑑𝑃𝑃

= 𝛼𝛼1𝑋𝑋7𝑔𝑔17𝑋𝑋5
𝑔𝑔15 − 𝛼𝛼2𝑋𝑋1𝑔𝑔21𝑋𝑋6

𝑔𝑔26 − 𝛼𝛼3𝑋𝑋1𝑔𝑔31 

𝑑𝑑𝑋𝑋2
𝑑𝑑𝑃𝑃

= 𝛼𝛼3𝑋𝑋1𝑔𝑔31 − 𝛼𝛼4𝑋𝑋2𝑔𝑔42 − 𝛼𝛼5𝑋𝑋2𝑔𝑔52 

𝑑𝑑𝑋𝑋3
𝑑𝑑𝑃𝑃

= 𝛼𝛼4𝑋𝑋2𝑔𝑔42 − 𝛼𝛼6𝑋𝑋3𝑔𝑔63 − 𝛼𝛼7𝑋𝑋3𝑔𝑔73 

𝑑𝑑𝑋𝑋4
𝑑𝑑𝑃𝑃

= 𝛼𝛼7𝑋𝑋3𝑔𝑔73 − 𝛼𝛼8𝑋𝑋4𝑔𝑔84 

𝑑𝑑𝑋𝑋7
𝑑𝑑𝑃𝑃

= −
𝑑𝑑𝑋𝑋1
𝑑𝑑𝑃𝑃

−
𝑑𝑑𝑋𝑋2
𝑑𝑑𝑃𝑃

−
𝑑𝑑𝑋𝑋3
𝑑𝑑𝑃𝑃

−
𝑑𝑑𝑋𝑋4
𝑑𝑑𝑃𝑃

 

S-system Model 

𝑑𝑑𝑋𝑋1
𝑑𝑑𝑃𝑃

= 𝛼𝛼1𝑋𝑋7𝑔𝑔17𝑋𝑋5
𝑔𝑔15 − 𝛼𝛼2′𝑋𝑋1𝑔𝑔21′𝑋𝑋6

𝑔𝑔26′ 

𝑑𝑑𝑋𝑋2
𝑑𝑑𝑃𝑃

= 𝛼𝛼3𝑋𝑋1𝑔𝑔31 − 𝛼𝛼4′𝑋𝑋2
𝑔𝑔42′ 

𝑑𝑑𝑋𝑋3
𝑑𝑑𝑃𝑃

= 𝛼𝛼5𝑋𝑋2𝑔𝑔52 − 𝛼𝛼6′𝑋𝑋3𝑔𝑔63′ 
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𝑑𝑑𝑋𝑋4
𝑑𝑑𝑃𝑃

= 𝛼𝛼7𝑋𝑋3𝑔𝑔73 − 𝛼𝛼8𝑋𝑋4𝑔𝑔84 

𝑑𝑑𝑋𝑋7
𝑑𝑑𝑃𝑃

= −
𝑑𝑑𝑋𝑋1
𝑑𝑑𝑃𝑃

−
𝑑𝑑𝑋𝑋2
𝑑𝑑𝑃𝑃

−
𝑑𝑑𝑋𝑋3
𝑑𝑑𝑃𝑃

−
𝑑𝑑𝑋𝑋4
𝑑𝑑𝑃𝑃

 

 

𝛼𝛼2′ =
𝑣𝑣2 + 𝑣𝑣3

𝑋𝑋1𝑔𝑔21
′𝑋𝑋6

𝑔𝑔26′�
𝑆𝑆𝑡𝑡𝑉𝑉𝑉𝑉𝑆𝑆𝑆𝑆 𝑎𝑎𝑡𝑡𝑉𝑉𝑡𝑡𝑉𝑉

; 

𝑣𝑣2 = 𝛼𝛼2𝑋𝑋1𝑔𝑔21𝑋𝑋6
𝑔𝑔26�𝑎𝑎𝑡𝑡𝑉𝑉𝑉𝑉𝑆𝑆𝑆𝑆 𝑎𝑎𝑡𝑡𝑉𝑉𝑡𝑡𝑉𝑉;𝑣𝑣3 = 𝛼𝛼3𝑋𝑋1𝑔𝑔31�𝑎𝑎𝑡𝑡𝑉𝑉𝑉𝑉𝑆𝑆𝑆𝑆 𝑎𝑎𝑡𝑡𝑉𝑉𝑡𝑡𝑉𝑉 ; 

𝑑𝑑21′ =
𝑣𝑣2𝑑𝑑21 + 𝑣𝑣3𝑑𝑑31

𝑣𝑣2 + 𝑣𝑣3
;  𝑑𝑑26′ =

𝑣𝑣2𝑑𝑑26
𝑣𝑣2 + 𝑣𝑣3

 

𝛼𝛼4′ =
𝑣𝑣4 + 𝑣𝑣5
𝑋𝑋2𝑔𝑔42

′ �
𝑆𝑆𝑡𝑡𝑉𝑉𝑉𝑉𝑆𝑆𝑆𝑆 𝑎𝑎𝑡𝑡𝑉𝑉𝑡𝑡𝑉𝑉

; 

𝑣𝑣4 = 𝛼𝛼4𝑋𝑋2𝑔𝑔42�𝑎𝑎𝑡𝑡𝑉𝑉𝑉𝑉𝑆𝑆𝑆𝑆 𝑎𝑎𝑡𝑡𝑉𝑉𝑡𝑡𝑉𝑉;𝑣𝑣5 = 𝛼𝛼5𝑋𝑋2𝑔𝑔52�𝑎𝑎𝑡𝑡𝑉𝑉𝑉𝑉𝑆𝑆𝑆𝑆 𝑎𝑎𝑡𝑡𝑉𝑉𝑡𝑡𝑉𝑉 ; 

𝑑𝑑42′ =
𝑣𝑣4𝑑𝑑42 + 𝑣𝑣5𝑑𝑑52

𝑣𝑣4 + 𝑣𝑣5
 

𝛼𝛼6′ =
𝑣𝑣6 + 𝑣𝑣7
𝑋𝑋3𝑔𝑔63

′ �
𝑆𝑆𝑡𝑡𝑉𝑉𝑉𝑉𝑆𝑆𝑆𝑆 𝑎𝑎𝑡𝑡𝑉𝑉𝑡𝑡𝑉𝑉

; 

𝑣𝑣6 = 𝛼𝛼6𝑋𝑋3𝑔𝑔63�𝑎𝑎𝑡𝑡𝑉𝑉𝑉𝑉𝑆𝑆𝑆𝑆 𝑎𝑎𝑡𝑡𝑉𝑉𝑡𝑡𝑉𝑉;𝑣𝑣7 = 𝛼𝛼7𝑋𝑋3𝑔𝑔73�𝑎𝑎𝑡𝑡𝑉𝑉𝑉𝑉𝑆𝑆𝑆𝑆 𝑎𝑎𝑡𝑡𝑉𝑉𝑡𝑡𝑉𝑉 ; 

𝑑𝑑63′ =
𝑣𝑣6𝑑𝑑63 + 𝑣𝑣7𝑑𝑑73

𝑣𝑣6 + 𝑣𝑣7
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Conceptual schemes and mass action mathematical models 
Architecture M1   

Reaction Rate 
SK → SKP k1 × SK 
SKP → SK k2 × SKP 

SKP + RR1 → SKPRR1 k3 × SKP × RR1 
SKPRR1 → SKP + RR1  k4 × SKPRR1 

SKPRR1 → SKRR1P k5 × SKPRR1 
SKRR1P → SK + RR1P k6 × SKRR1P 
SK + RR1P → SKRR1P k7 × SK × RR1P 

SKPRR1 → SKRR1 k8 × SKPRR1 
SKRR1 → SK + RR1 k9 × SKRR1 
SK + RR1 → SKRR1 k10 × SK × RR1 

RR1P → RR1 K11 × RR1P 
RR1P + Hpt →RR1PHpt k12 × Hpt × RR1P 
RR1PHpt → RR1P+Hpt k13 × RR1PHpt 
RR1PHpt → RR1HptP k14 × RR1PHpt 

RR1HptP → RR1 + HptP k15 × RR1HptP 
RR1 + HptP → RR1HptP k16 × RR1 × HptP 

HptP → Hpt  k17 × HptP 
HptP + RR2 → HptPRR2 k18 × HptP × RR2 
HptPRR2 → HptP + RR2 k19 × HptPRR2 

HptPRR2 → HptRR2P k20 × HptPRR2 
HptRR2P → Hpt + RR2P k21 × HptRR2P 
Hpt + RR2P → HptRR2P k22 × Hpt×RR2P 

RR2P → RR2 k23 × RR2P 
 
Architecture M2   
 

Reaction Rate 
SKRR1 → SKPRR1 k1 × SKRR1 
SKPRR1 → SKRR1 k2 × SKPRR1 

SKPRR1 → SKRR1P k5 × SKPRR1 
SKPRR1 → SKRR1 k8 × SKPRR1 
SKRR1P → SKRR1 K11 × SKRR1P 

SKRR1P + Hpt →SKRR1PHpt k12 × Hpt × SKRR1P 
SKRR1PHpt → SKRR1P+Hpt k13 × SKRR1PHpt 
SKRR1PHpt → SKRR1HptP k14 × SKRR1PHpt 

SKRR1HptP → SKRR1 + HptP k15 × SKRR1HptP 
SKRR1 + HptP → SKRR1HptP k16 × SKRR1 × HptP 

HptP → Hpt  k17 × HptP 
HptP + RR2 → HptPRR2 k18 × HptP × RR2 
HptPRR2 → HptP + RR2 k19 × HptPRR2 

HptPRR2 → HptRR2P k20 × HptPRR2 
HptRR2P → Hpt + RR2P k21 × HptRR2P 
Hpt + RR2P → HptRR2P k22 × Hpt×RR2P 

RR2P → RR2 k23 × RR2P 
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Architecture M2’   
Reaction Rate 

SKHpt → SKPHpt k1 × SKHpt 
SKPHpt → SKHpt k2 × SKPHpt 

SKPHpt + RR1 → SKPHptRR1 k3 × SKPHpt × RR1 
SKPHptRR1 → SKPHpt + RR1  k4 × SKPHptRR1 

SKPHptRR1 → SKHptRR1P k5 × SKPHptRR1 
SKHptRR1P → SKHpt + RR1P k6 × SKHptRR1P 
SKHpt + RR1P → SKHptRR1P k7 × SKHpt × RR1P 

SKPHptRR1 → SKHptRR1 k8 × SKPHptRR1 
SKHptRR1 → SKHpt + RR1 k9 × SKHptRR1 
SKHpt + RR1 → SKHptRR1 k10 × SKHpt × RR1 

RR1P → RR1 K11 × RR1P 
RR1P + SKHpt →RR1PSKHpt k12 × SKHpt × RR1P 
RR1PSKHpt → RR1P+SKHpt k13 × RR1PSKHpt 
RR1PSKHpt → RR1SKHptP k14 × RR1PSKHpt 

RR1SKHptP → RR1 + SKHptP k15 × RR1SKHptP 
RR1 + SKHptP → RR1SKHptP k16 × RR1 × SKHptP 

SKHptP → SKHpt  k17 × SKHptP 
SKHptP + RR2 → SKHptPRR2 k18 × SKHptP × RR2 
SKHptPRR2 → SKHptP + RR2 k19 × SKHptPRR2 

SKHptPRR2 → SKHptRR2P k20 × SKHptPRR2 
SKHptRR2P → SKHpt + RR2P k21 × SKHptRR2P 
SKHpt + RR2P → SKHptRR2P k22 × SKHpt×RR2P 

RR2P → RR2 k23 × RR2P 
 
Architecture M3   
 

Reaction Rate 
SKRR1Hpt → SKPRR1Hpt k1 × SKRR1Hpt 
SKPRR1Hpt → SKRR1Hpt k2 × SKPRR1Hpt 

SKPRR1Hpt → SKRR1PHpt k5 × SKPRR1Hpt 
SKPRR1Hpt → SKRR1Hpt k8 × SKPRR1Hpt 
SKRR1PHpt → SKRR1Hpt K11 × SKRR1PHpt 

SKRR1PHpt → SKRR1HptP k14 × SKRR1PHpt 
SKRR1HptP → SKRR1Hpt  k17 × SKRR1HptP 

SKRR1HptP + RR2 → SKRR1HptPRR2 k18 × SKRR1HptP × RR2 
SKRR1HptPRR2 → SKRR1HptP + RR2 k19 × SKRR1HptPRR2 

SKRR1HptPRR2 → SKRR1HptRR2P k20 × SKRR1HptPRR2 
SKRR1HptRR2P → SKRR1Hpt + RR2P k21 × SKRR1HptRR2P 
SKRR1Hpt + RR2P → SKRR1HptRR2P k22 × SKRR1Hpt×RR2P 

RR2P → RR2 k23 × RR2P 
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Architecture M4   
Reaction Rate 

SKRR1HptRR2 → SKPRR1HptRR2 k1 × SKRR1HptRR2 
SKPRR1HptRR2 → SKRR1HptRR2 k2 × SKPRR1HptRR2 

SKPRR1HptRR2 → SKRR1PHptRR2 k5 × SKPRR1HptRR2 
SKPRR1HptRR2 → SKRR1HptRR2 k8 × SKPRR1HptRR2 
SKRR1PHptRR2 → SKRR1HptRR2 K11 × SKRR1PHptRR2 

SKRR1PHptRR2 → SKRR1HptPRR2 k14 × SKRR1PHptRR2 
SKRR1HptPRR2 → SKRR1HptRR2  k17 × SKRR1HptPRR2 

SKRR1HptPRR2 → SKRR1HptRR2P k20 × SKRR1HptPRR2 
SKRR1HptRR2P → SKRR1HptRR2 k23 × SKRR1HptRR2P 

 

Parameter values and protein abundances for the mass action mathematical 
models 
The parameter values for the mass action models were generated by combining all possible 
values described in Table S4. The protein abundances were approximated to the orders of 
magnitudes experimentally determined in Table S3 and then also combined using a latin 
hypercube approach. 

Mathematical Models for the Spo0 Phosphorelay  
Parameters and abundances for the Spo0 system in Bacillus subtilis compiled from 56,99 

Reaction Rate constants 

SK → SKP 0.0019 s-1 
SKP → SK 0 
SK+RR → SKRR  100 
SKRR→SK + RR 200 
SKP+RR → SKPRR  200 
SKPRR→SKP + RR 100 
SKPRR→SKRR 0 
SKPRR → SKRRP 0.08 s-1 
SKRRP → SKRR 0 
SKRRP → SK + RRP 100 
SK + RRP → SKRRP 200 
RRP → RR 0.05 
RRP + Hpt → RRPHpt 100 
RRPHpt → RRP + Hpt 2300 
RRPHpt →RRHptP 1.5*10-5 s-1 
RRHptP → RR + HptP 2300 
RR + HptP → RRHptP 100 
HptP + RR2 → HptPRR2 400 
HptPRR2 → HPtP + RR2 100 
HptPRR2 → HptRR2P 0.20 s-1 
HptRR2P → Hpt + RR2P 100 
Hpt + RR2P → HptRR2P 400 
RR2P → RR2 0.0001-0.006 
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PR proteins Abundances 
KinA 610 molecules cell -1  
Spo0F 123 molecules cell -1 
Spo0A 192 molecules cell -1 
Spo0B 267 molecules cell -1 
  
 
 
 

 

Mathematical Models for the Sln1 Phosphorelay  
 

 

Parameter values and abundances for the Sln1-Ypd1-Ssk1-Skn7 system in Sacharomyces 
cerevisiae compiled from 30,31  
 

Reaction Sln1:Ypd1:Ssk1 
 

Sln1:Ypd1:Skn7 

SKRR → SKPRR 10000 10000 
SKPRR → SKRR 100 100 
SKPRR → SKRRP  10000 10000 
SKRRP→SKRR 0.001 

(0.0005  w/osmolites)  
0.001 

SKRRP + Hpt → SKRRPHpt 2000 M-1 s-1 2000 M-1 s-1 
SKRRPHpt → SKRRP + Hpt 2800 s-1 2800 s-1 
SKRRPHpt →SKRRHptP 29 s-1 29 s-1 
SKRRHptP →SKRRPHpt 7.5 s-1 7.5 s-1 
SKRRHptP → SKRR + HptP 14000 14000 
SKRR + HptP → RRHptP 2000 2000 
HptP + RR2 → HptPRR2 2000 2000 
HptPRR2 → HPtP + RR2 4800 2800 
HptPRR2 → HptRR2P 160 s-1 1.4 s-1 
HptRR2P → HptPRR2 0 0.4 s-1 
HptRR2P → Hpt + RR2P 0 10000 
Hpt + RR2P → HptRR2P 0 2 
 
 
 
 

  

   
PR Proteins Protein abundances  
Sln1 696 molecules cell -1  
Ypd1 6560 molecules cell -1  
Ssk1 1018 molecules cell -1  
Skn7 2536 molecules cell -1  
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