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Abstract 

 

 

When we see a face, we rapidly form an impression of its attractiveness. Here, 

we investigated how rapidly representations of facial attractiveness emerge in the 

human brain. In an EEG experiment, participants viewed 100 face photographs and 

rated them for their attractiveness. Using time-resolved representational similarity 

analysis on the EEG data, we reveal representations of facial attractiveness after 150-

200ms of cortical processing. Interestingly, we show that these representations are 

related to individual participant’s personal attractiveness judgments, suggesting that 

already early perceptual representations of facial attractiveness convey idiosyncratic 

attractiveness preferences. Further, we show that these early representations are 

genuinely related to attractiveness, as they are neither explained by other high-level 

face attributes, such as face sex or age, nor by features extracted by an artificial deep 

neural network model of face processing. Together, our results demonstrate early, 

individually specific, and genuine representations of facial attractiveness, which may 

underlie fast attractiveness judgments.  
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Introduction 

 

When we see a face, we almost immediately can tell whether we find it attractive 

or not [1]. Beyond such first impressions, facial attractiveness affects people’s everyday 

lives in fundamental ways: for instance, an attractive face grants advantages in various 

aspects, such as increased success in dating [2,3], receiving help more often [4,5], and 

being more successful on the job market [6,7].  

 Given these varied effects of facial attractiveness, a large body of research has 

focused on understanding the factors that make a face attractive. One line of research 

has tried to establish objective physical markers of facial attractiveness [8,9], revealing 

that faces are more attractive when they are more similar to the average [10,11], more 

symmetric [11-13], or have favourable sexual characteristics [14]. This research has led 

into advances in computer vision, providing algorithms that can predict how attractive 

humans will find a particular face [15,16]. However, there is considerable agreement 

that there is also a subjective component to facial attractiveness, with responses 

varying substantially between observers [17-19]. Indeed, our impression of facial 

attractiveness may depend on both: an objectively attractive physical composition of 

visual features and an idiosyncratic appreciation of these features.  

How does the brain achieve the transition from physical stimulus properties 

into an individual representation of facial attractiveness? To answer this question, 

previous studies have used event-related potentials (ERPs) obtained from EEG 

recordings to investigate when brain responses to more or less attractive faces differ. 

Although in many such studies facial attractiveness influences multiple ERP 

components, a key question is when facial attractiveness is first represented in EEG 

signals. The answers to this question are quite mixed. Some studies highlight relatively 
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early ERP modulations depending on facial attractiveness, for instance at the N170 

processing stage [20-26], suggesting that attractiveness is analysed during perceptual 

face processing. Other studies suggest that attractiveness is first analysed during the 

N250 processing stage [27-30], at the time when face identity is represented. Finally, 

some studies only find late ERP modulations, at the P3 stage or during later slow waves 

starting from around 350-400ms [31-37], suggesting that facial attractiveness is 

analysed during post-perceptual stages of cognitive processing.  

 Given these mixed findings, at which time do brain signals first reflect face 

attractiveness? One factor that complicates the interpretation of previous studies 

clearly is the variety in tasks (with some studies employing explicit attractiveness 

ratings and others employing orthogonal tasks), which makes it hard to appreciate 

whether ERP differences are due to variations in attractiveness or differences in task 

demands. Another problem is the variety in stimulus materials across studies (with 

different studies using faces of different genders, ages, and degrees of realism) and a 

lack of control for stimulus variability within individual studies, which makes it hard 

to assess whether ERP differences are genuinely related to differences in perceived 

attractiveness or other low- and high-level visual attributes of the face. Further, ERP 

studies can sometimes lack the sensitivity that multivariate analyses techniques offer 

for detecting subtle changes between conditions [38,39], thereby missing out on those 

temporal signatures that are weaker.  

Here, we set out to resolve when cortical representations of facial attractiveness 

first emerge during an explicit attractiveness judgment task. By using multivariate 

representational similarity analysis (RSA; [40]) on EEG data recorded during this 

task, we were able to temporally track the emergence of representations of facial 

attractiveness with high sensitivity, while at the same time being able to control for 

other sources of variability in the faces. We found that already between 150ms and 
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200ms of processing, brain representations reflected facial attractiveness. We uncover 

three key aspects of these early representations of facial attractiveness: First, we show 

that even such early cortical representations are partly explained by participants’ 

idiosyncratic attractiveness ratings. Second, we demonstrate that cortical 

representations of facial attractiveness are not explained by other high-level face 

attributes, such as the person’s sex, ethnicity, or age. Third, we use an artificial deep 

neural network (DNN) to show that cortical representations of facial attractiveness are 

not explained by visual features used for automated face recognition. Together, our 

results suggest that EEG signals carry genuine and individual representations of facial 

attractiveness, which emerge within the first 200ms of cortical processing. 
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Results 

 

We asked participants (n=23) to rate the attractiveness of 100 male and female 

faces (see Figure 1a for examples). Stimuli were highly controlled full-front face 

photographs taken from the Face Research Lab London Set [41], eliminating many 

sources of visual variability. On every trial, participants saw one of the faces for 

1.450ms and subsequently answered two questions (Figure 1b). On the first question, 

they indicated whether they found the face attractive or not (hereinafter referred to as 

“yes/no response”). On the second question, they indicated how attractive they found 

the face on a 1-7 scale (hereinafter referred to as “attractiveness rating”). We compared 

participants’ attractiveness ratings with ratings from a large group of observers (as 

provided with the Face Research Lab London Set; hereinafter referred to as “database 

rating”). Both the database ratings and responses collected during the experiment 

showed reasonable variance across the faces (Figure 1c). However, individual-

participant responses were only moderately correlated with the database ratings 

(r=0.37 and r=0.34 for the yes/no responses and attractiveness ratings, respectively), 

suggesting that there was substantial inter-individual variability in attractiveness 

judgments.  

To measure how brain signals differed between faces of different perceived 

attractiveness, we recorded participants’ brain activity using a 64-channel EEG 

system. We analysed EEG signals using time-resolved multivariate representational 

similarity analysis (RSA; [40,42]). In RSA, the organization of brain representations 

is assessed by means of the pairwise (dis)similarity of each combination of stimuli, 

organized in neural representational dissimilarity matrices (RDMs). Neural RDMs 

were constructed separately for 34 discrete time bins (50ms width) across the epoch, 

from 250ms pre-stimulus to 1,450ms post-stimulus. For each time bin, response 
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patterns (across all electrodes and across all time points within the 50ms time bin) 

evoked by each one face were correlated with response patterns evoked by each other 

face. RDM entries were created by subtracting these correlations from 1, so that each 

RDM entry reflected how dissimilar a given face was represented from another face at 

a given time. One such 100-by-100 RDM was constructed for each time bin (Figure 

2a). Full details on the neural RDM construction can be found in the Materials and 

Methods section. 

 

 

Figure 1. Stimuli and experimental approach. a) Stimuli were full-front and neutral 
face photographs of 100 individuals, covering different sexes, ages, and ethnicities. 
Note that due to bioRxiv guidelines, face stimuli cannot be shown in the Figure; for 
example stimuli, see [41]. b) During the EEG experiment, participants viewed a single 
face on every trial. After seeing the face for 1,450ms, they were first asked to indicate 
whether they found the face attractive or not (yes/no response) and then asked to 
indicate how attractive they found the face on a 1-7 scale (attractiveness rating). 
Responses were given using the mouse. To avoid response-specific motor preparation, 
the positions of response options were differently arranged around a circle on every 
trial. c) Average attractiveness ratings from the Face Research Lab London Set 
database (n=2531), and yes/no responses and attractiveness ratings given by our 
participants (n=23). Pie charts show histograms of rating responses (left and right 
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charts) and the number of faces rated as attractive or unattractive by the majority of 
participants (middle chart). These data show that there was considerable variation in 
ratings across faces, with a comparable amount of faces being judged as attractive or 
unattractive in the current experiment. 
 

To investigate when cortical representations carried information about facial 

attractiveness, we modelled each participants’ neural RDMs using three predictor 

RDMs (Figure 2a): (1) a predictor RDM that reflected the faces’ pairwise dissimilarity 

in the average attractiveness ratings taken from the Face Research Lab London Set 

database, (2) a predictor RDM that reflected the faces’ pairwise dissimilarity in 

individual participants’ yes/no responses given during the experiment, and (3) a 

predictor RDM that reflected the faces’ pairwise dissimilarity in individual 

participants’ attractiveness ratings given during the experiment. Full details on the 

predictor RDM construction can be found in the Materials and Methods section. 

 

Early cortical representations of facial attractiveness  

Correlating the predictor RDMs with the neural RDMs for each 50ms time bin 

across the epoch, we obtained a timeseries of how well EEG response patterns were 

predicted by facial attractiveness, as defined by the three predictors. Information 

about facial attractiveness was obtained for widespread temporal clusters across the 

EEG epoch and for all three types of predictors (Figure 2b): the database ratings 

predicted neural representations from the 100-150ms time bin (peaking at 450-

500ms, peak t[22]=5.08, p<0.001, pcorr<0.001), individual yes/no responses 

predicted neural representations from the 100-150ms time bin (peaking at 600-

650ms, peak t[22]=4.53, p<0.001, pcorr<0.001), and individual attractiveness ratings 

also predicted neural representations from the 100-150ms time bin (peaking at 500-
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550ms, peak t[22]=4.37, p<0.001, pcorr=0.002)1. Together, this suggests a neural 

signature of facial attractiveness that already emerges during perceptual face 

processing.  

 

 
Figure 2. Analysis approach and key results. a) Schematic description of the 
representational similarity analysis. EEG response patterns for each face were 
extracted separately for consecutive time bins of 50ms (e.g., between 150ms and 
200ms) across the epoch. Neural representational dissimilarity matrices (RDMs) were 
then constructed by correlating these response patterns (across time points and 
electrodes) for each pair of faces (for details, see Materials and Methods). This yielded 
100-by-100 RDMs whose entries indexed the pairwise neural dissimilarity between 
faces for each time bin. For each time bin separately, neural RDMs were correlated 
with the three predictor RDMs, which captured the faces’ pairwise dissimilarity in 
attractiveness, based on (1) ratings from the Face Research Lab London Set database, 
(2) participants’ individual yes/no responses, and (3) participants’ individual rating 
responses. Note that due to bioRxiv guidelines, face stimuli cannot be shown in the 

 
1 The potentially more fine-grained attractiveness rating did not add substantial information 
beyond the yes/no responses (see Supplementary Figure S1a). 
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Figure; for example stimuli, see [41]. b) All three predictor RDMs were significantly 
correlated with the neural RDMs, starting from 100-150ms, suggesting an early neural 
representation of facial attractiveness. c) When partialing out the average database 
ratings, we still found that participants’ individual judgments predicted neural 
responses after 150-200ms, suggesting that already during this early time window, 
responses partly reflect an idiosyncratic signature of facial attractiveness. Error 
margins represent standard errors of the mean. Significance markers denote p<0.05 
(corrected for multiple comparisons across time). 
 

Early representations of facial attractiveness reflect individual 

attractiveness judgments 

Are neural representations of facial attractiveness explicable by average 

preferences emerging across a large group of observers, potentially driven by a fixed 

set of physical face properties, with inter-individual variability reflecting merely noise? 

Or do they partly reflect idiosyncratic preferences, that is an individual person’s 

unique aesthetic preference for particular faces? To resolve this question, we 

performed an analysis where we modelled neural RDMs as a function of individual 

yes/no responses and attractiveness ratings, while controlling for the database ratings 

using partial correlation analysis [43-45] (Figure 2c). We found that individual 

attractiveness judgments still significantly predicted cortical representations, both 

when considering yes/no responses (from the 150-200ms time bin; peaking at 600-

650ms, peak t[22]=3.87, p<0.001, pcorr=0.002) and when considering attractiveness 

ratings (from the 150-200ms time bin; peaking at 500-550ms, peak t[22]=3.90, 

p<0.001, pcorr=0.012). Similar results were obtained when partialing out the average 

judgments obtained across participants in the current experiment (see Supplementary 

Figure S2b). Finding that already in the 150ms-200ms time bin participants’ 

individual judgments explained neural responses better than group-average ratings 

alone suggest that even early representations of facial attractiveness are linked to 
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individual face preferences, rather than to physical features that similarly determine 

attractiveness for all observers. Further, to solidify that these early representations of 

facial attractiveness are indeed somewhat independent from particular physical face 

attributes, we performed two control analyses. 

 

Early representations of facial attractiveness are not explained by other 

high-level face attributes 

In the first analysis, we tested whether other high-level face attributes (the 

depicted person’s sex, ethnicity, or age) could explain the different cortical responses 

to faces of different attractiveness. To do so, we modelled neural RDMs using three 

predictor RDMs (Figure 3a): (1) a predictor RDM that modelled the faces dissimilarity 

in sex, (2) a predictor RDM that modelled the faces dissimilarity in ethnicity, and (3) 

a predictor RDM that modelled the faces dissimilarity in age; for details, see Materials 

and Methods. Each of these high-level attributes predicted parts of the neural 

representation across time (Figure 3b). Sex predicted face representations from the 

100-150ms time bin (peaking at 350-400ms, peak t[22]=5.31, p<0.001, pcorr<0.001), 

ethnicity predicted representations from the 100-150ms time bin (peaking at 100-

150ms, peak t[22]=6.82, p<0.001, pcorr<0.001), and age predicted representations 

from the 350-400ms time bin (peaking at 500-550ms, peak t[22]=3.68, p<0.001, 

pcorr=0.007). We then modelled neural representations as a function of individuals 

yes/no responses and attractiveness ratings, while controlling for all three high-level 

attributes using partial correlation analyses (Figure 3c). We found that 

representations of facial attractiveness were not explained by the depicted persons’ 

sex, ethnicity, and age: Individual yes/no responses still predicted cortical 

representations from the 150-200ms time bin (peaking at 600-650ms, peak 

t[22]=4.37, p<0.001, pcorr<0.001) and individual attractiveness ratings predicted 
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representations from the 150-200ms time bin (peaking at 500-550ms, peak 

t[22]=3.70, p<0.001, pcorr=0.009). 

 

 
Figure 3. Controlling for high-level face attributes and DNN features. a) To quantify 
high-level face attributes, we constructed RDMs based on the faces’ dissimilarity in sex 
(same sex: similar, different sex: dissimilar), ethnicity (same ethnicity: similar, 
different ethnicity: dissimilar), and age (dissimilarity: absolute age difference between 
face pairs). Note that due to bioRxiv guidelines, face stimuli cannot be shown in the 
Figure; for example stimuli, see [41]. b) The three high-level attributes all explained 
significant proportions of the neural representation. c) When controlling for the three 
attributes, participants’ attractiveness judgments still predicted neural 
representations from 150-200ms after onset. d) To quantify DNN features, we 
extracted RDMs based on the dissimilarity of DNN activation patterns for each layer 
of a 16-layer DNN trained on face recognition (VGG-face; see Materials and Methods). 
e) DNN features at each layer predicted a significant proportion of the neural 
representation, with early layers better predicting early activations, and late layers 
better predicting later activations. For detailed results, see Supplementary Figure S2. 
f) When controlling for both the DNN features and the high-level face attributes, we 
again found that after 150-200ms participants’ attractiveness judgments still 
predicted neural representations. Error margins represent standard errors of the 
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mean. Significance markers denote p<0.05 (corrected for multiple comparisons across 
time). 
 

Early representations of facial attractiveness are not explained by deep 

neural network features 

In the second control analysis, we controlled for a variety of visual features 

analysed during face recognition by a deep neural network (DNN). DNNs are the 

current state-of-the-art for modelling visual representations emerging at different 

processing stages of biological vision [46-48]. Here, we used a DNN trained on 

recognizing faces (VGG-face; [49]), which has previously been shown to accurately 

approximate features analysed during cortical face processing [50]. We extracted 

predictor RDMs from the 16 convolutional layers of the DNN, in which each entry 

reflected the pairwise dissimilarity (1-correlation) between the layer-specific 

activation vectors for two faces (Figure 3d). These RDMs predicted cortical activations 

starting from the 50-100ms time bin and, in line with previous reports [51-53], early 

representations (e.g., at 100-150ms post-stimulus) were better captured by early DNN 

layers, while late representations (e.g., at 250-300ms post-stimulus) were better 

captured by late DNN layers (Figure 3e)2. Next, we again modelled neural 

representations as a function of individual yes/no responses and attractiveness 

ratings, but now controlling for features extracted in each of the 16 DNN layers (and 

additionally for the faces’ sex, ethnicity, and age) using partial correlation analyses 

(Figure 3f). Critically, we again found that both yes/no responses (from the 150-200ms 

time bin; peaking at 600-650ms, peak t[22]=4.45, p<0.001, pcorr<0.001) and 

attractiveness ratings (from the 100-150ms time bin; peaking at 500-550ms, peak 

t[22]=3.54, p<0.001, pcorr=0.007) still predicted neural representations. Together, the 

 
2 Detailed results for all DNN layers can be found in Supplementary Figure S2. 
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two control analyses underscore the notion that early representations of facial 

attractiveness are independent from specific and fixed physical face properties.  

In sum, our study reveals genuine and individually specific representations of 

face attractiveness. Across all analyses, these representations first emerged between 

150ms and 200ms post-stimulus. This suggests that already during perceptual stages 

of face analysis, the brain computes how attractive we find a particular face. 
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Discussion 

 

The current study used time-resolved representational similarity analysis on 

EEG data to track the dynamic emergence of cortical representations related to facial 

attractiveness. As the key result, we demonstrate that - across multiple analyses - 

robust neural representations of facial attractiveness emerge after 150-200ms of 

vision. This timing suggests that differences in face attractiveness are related to 

processing differences in the N170 range [54-56]. Indeed, when comparing ERPs 

evoked by faces that were either rated as attractive or unattractive, we also found 

differences in N170 peak amplitudes, with stronger amplitudes for less attractive faces 

(see Supplementary Figure S3). Our results thereby support earlier studies that have 

shown N170 modulations as a function of facial attractiveness [20-26]. Further, this 

timing of attractiveness-related responses is consistent with functional neuroimaging 

studies showing that facial attractiveness is represented in regions of the visual face 

processing network [57-61]. This suggests that face attractiveness is computed during 

perceptual processing, at the same time when basic facial configurations are analysed 

[55,56,62]. Our results thereby suggest that facial attractiveness is derived from 

perceptual face features, potentially related to favourable face configurations. 

However, given that we found representations of facial attractiveness during 

perceptual processing, one could argue that they are not genuine representations of 

attractiveness, but representations of visual features that co-vary with attractiveness 

in our stimulus set. Our results offer two principal refutations of this argument. First, 

we show that early representations of facial attractiveness are neither explained by 

other high-level face attributes nor by features extracted by a DNN trained on face 

recognition. This shows that there is no straightforward mapping between orthogonal 
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visual features and the features used to determine facial attractiveness. Second, we 

show that early representations of facial attractiveness are partly explained by 

participant’s individual attractiveness judgments. This indicates that even such early 

processing of facial attractiveness is not strictly determined by the presence of 

particular physical face attributes: If representations of facial attractiveness were 

indeed a consequence of the presence or absence of a fixed set of visual features, one 

would expect that they are best predicted by the more stable average attractiveness 

rating across many observers. However, we find that representations of facial 

attractiveness are partly predicted by participants’ individual attractiveness 

judgments, suggesting that they are not directly explained by the same physical 

properties for all observers. 

The early representation of such personal attractiveness preferences for faces 

suggests that differences in aesthetic appreciation are related to perceptual 

computations differing between individuals. Indeed, while differences in later brain 

representations can be attributed to task-related differences in cognitive and 

attentional processes, early perceptual representations are less sensitive to such 

processes [63,64]. Our findings therefore suggest that at the N170 processing stage 

individual features are weighted in idiosyncratic ways to give rise to an individual 

representation of facial attractiveness. This idea is in line with recent work showing 

that representations in object-selective visual cortex are best modelled by each 

person’s idiosyncratic judgments about the objects’ semantic similarities [65,66], 

showcasing that even perceptual brain representations can have an idiosyncratic 

component. Clearly, additional work needs to be done to map out this idiosyncratic 

component in facial attractiveness representations.  

 Beyond revealing an early representation of facial attractiveness, we show that 

EEG responses carried a sustained neural attractiveness signal. These sustained effects 
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are in line with the later modulations of facial attractiveness stressed by some EEG 

studies3 [27-37] and with fMRI activation differences in frontal regions as a function 

of facial attractiveness [57-61,67]. At such later processing times, brain signals may 

reflect the cognitive processing of aesthetic quality: Some studies have suggested that 

such processes span frontal areas associated with stimulus valuation, such as the 

ventromedial prefrontal cortex and orbitofrontal cortex [61,67], while others have 

localized them to the default-mode network, potentially due to the self-referential 

character of aesthetic appreciation [68,69]. What is interesting is that such late 

processes seem to reflect aesthetic quality more generally [61,67,69], which can in 

principle arise from different visual inputs, such as human faces, visual scenes, and 

abstract stimuli, or even from non-visual inputs. At this point, to understand precisely 

when and where such general representations of aesthetic quality emerge, additional 

studies need to combine diverse stimulus sets with spatially and temporally resolved 

neural recordings.   

 In sum, our study provides evidence for an early representation of facial 

attractiveness, that is both genuine (i.e., unrelated to other visual face attributes) and 

individually specific (i.e., partly explained by participants’ personal attractiveness 

preferences). Finding that this representation emerged within 200ms of vision 

provides a neural basis for rapid judgments of facial attractiveness in real-life contexts. 

  

 
3 These studies may not have found earlier differences related to facial attractiveness for 
varied  reasons: Apart from the lower sensitivity offered by univariate ERP analyses, 
individual studies used largely orthogonal tasks, had small sample sizes, or did not 
specifically look for N170 differences.  
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Materials and Methods 

 

Participants 

Twenty-four adults (mean age 19.8, SD=1.6; 20 female) participated in the 

study4. All participants had normal or corrected-to-normal vision. Participants were 

psychology students at the University of York and received course credits for 

participation. Prior to the experiment, participants provided written informed 

consent. All procedures were approved by the ethical committee of the Department of 

Psychology at the University of York and were in accordance with the Declaration of 

Helsinki. One participant was excluded because of technical problems that caused 

missing data, leaving 23 complete datasets for analysis. 

  

Stimuli 

The stimulus set consisted of 100 neutral full-front face photographs (for 

examples see Figure 1a), taken from the Face Research Lab London Set [41]. These 

stimuli were standardized colour photographs, limiting the variation in low-level 

features that are unrelated to differences in individual faces. For each face, the 

stimulus set includes attractiveness ratings from a large set of observers (n=2531), 

with considerable variance in attractiveness ratings between faces (see Fig. 1c). Each 

of the faces also comes with additional metadata, including the photographed person’s 

self-reported gender, age, and ethnicity.  

 

Experimental paradigm 

 
4 This sample size was comparable with the sample sizes of previous EEG studies on facial 
attractiveness [20-37], who tested a median of 20 participants, and an average of 24.6 
participants.  
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During the EEG experiment, participants completed a single session of 700 

trials, which was split into 7 blocks of 100 trials. On each trial, participants viewed one 

of the faces (7°-by-7° visual angle) for 1,450ms (Fig. 1b). Within each block, each face 

was shown exactly once, with trial order fully randomized within the block. After 

seeing the face, a blank screen was shown for 100ms before participants were asked 

two questions. On the first question, they were asked to indicate whether they found 

the face attractive or not by selecting yes or no. On the second question, they were 

asked how attractive they found the face by selecting a value between 1 (very 

unattractive) and 7 (very attractive). Answers to these questions were given using the 

computer mouse; participants could correct their answers as often as they wanted 

before proceeding by pressing the spacebar. To avoid response-specific motor 

preparation, the different response alternatives were placed at different positions 

around a circular response screen, as shown in Fig. 1b. Trials were separated by an 

inter-trial interval randomly varying between 800ms and 1,200ms. Participants were 

instructed to keep central fixation during the inter-trial interval and the stimulus 

presentation; during these periods a pink fixation dot was overlaid in the centre of the 

screen. Further, participants were asked to restrict eye blinks to the period when they 

selected their responses. Stimuli were presented on a VIEWPixx display with a 1920-

by-1020 resolution and stimulus presentation was controlled using the Psychtoolbox 

[70]. 

 

EEG recording and preprocessing 

EEG signals were recorded using an ANT Waveguard 64-electrode system. 

Electrodes were arranged in accordance with the standard 10-10 system. EEG data 

were recorded at 250Hz sampling rate using the ANT Neuroscan Software. Offline 

preprocessing was performed using FieldTrip [71]. EEG data were referenced to the Fz 
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electrode (which was discarded after preprocessing), epoched from -500ms to 

1,900ms relative to stimulus onset, and baseline-corrected by subtracting the mean 

pre-stimulus signal for each electrode. A band-pass filter was applied to filter out 50Hz 

line noise. Channels and trials containing excessive noise were removed based on 

visual inspection. On average, 5.1 channels (SD=2.2) and 73.4 trials (SD=30.3) were 

removed. Blinks and eye movement artifacts were removed using independent 

component analysis and visual inspection of the resulting components. After 

preprocessing, EEG epochs were cropped from -250ms pre-stimulus to 1,450ms post-

stimulus. 

 

Measuring neural representational similarity 

To track face representations across time, we used representational similarity 

analysis (RSA; [40]). First, we created time-resolved neural representational 

dissimilarity matrices (RDMs), which reflected the pairwise dissimilarity of the faces’ 

brain representations across processing time. Second, we compared the organization 

of the neural RDMs to a set of predictor RDMs, which captured different dimensions 

on which the faces’ were similar or dissimilar. 

Neural RDMs were constructed separately for each participant, using the 

CoSMoMVPA toolbox [72]. RDMs were created for 34 time bins of 50ms width each, 

ranging from -250ms to 1450ms relative to stimulus onset. All following analyses were 

done separately for each of these 34 time bins. For each time bin, we extracted a 

response pattern across 12 time points (covering 50ms at 250Hz) and 63 electrodes5. 

These data were then unfolded into a 756-element vector for further analyses. Before 

RDM construction, we performed principal-component analyses (PCAs) to reduce the 

 
5 As during preprocessing electrodes were removed, electrode counts were lower for 
individual participants.  
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dimensionality of these response vectors [39,73]. We split the available data into two 

independent subsets, with an equal number of trials per condition randomly assigned 

to each subset. The first subset of the data was used to perform the PCA decomposition. 

The PCA decomposition was then projected onto the second subset, retaining only the 

components needed to explain 99% of the variance in the first subset (99.1 components 

on average, SD across time: 13.2, SD across participants: 32.o). RDMs were 

constructed from the second subset. We first averaged across all available trials for 

each condition, and then correlated the response vectors for each pairwise 

combination of faces. These correlations were subtracted from 1 and entered into a 

100-by-100 RDM. Each off-diagonal entry in this RDM thus reflected a measure of 

neural dissimilarity for a specific pair of faces; RDM diagonals were always empty. 

This procedure was then repeated with the two subsets swapped. Finally, the whole 

aforementioned analysis was repeated 50 times, with trials assigned randomly to the 

two subsets each time; RDMs were averaged across all repetitions, yielding a single 

RDM for each time bin. 

 

Tracking neural representations of facial attractiveness 

To characterize the representational organization obtained from the neural 

signals, we compared the neural RDMs to a set of predictor RDMs, separately for each 

time point and participant. Like the neural RDMs, each predictor RDM contained 100-

by-100 entries, which reflected the dissimilarity of pairs of faces on a particular 

dimension. 

 To assess how strongly neural representations are determined by facial 

attractiveness, we created three attractiveness predictor RDMs: (1) An RDM based on 

individual participants’ yes/no responses on the first question (“is this face 

attractive?”). For this RDM, pairwise matrix entries consisted of the absolute 
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difference between yes/no-responses (coded as 1 and 2) given to the two faces. Note 

that participants could give different yes/no responses across repetitions of the same 

face. (2) An RDM based on individual participants’ attractiveness ratings on question 

two (“how attractive is it?”). For this RDM, pairwise matrix entries consisted of the 

absolute difference between attractiveness ratings (on a 1-7 scale) given to the two 

faces. (3) An RDM based on the average attractiveness ratings (n=2531) taken from 

the Face Research Lab London Set (see Stimuli). For this RDM, pairwise matrix entries 

also consisted of the absolute difference between attractiveness ratings (on a 1-7 scale) 

given to the two faces. Note that RDMs (1) and (2) were different for each participant, 

as they were based on their individual yes/no responses and attractiveness ratings, 

respectively, whereas RDM (3) was the same for every participant, reflecting a “ground 

truth” estimate of attractiveness ratings shared across a large group of people.  

 RDMs constructed from individual participants’ yes/no responses were 

substantially correlated to RDMs constructed from participants’ attractiveness 

ratings: correlations computed for each individual participant were r=0.68 on average, 

and the correlation between the RDMs averaged across participants was r=0.85. 

RDMs constructed from participants’ individual responses in the experiment only 

showed a weaker correlation to the RDM constructed from the average group rating in 

the database (average r=0.37 and r=0.34 for the yes/no responses and attractiveness 

ratings, respectively). When averaging the RDMs across participants, we found a much 

stronger correlation between RDMs reflecting the average individual-participant 

responses and the RDM reflecting the average ratings from the database (r=0.80 and 

r=0.73 for the yes/no responses and attractiveness ratings, respectively), suggesting 

that (1) there is a substantial amount of inter-individual variability in attractiveness 

ratings, and (2) average ratings in our experiment converged towards the average 

database ratings. 
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To quantify the correspondence between each of the predictor RDMs and the 

neural data, we computed Spearman-correlations between the neural RDMs and the 

predictor RDMs, separately for each participant; for these correlations only the lower 

off-diagonal elements of each RDM were used and the diagonal was always discarded. 

To establish correspondences between the neural RDM and a specific predictor RDM 

while controlling for other RDMs (see below), we used partial correlations [43-45]. All 

correlations were Fisher-transformed before entering them into statistical analyses. 

 

Controlling for high-level face attributes 

To test whether representations were uniquely attributable to face 

attractiveness, we explicitly controlled for a set of high-level face properties. 

Specifically, we controlled for a set of person attributes that may influence 

attractiveness ratings: a person’s sex, ethnicity, and age. For each of these attributes 

we used the self-report metadata included in the Face Research Lab London Set (see 

Stimuli). From these data, we constructed three RDMs: (1) An RDM based on the 

depicted person’s sex. For this RDM, pairwise matrix entries were marked as similar 

when both faces were of the same sex and as dissimilar when both faces were of 

different sexes. (2) An RDM based on the depicted person’s ethnicity; as most of our 

participants (21/23) were Caucasian, ethnicity was binarized into Caucasian and non-

Caucasian. For this RDM, pairwise matrix entries were marked as similar when both 

faces were of the same ethnicity and as dissimilar when both faces were of different 

ethnicities. (3) An RDM based on the depicted person’s age. For this RDM, pairwise 

matrix entries reflected the absolute age difference between the two faces. 

 

Controlling for deep neural network features 
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To test whether neural representations related to face attractiveness were 

explicable by visual features typically extracted during face processing, we used a deep 

neural network (DNN) model trained on face recognition. DNNs are currently the 

state-of-the-art models for approximating the visual feature organization emerging 

during perception and have been shown to accurately approximate the organization of 

both low-level and high-level features in visual cortex [46-48,51-53]. Here, we used a 

16-layer DNN for face recognition that was pre-trained on a huge face dataset (VGG-

face; [49]), as implemented in MatConvNet [74]. This DNN has previously been shown 

to mimic the organization of visual feature representations during cortical face 

processing [50]. To quantify the visual feature organization emerging in the DNN, we 

first ran the 100 face images through the DNN and obtained activation vectors for each 

of the 16 DNN convolutional DNN layers. We then constructed a model RDM for each 

layer by computing the representational distance (1-correlation) among each possible 

pair of faces.  

 

Statistical testing 

We used one-sided t-tests against zero to identify significant correlations 

between the neural RDMs and predictor RDMs. False-discovery-rate (FDR) 

corrections were used to control for multiple comparisons across time. 

 

Data Availability 

Stimuli and data are publicly available on OSF [75]. Other materials are 

available upon request.   
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Supplementary Information 

 

 
Figure S1. Further analysis of information shared between attractiveness judgments 
and neural representations. a) Comparing the information shared between neural 
representations and the yes/no responses and attractiveness ratings. When partialing 
out individual participants’ yes/no responses, their individual attractiveness rating did 
no longer significantly predict neural representations. This suggests that the 
attractiveness ratings did not reveal any more fine-grained insights than the yes/no 
responses. The solid line is shown for comparison and is the same as in Figure 2a. b) 
Controlling for average attractiveness judgments in the experiment. When partialing 
out the average yes/no responses and attractiveness ratings (across all participants in 
our experiment) from participants’ individual judgements, we found that individual 
judgments still predicted cortical representations, from 100-150ms and from 150-
200ms for the yes/no responses and attractiveness ratings, respectively. This result 
supports the conclusion that early representations of facial attractiveness to some 
degree are individually specific. Error margins represent standard errors of the mean. 
Significance markers denote p<0.05 (corrected for multiple comparisons across time). 
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Figure S2. Correspondence between DNN features and brain representations. a) 
Correlation of RDMs extracted from each DNN layer and neural RDMs at each time 
point. b) Same as (a), with correlations thresholded at p<0.05 (corrected for multiple 
comparisons across time). Notably, early layers show relatively better correspondence 
with early brain representations (e.g., at 100-150ms after onset), while later DNN 
layers show relatively better correspondence with later brain representations (e.g., at 
250-300ms after onset). 
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Figure S3. N170 event-related potential results. ERPs were averaged for electrodes 
P8/PO8 and P7/PO7. We then compared these ERPs to attractive faces and 
unattractive faces. This was done in three ways: (a) Comparing responses to faces 
whose database rating was above or below the median database rating, (b) comparing 
responses to faces where individual participants responded with yes or no on the 
attractiveness response (if responses were inconsistent across repetitions, we 
considered the more frequently chosen response), and (c) comparing responses to 
faces whose individual attractiveness rating was above or below the median of the 
respective participant’s ratings. Inlays show peak N170 voltages (at 168ms post-
stimulus) for the attractive and unattractive faces. For all three conditions, we found a 
significant N170 voltage difference, with a stronger N170 amplitude (i.e., lower 
voltage) for the less attractive faces (database ratings: t[22]=2.77, p=0.011; yes/no 
responses: t[22]=2.39, p=0.026; attractiveness ratings: t[22]=3.74, p=0.001). Error 
bars represent standard errors of the difference. Note that for the ERP analyses an 
additional low-pass filter at 30Hz was applied to the data. 
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