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SUMMARY 

Covid-19 morbidity and mortality are associated with a dysregulated immune response. 

Tools are needed to enhance existing immune profiling capabilities in affected patients. Here 

we aimed to develop an approach to support the design of focused blood transcriptome 

panels for profiling the immune response to SARS-CoV-2 infection. We designed a pool of 

candidates based on a pre-existing and well-characterized repertoire of blood transcriptional 

modules. Available Covid-19 blood transcriptome data was also used to guide this process. 

Further selection steps relied on expert curation. Additionally, we developed several custom 

web applications to support the evaluation of candidates. As a proof of principle, we 

designed three targeted blood transcript panels, each with a different translational 

connotation: therapeutic development relevance, SARS biology relevance and 

immunological relevance. Altogether the work presented here may contribute to the future 

expansion of immune profiling capabilities via targeted profiling of blood transcript 

abundance in Covid-19 patients. 
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INTRODUCTION 

Covid-19 is an infectious, respiratory disease caused by a newly discovered coronavirus: 

SARS-CoV-2. The severity of symptoms and the course of infection vary widely, with most 

patients presenting mild symptoms. However, about 20% of patients develop severe disease 

and require hospitalization (1,2).  The interaction between innate and adaptive immunity can 

lead to the development of neutralizing antibodies against SARS-CoV-2 antigens that might 

be associated with viral clearance and protection (3). But immune factors are also believed 

to play an important role in the rapid clinical deterioration observed in some Covid-19 

patients (4). There is thus a need to develop new modalities that can improve the delineation 

of “immune trajectories” during SARS-CoV-2 infection. 

 Blood transcriptome profiling involves measuring the abundance of circulating 

leukocyte RNA on a genome-wide scale (5). Processing of the samples and the raw 

sequencing data however, is time consuming and requires access to sophisticated 

laboratory and computational infrastructure. Thus, the possibility of implementing this 

approach on large scales to ensure immediate translational potential is limited. Such 

unbiased omics profiling data might rather be leveraged to inform the development of more 

practical, scalable and targeted transcriptional profiling assays. These assays could in turn 

serve to significantly bolster existing immune profiling capacity.  

 Fixed sets of transcripts grouped based on co-expression observed in large 

collections of reference datasets provide a robust platform for transcriptional profiling data 

analyses (6). Here we leveraged a repertoire of 382 transcriptional modules previously 

developed by our team (7). The repertoire is based on a collection of reference patient 

cohorts encompassing 16 pathological or physiological states and 985 individual 

transcriptome profiles. In this proof of principle study, we used the available transcript 

profiling data from two separate studies to select Covid-19 relevant sets of modules (8,9). 

Next, we applied filters based on pre-specified selection criteria (e.g. immunologic relevance 

or therapeutic relevance). Finally, expert curation was used as the last selection step. For 

this we have developed custom web applications to consolidate the information necessary 
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for the evaluation of candidates. One of these applications provides access to module-level 

transcript abundance profiles for available Covid-19 blood transcriptome profiling datasets. 

Another web interface was implemented which serves as a scaffold for the juxtaposition of 

such transcriptional profiling data with extensive functional annotations. 

 

RESULTS 
 
Mapping Covid-19 blood transcriptome signatures against a pre-existing reference set 

of transcriptional modules 

SARS-CoV-2 infection might not result in changes in transcript abundance across all of the 

382 transcriptional modules constituting our repertoire [(encompassing 14,168 transcripts) 

see methods section and (7)]. Indeed, the 16 reference patient cohorts upon which our 

repertoire was based encompass a wide range of immune states, including infectious 

diseases but also autoimmune diseases, pregnancy and cancer. Thus, the first step involved 

identifying subsets of modules for which changes could be observed in Covid-19 patients.   

We used two sets of Covid-19 patients for this proof of principle analysis. These 

datasets were contributed by Xiong et al. (9) (one control and three subjects) and Ong et al. 

(8) (nine controls and three subjects profiled at multiple time points). Their data were 

generated using RNA-seq and Nanostring technology, respectively. The generic 594 

transcript panel used by Ong et al. did not give sufficient coverage across the 382-module 

set. We thus mapped the transcript changes at a lower resolution, using a framework formed 

by 38 module “aggregates“. These 38 aggregates were constituted by grouping modules 

based on similarities in abundance patterns across the 16 reference datasets [see methods 

section and (7)].  

 We first assessed changes in transcript abundance resulting from SARS-CoV-2 

infection across the 38 module aggregates (Figure 1). In general, we saw a decrease in 

aggregates associated with lymphocytic compartments (aggregates A1 & A5) and an 

increase in aggregates associated with myeloid compartments and inflammation 

(aggregates A33 & A35). As expected, we also saw increases over uninfected controls for 
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the module aggregate associated with interferon (IFN) responses (A28) and the module 

aggregate presumably associated with the effector humoral response (A27). We detected a 

wide spread of values for aggregate A11 for the Nanostring (Ong et al.) dataset. However, 

this aggregate comprises only one module, with only two of its transcripts measured in this 

Nanostring code set (the probe coverage across all aggregates is shown in Supplementary 

Figure 1). 

Despite large differences between the two studies in terms of design, range of 

clinical severity, technology platforms and module coverage, the combined overall changes 

(detected at a high-level perspective) are consistent with those observed in known acute 

infections, such as those caused by influenza, respiratory syncytial virus (RSV) or S. aureus. 

This consistency is evidenced by the indicated by patterns of change observed for the 

reference fingerprints shown alongside those of Covid-19 patients (Figure 1).   

Overall, such a high-level analysis allows us to identify module aggregates forming 

our repertoire that may be included in further selection steps. In this proof of principle 

analysis, we selected 17 aggregates for further analysis (Table 1).  

 

Identification of coherent sets of Covid-19-relevant modules  

The abundance patterns for modules comprised in a given aggregate are not always 

homogeneous (Figure 2). Thus, a next step would consist of identifying sets of modules 

within an aggregate that display coherent abundance patterns across modules forming a 

given aggregate. 

To achieve this, we first mapped the changes in transcript abundance associated 

with Covid-19 disease using the RNAseq dataset from Xiong et al., as illustrated for A31 

(Figure 2A) and A28 (Figure 3A). Similar plots can be generated for all other aggregates 

using the “COVID-19” web application (also compiled in Supplementary File 1 and listed in 

Table 2). Next, we identified and assigned a module set ID for each aggregate the modules 

that formed homogeneous clusters. For example, we designated the first A28 set as A28/S1. 

Such module grouping is only based on patterns of transcript abundance observed in three 
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Covid-19 patients; however, the groupings were often consistent with those observed for the 

much larger reference cohorts that constitute the module repertoire (Figure 2B and Figure 

3B). A28/S1, which is formed by M8.3 and M15.127, serves as a good example of this 

consistency (Figure 3B). Likewise, the segregation of the modules forming A31 based on 

differences observed in the three Covid-19 patients was also apparent in the reference 

patient cohorts (Figure 2B). Specifically, an increase in A31/S1 modules, which 

accompanied a decrease in A31/S2 modules, in these three patients was also characteristic 

of RSV patients. 

We ultimately derived 28 homogeneous Covid-19 relevant module sets from the 17 

aggregates selected in the earlier step (Table 1). These sets might be used as a basis for 

further selection.    

 

Design of an illustrative targeted panel emphasizing immunological relevance  

In the previous step, we used available Covid-19 data to guide the selection of 28 distinct 

“Covid-19 relevant module sets”.  In the next step, we selected the transcripts within each 

module set that warranted inclusion in one of three illustrative Covid-19 targeted panels. A 

first panel was formed using immunologic relevance as the primary criterion, a second was 

formed on the basis of relevance to coronavirus biology, a third was constituted on the basis 

of relevance to therapy. 

 For the first panel we matched transcripts comprised in each module set to a list of 

canonical immune genes (see methods for details). Expert curation also involved accessing 

transcript profiling data from the reference datasets, indicating for instance leukocyte 

restriction or patterns of response to a wide range of immune stimuli in vitro. We describe 

our approach for module and gene annotation in more detail below and provide access to 

our resources to support expert curation (Table 2). 

For our illustrative case, we selected one representative transcript per module set to 

produce a panel comprised of 28 representative transcripts (Table 3). Examples of 

signatures surveyed by such a panel include: 1) ISG15 in A28/S1 (interferon responses), 
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which encodes for a member of the ubiquitin family. ISG15 plays a central role in the host 

defense to viral infections (10). 2) GATA1 in A37/S1 (erythroid cells), which encodes for a 

master regulator of erythropoiesis (11). It is associated with a module signature (A37) that 

we recently reported as being associated with immunosuppressive states, such as late stage 

cancer and maintenance immunosuppressive therapy in solid organ transplant recipients 

(12). In the same report we also found an association between this signature and 

heightened severity in patients with RSV infection and established a putative link with a 

population of immunosuppressive circulating erythroid cells (13).  3) CD38 in A27/S1 (cell 

cycle), which encodes for the CD38 molecule expressed on different circulating leukocyte 

populations. In whole blood we find the abundance of its transcript to correlates with that of 

IGJ, TNFRSF17 (BCMA), TXNDC5 (M12.15). Such a signature was previously found to be 

increased in response to vaccination at day 7 post administration, to correlate with the 

prevalence of antibody producing cells, and the development of antibody titers at day 28 

(14). 4) TLR8 in A35/S1 (inflammation), encodes toll-like receptor 8. Expression of 

transcripts comprising this aggregate is generally restricted to neutrophils and robustly 

increased during sepsis (e.g. as we have described in detail earlier for ACSL1, another 

transcript belonging to this aggregate (15)). 5) GZMB in A2/S1 (Cytotoxic cells) encodes 

Granzyme B, a serine protease known to play a role in immune-mediated cytotoxicity. Other 

transcripts forming this panel are listed in Table 3. 

 Even with the limited amount of data available to guide the selection in the previous 

steps, it is reasonable to assume that such a panel (while not optimal) would already provide 

valid information for Covid-19 immune profiling. Additional Covid-19 blood transcriptome 

data that will become available in the coming weeks will allow us to refine the overall 

selection process.  

 

Design of an illustrative targeted panel emphasizing therapeutic relevance 

A different translational connotation was given for this second panel. Here, we based 

the selection on the same collection of 28 module sets. However, this time, whenever 
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possible, we included transcripts that could have value as targets for the treatment of Covid-

19 patients. An initial screen identified 82 transcripts encoding molecules that are known 

targets for existing drugs (see Methods). We further prioritized these candidates based on 

an expert’s evaluation of the compatibility of use of the drugs for treating Covid-19 patients. 

As an exception, module sets belonging to A28 (interferon response) were selected based 

on their suitability as markers of a response to interferon therapy. Sets for which no targets 

of clinical relevance were identified (16/28) were instead represented in the panel by 

immunologically-relevant transcripts (defined earlier).  

We ultimately identified a preliminary set of 12 targets through this high stringency 

selection process (Table 4). Developing effective immune modulation therapies in critical 

care settings has proven challenging (16). Current efforts in the context of Covid-19 disease 

particularly aim at controlling runaway systemic immune responses or so called “cytokine 

storms” that have been associated with organ damage and clinical worsening. Targets of 

interest identified among our gene set include: 1) IL6R in A35/S2 (inflammation), encoding 

the Interleukin-6 Receptor, which is a target for the biologic drug Tocilizumab. Several 

studies have tested this antagonist in open label single arm trials in Covid-19 patients with 

the intent of blocking the cytokine storm associated with severe Covid-19 infection (17,18). 

2) CCR2 in A26/1 (monocytes), encoding the chemokine (C-C motif) receptor 2, is targeted 

along with CCR5 by the drug Cenicriviroc. This drug exerts potent anti-inflammatory activity 

(19). 3) TBXA2R in A31/1 (platelets), encoding the Thromboxane receptor, is targeted by 

several drugs with anti-platelet aggregation properties (20). 4) PDE8A in A33/S1 

(inflammation), encoding Phosphodiesterase 8A, is targeted by Pentoxifylline, a non-

selective phosphodiesterase inhibitor that increases perfusion and may reduce risk of acute 

kidney injury and attenuates LPS-induced inflammation (21). 5) NQO1 in A8/S1 

(Complement), encoding NAD(P)H quinone dehydrogenase 1. The NQO1 antagonist 

Vatiquinone (EPI-743) has been found to inhibit ferroptosis (22), a process associated with 

tissue injury (23), including in sepsis (24). A complete list is provided in Table 4. 
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 The fact that this transcript panel and the previous survey the same pre-defined 28 

homogenous Covid-19 relevant module sets should make them largely synonymous (since 

modules are formed on the basis of co-expression). Nevertheless, this second panel may be 

more relevant for investigators interested in investigating new therapeutic approaches or 

measuring responses to treatment.  

 

Design of a targeted panel of blood transcripts of relevance for SARS-CoV-2 biology 

For the third panel designed in this proof of principle, we primarily selected 

transcripts based on their relevance to SARS biology. As a first step, we used a literature 

profiling tool to identify SARS, MERS, or Covid-19 literature articles that were associated 

with transcripts forming the 28 Covid-19 module sets. Next, the potential associations were 

subjected to expert curation (see Methods). Once again, to keep redundancies to a 

minimum, we only included one candidate per set in this panel (Table 5). Notable examples 

include: 1) LTF in A38/S1 (neutrophil activation) encodes Lactotransferrin, that is known to 

block the binding of the SARS-CoV spike protein to host cells, thus exerting an inhibitory 

function at the viral attachment stage (25). 2) FURIN in A37/S1 (Erythroid cells), encodes a 

proprotein convertase that preactivates SARS-CoV-2, thus reducing its dependence on 

target cell proteases for entry (26). 3) EGR1 in A7/S1 (Monocytes), encodes Early Growth 

Response 1, which upon induction by SARS Coronavirus Papain-Like Protease mediates 

up-Regulation of TGF-β1 (27). 4) STAT1 in A28/S3 (Interferon response), encodes a 

transcription factor known to play an important role in the induction of antiviral effector 

responses. It was reported that SARS ORF6 Antagonizes STAT1 function by preventing its 

translocation to the nucleus and acts as an interferon antagonist in the context of SARS-CoV 

infection (28). 

This screen identified several molecules that may be of importance for SARS-CoV-2 

entry and replication. It is expected that this knowledge will evolve rapidly over time and 

frequent updates may be necessary. And, as for the previous two panels, investigators may 
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also have an interest in including more than one candidate per module set. This of course 

would also be feasible, although at the expense of course of parsimony.   

 

Development of an annotation framework in support of signatures curation efforts 

A vast amount of information is available to support the work of expert curators who are 

responsible for finalizing the selection of candidates. This process often requires accessing 

a number of different resources (e.g. those listed in Table 2). Here we have built upon 

earlier efforts to aggregate this information in a manner that makes it seamlessly accessible 

by the curators.  

As proof of principle, we created dedicated, interactive presentations in Prezi for 

module aggregates A28 ((24)) and A31 (https://prezi.com/view/zYCSLyo0nvJTwjfJkJqb/). 

These presentations are intended, on the one hand, to aggregate contextual information that 

can serve as a basis for data interpretation. On the other hand, they are intended to capture 

the results of the interpretative efforts of expert curators. 

 The interactive presentations are organized in sections, each showing aggregated 

information from a different level: module-sets, modules and transcripts (Figure 5). The 

information derived from multiple online sources, including both third party applications and 

custom applications developed by our team (Table 2). Among those is a web application 

developed specifically for this work, which was used to generate the Covid-19 plots from 

Ong et al. and Xiong et al. (Figure 5A). The interactive presentation itself permits to zoom in 

and out, determine spatial relationships and interactively browse the very large compendium 

of analysis reports and heatmaps generated as part of these annotation efforts. The last 

section that contains transcript-centric information, is also the area where interpretations 

from individual curators is aggregated.  

We have annotated and interpreted some of the transcripts included in A31/S1 in 

such a manner: 1) OXTR, which encodes for the Oxytocin receptor through which anti-

inflammatory and wound healing properties of Oxytocin are mediated (29). Among our 

reference cohort datasets, OXTR is most highly increased in patients with S. aureus 
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infection or active pulmonary tuberculosis (7).   2) CD9, which encodes a member of the 

tetraspanin family, facilitates the condensation of receptors and proteases activating MERS-

CoV and promoting its rapid and efficient entry into host cells (30). 3) TNFSF4, which 

encodes for OX40L and is a member of the TNF superfamily. Although OX40L is best known 

as a T-cell co-stimulatory molecule, reports have also shown that it is present on the 

neutrophil surface (31). Furthermore, OX40L blockade improved outcomes of sepsis in an 

animal model.  

Our interpretation efforts have been limited thus far by expediency. Certainly, 

interpretation will be the object of future, more targeted efforts. In the meantime, this 

annotation framework supports the selection of candidates forming the panels presented 

here. It may also serve as a resource for investigators who wish to design custom panels of 

their own.      

 

DISCUSSION 

Early reports point to profound immunological changes occurring in affected patients during 

the course of a SARS-CoV-2 infection (32,33). In particular, patterns of immune dysfunction 

have been associated with clinical deterioration and the onset of severe respiratory failure 

(34).  However, disease outcomes remain highly heterogeneous and factors contributing to 

clinical deterioration are poorly understood. Among other modalities, means to establish 

comprehensive immune monitoring in cohorts of Covid-19 patients are needed.  

Here we designed an approach select and curate targeted blood transcript panels 

relevant to Covid-19. When finalized, such panels could in turn serve as a basis for rapid 

implementation of focused transcript profiling assays. This process should become possible 

as more Covid-19 blood transcriptome profiling datasets become available in the coming 

weeks and months. These data could, for instance, be used to refine the delineation of 

Covid-19 module sets. 

Because our selection strategy relies primarily on a pre-existing module repertoire 

framework, we anticipate that changes would only be relatively minor. Indeed, one 
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advantage of basing candidate selection on a repertoire of transcriptional modules is that it 

permits to derive non-synonymous transcripts sets. In other words, each transcript included 

in the panel could survey the abundance of a different module (signature). Basing selection 

on differential expression instead, for instance, would tend to select multiple transcripts from 

more dominant signatures (with highest significance / fold changes). But for more specific 

purposes, such as differential diagnosis or prediction, machine learning models would be 

more appropriate [for instance in sepsis studies: (35)]. Indeed, such panels have already 

been developed for Covid-19 (36), and we anticipate that more will emerge over the coming 

months.  However, our intent here was different: our primary aim was to support the 

development of a solution that can monitor immune responses and functions. 

Delineation of “immune trajectories” associated with clinical worsening of Covid-19 

patients is one application to consider. Another application would be the measurement of 

responses to therapy (as part of standard of care or a trial). The immune profiling of 

asymptomatic or pre-symptomatic patients (e.g quarantined) would be another setting where 

implementation of such an assay could prove useful. For this, it would for instance be 

possible to use protocols that we have previously developed for home-based, self-sampling 

and blood RNA stabilization (37,38).  

Different connotations were given for the three panels, which are presented here as 

a proof of principle. The panel consisting of immunologically relevant markers might have 

the highest general interest. However, measuring changes in the abundance of transcripts 

coding for molecules that are targetable by existing drugs could have higher translational 

potential. Another illustrative panel comprises transcripts coding for molecules that are of 

relevance to SARS-CoV-2 biology and might be of additional interest in investigations of 

host–pathogens interactions. The common denominator between these panels is that they 

comprise representative transcripts of each of the 28 module sets. Other transcript 

combinations following the same principle would be possible, as well as the inclusion of 

multiple transcripts from the same set for added robustness. The obvious disadvantage of 

the latter, however, is the increase to the size of the panel. Medium-throughput technology 
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platforms, such as the Nanostring Ncounter System, Fluidigm Biomark or ThermoFisher 

Openarray, would be appropriate for implementing custom profiling assays with the number 

of targets comprising the tentative panels presented here (or a combination thereof). 

Downsizing panels to comprise ±10 key markers might serve as a basis for implementation 

on more ubiquitous real-time PCR platforms. 

Overall, this work lays the ground for a framework that could support the 

development of increasingly more refined and interpretable targeted panels for profiling 

immune responses to SARS-CoV-2 infection. This should be possible in part through the 

further development of environments providing investigators with seamless access to vast 

amounts of annotations aggregated from different sources. 
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FIGURE LEGENDS 

 

Figure 1: Mapping Covid-19 blood transcriptome signatures at the module aggregate 

level. The columns on this heatmap represent samples (Xiong et al. & Ong et al.) or patient 

cohorts (Altman et al.). Module aggregates (A1-A38) are arranged as rows. The colored 

spots represent the proportion of transcripts comprising each transcriptional module 

aggregate found to be differentially expressed compared to control samples. The cutoffs 

vary from one study to another due to differences in the design and the profiling platforms 

used. Thus, module aggregate response values range from 100% (all transcripts comprised 

in the module aggregate increased) to -100% (all decreased). The Xiong et al. dataset 

comprised one control and three Covid-19 patients and transcript abundance was measured 

by RNA-seq. The Ong et al. dataset comprised three Covid-19 cases from whom samples 

were collected serially, and nine uninfected controls (8). Transcript abundance was 

measured using a 594 gene standard immune panel from Nanostring. Patterns are also 

shown for cohorts comprised in the Altman et al. dataset (7). The colored labels (right) 

indicate functional associations for some of the aggregates. 

 

Figure 2. Delineation of sets of Covid-19 relevant A31 modules. A. Transcript 

abundance profiles of A31 modules in Covid-19 patients. This heatmap represents the 

abundance levels for transcripts forming modules belonging to aggregate A31 (rows), across 

three Covid-19 patients (P1-P3) relative to one uninfected control subject (columns). The 

data are expressed as the proportion of constitutive transcripts in each module being 

significantly increased (red circles) or decreased (blue circles) relative to N1. B. Transcript 

abundance profiles of A31 modules in reference disease cohorts. The top heatmap 

represents the abundance levels for transcripts forming modules belonging to aggregate 
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A31 (rows), across 16 reference patient cohorts (columns). The bottom heatmaps represent 

the changes in abundance across the individuals comprised in two relevant patient cohorts, 

including pediatric patients with severe influenza or RSV infection and adult patients with 

sepsis.  

 

Figure 3. Delineation of sets of Covid-19 relevant A28 modules. A. Transcript 

abundance profiles of A28 modules in Covid-19 patients. This heatmap shows the 

abundance levels for transcripts forming modules belonging to aggregate A28 (rows), across 

three Covid-19 patients (P1-P3) relative to one uninfected control subject (columns). The 

data are expressed as the proportion of constitutive transcripts in each module being 

significantly increased (red circles) or decreased (blue circles) relative to N1 B. Transcript 

abundance profiles of A28 modules in reference disease cohorts. The top heatmap 

shows the abundance levels for transcripts forming modules belonging to aggregate A28 

(rows), across 16 reference patient cohorts (columns). The bottom heatmaps show changes 

in abundance across individuals constituting the two relevant patient cohorts, including 

pediatric patients with severe influenza or RSV infection and adult patients with sepsis.  

 

Figure 4 Changes in abundance of transcripts comprising aggregate A28 in response 

to SARS-CoV-2 infection. The heatmaps display the changes in transcript abundance in 

three Covid-19 patients comprising the Xiong et al. RNA-seq transcriptome datasets. The 

top heatmap summarizes the module-level values for the six modules forming aggregate 

A28. The color code indicates membership to one of the three Covid-19 module sets that 

were defined earlier. The bottom heatmap shows patterns of abundance for the same six 

modules, but at the individual gene level. The line graphs on the right show changes in 

abundance for three transcripts from the “therapeutic relevance panel” in three Covid-19 

patients profiled by Ong et al. using a generic Nanostring immune set comprising 594 

transcripts.  
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Figure 5: High resolution annotation framework supporting the curation and 

interpretation of Covid-19 module sets. This series of screenshots shows the content of 

the interactive presentations that have been established to provide curators with access to 

detailed annotations regarding modules forming a given aggregate, its constitutive modules 

and targets that have been selected for inclusion in transcript panels. Links to interactive 

presentations and resources mentioned below are available in Table 2.  A. Module 

aggregate-level information. This section displays patterns of transcript abundance across 

the modules forming a given aggregate, as well as the degree of association of this 

aggregate with the severity of RSV disease.  Plots used to populate this section were 

generated using three web applications, including one that was developed in support of this 

work that compiles the Covid-19 blood transcriptional data available to date. The other two 

applications were developed as part of a previous study to generate plots for the reference 

disease cohorts and RSV severity association plots (45).  B. Module-level information. 

This section includes, for a given module, reports from functional profiling tools as well as 

patterns of transcript abundance across the genes forming the module. Drug targeting 

profiles were added to provide another level of information. C. Gene-centric information. 

The information includes curated pathways from the literature, articles and reports from 

public resources. Gene-centric transcriptional profiles that are available via gene expression 

browsing applications deployed by our group are also captured and used for context (GXB). 

A synthesis of the information gathered by expert curation and potential relevance to SARS-

Cov-2 infection can also be captured and presented here.  

 

Supplementary Figure 1: Coverage of the pre-established 38 transcriptional module 

aggregate repertoire by the Nanostring immunology panel 2. The bar graphs show the 

distribution of the 579 transcript constituting the standard Nanostring immunology panel 

used by Ong et al. across the 38 module aggregates forming this repertoire. The Venn 
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diagram shows the degree of overlap between the Nanostring panel and the transcripts 

forming this modular repertoire. 

Table 1: List of Covid-19 relevant aggregates and module sets 
 
 

Module 
Aggregate Module Set Modules Functional annotations 

A1 

A1/S1 
M14.42, M15.38, M12.6, M13.27,  T cells 

A1/S2 
M14.23, M15.87, M14.5, M14.49, 

M12.1, M14.20  
Gene transcription 

A1/S3 
M12.8, M15.29, M14.58, M15.51, 
M14.64, M16.78, M14.75, M15.82, 

M14.80  

B cells 

A2 A2/S1 M13.21, M9.1  Cytotoxic lymphocytes 
A2/S2 M14.13, M14.72, M13.13, M13.14, 

M14.45, M13.10, M15.91  
TBD 

A4 A4/S1 M16.69, M16.72, M16.50, M16.77 Antigen presentation,  

A5 A5/S1 M16.95, M16.36  B cells 
A5/S2 M16.57, M16.18, M16.65, M16.111, 

M16.99  
B cells 

A7 A7/S1 M15.61 Monocytes 

A8 A8/S1 M16.30 Complement 
A8/S2 M16.106 TBD 

A10 A10/S1 M15.102 Prostanoids 

A26 A26/S1 M12.2 Monocytes 

A27 A27/S1 M13.32, M12.15, M16.92, M15.110, 
M16.60 

Antibody producing cells 

A28 A28/S1 M15.127, M8.3 Interferon response 
A28/S2 M15.64 Interferon response 
A28/S3 M15.86, M10.1, M13.17 Interferon response 

A31 A31/S1 M16.64 Platelet/Prostaglandin 
A31/S2 M15.58 Monocytes 

A33 A33/S1 M15.104, M14.82, M14.24, M15.108 Cytokines/chemokines, 
Inflammation 

A33/S2 M14.19, M14.76, M14.50, M14.26, 
M16.101, M16.100, M16.80 

Inflammation 

A34 
A34/S1 

M14.59, M10.3, M16.109, M8.2  Platelets, Prostanoids 

A35 A35/S1 M14.65, M14.28, M15.81, M16.79, 
M13.3, M14.7,  

Monocytes, Neutrophils 

A35/S2 M15.26, M12.10, M13.22, M15.109, 
M15.78, M13.16,  

Neutrophils, Inflammation 

A36 A36/S1 M16.34, M16.82, M15.97, M14.51, 
M15.118, M16.88 

Gene transcription 
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A37 A37/S1 M9.2, M14.53, M11.3, M12.11, 
M15.100 M15.74, M13.26, M13.30, 

M15.53, 

Erythroid cells 

A38 A38/S1 M10.4 Neutrophil activation 
A38/S2 M16.96, M12.9, M14.68 Erythroid cells 

Table 2:  Resources used for annotation and interpretation 
 

Platform / Use Name Source Notes Link Demo 
video Ref. 

Interactive 
presentations (Prezi) 
Exploration of 
aggregated 
annotations / curation / 
capture interpretation 
of functional relevance 
in the context of Covid-
19 disease 

Covid-19 
Module 
Sets 
annotation 
framework 

In house / 
open 

See Figure 5 for 
details 

A31: 
https://prezi.co
m/view/zYCSL
yo0nvJTwjfJkJ
qb/  
A28: 
https://prezi.co
m/view/7lbgG
wfiNflffqQzvL1
4/)  

Part 1: 
https://youtu
.be/_7sNE3

e5W5g  
Part 2: 

https://youtu
.be/I6wHrrm

bet4  
Part 3: 

https://youtu
.be/iHnM7O

H_nw8   

Present 
work 

R Shiny Web 
Applications/ 
Exploration of module-
level and gene-level 
blood transcriptome 
profiling data. 
 
Design and export of 
custom plots to 
populate the annotation 
framework. 

Covid-19 
app 

In house / 
open 

Provides access to 
two Covid-19 blood 
transcript profiling 

datasets. More will be 
added as they 

become available. 

https://drinchai
.shinyapps.io/
COVID_19_pr

oject/ 
 

https://youtu
.be/XhQZj9

mm2ME 

Present 
work 

Gen3 app In house / 
open 

Provides access to 16 
reference patient 
cohorts datasets 

https://drinchai
.shinyapps.io/
dc_gen3_mod
ule_analysis/# 

 

https://youtu
.be/y__7xKJ

o5e4  

Altman et 
al. (7) 

RSV app In house / 
open 

Provides access to 
six public RSV blood 

transcriptome 
datasets. 

https://drinchai
.shinyapps.io/
RSV_Meta_M
odule_analysis

/ 

https://youtu
.be/htNSMr

eM8es 

Rinchai et 
al. (12) 

Gene Expression 
Browser (GXB). 
Interactive browsing of 
expression profiles for 
individual transcripts. 
Themed curated 
dataset collections 
have been created. 

GXB 
sepsis 

collection 

In house / 
open 

Makes 93 curated 
datasets relevant to 

sepsis  

http://sepsis.g
xbsidra.org/dm
3/geneBrowse

r/list  

https://youtu
.be/D1rGYf

VSAoM 

Toufiq et 
al. (in 

preparatio
n), and 

Speake et 
al. (46) 

A reference dataset 
presenting transcript 
abundance profiles 

across purified 
leukocyte populations 

http://sepsis.g
xbsidra.org/dm
3/geneBrowse
r/show/400009

8  

Linsley et 
al. (47) 

Reference dataset 
presenting the 

response to in vitro 
blood stimulations 

http://sepsis.g
xbsidra.org/dm
3/geneBrowse
r/show/400015

2 

Obermos
er et al. 

(14) 

GXB Acute 
Respirator
y Infection 

In house / 
open 

34 curated datasets 
relevant to acute 

respiratory infections  

http://vri1.gxbs
idra.org/dm3/g
eneBrowser/lis

t  

Bougarn 
et al. (48)  

Reference dataset 
presenting changes in 

blood transcript 
abundance in patients 

with pneumonia 

http://vri1.gxbs
idra.org/dm3/
miniURL/view/

Mh  

 

Parnell et 
al. (49) 

Gene Set Annotation 
tool. 
 

GSAN Third party / 
open 

 https://gsan.la
bri.fr/  

 Allion-
Benitez et 

al. (50) 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted May 22, 2020. ; https://doi.org/10.1101/2020.05.20.107243doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.20.107243


 
 
 
 
Pathway Analysis 
tool 

Ingenuity 
Pathway 
Analysis 

Third party / 
commercial 

Pathway enrichment. 
Used for expert 

curation of 
candidates. 

https://digitalin
sights.qiagen.
com/products-
overview/disco
very-insights-
portfolio/analy

sis-and-
visualization/qi

agen-ipa/  

 

 

Accummenta Biotech 
LiteratureLab 
Literature profiling and 
keyword enrichment 
tool 

LitLab 
Gene 
Retreiver 

Collaboratio
n with Third 

party / 
commercial 

Retrieves genes from 
a collection of 

literature records 
provided by the user 

https://www.ac
umenta.com/g
eneretriever  

 

 

Drug target 
identification 

Open 
targets  

Third party / 
open  

 https://www.tar
getvalidation.o

rg/ 

 
 

Retrieval of lists of 
immune-relevant 
genes 

Immport  Third party / 
open  

 https://immport
.org/shared/ho

me  

 Bhattacha
rya et al. 

(44) 
 
 
 
 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted May 22, 2020. ; https://doi.org/10.1101/2020.05.20.107243doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.20.107243


 
 
Table 3: Illustrative targeted panel – Immunology relevance focus 
 

Module set Module 
ID 

NCBI  
Entrez ID 

Symbol Name Module set functional 
annotation 

A1/S1 M15.38 916 CD3E CD3e molecule  T cells 

A1/S2 M14.49 974 CD79B CD79b molecule Gene transcription 

A1/S3 
M14.80 

3122 HLA-DRA major histocompatibility 
complex, class II, DR 

alpha 

B cells 

A2/S1 M9.1 3002 GZMB granzyme B Cytotoxic lymphocytes 

A2/S2 M13.13 
4282 MIF macrophage migration 

inhibitory factor 
TBD 

A4/S1 M16.77 
3811 KIR3DL1 killer cell immunoglobulin 

like receptor, three Ig 
domains and long 
cytoplasmic tail 1 

Antigen presentation  

A5/S1 M16.95 972 CD74 CD74 molecule B cells 

A5/S2 M16.111 27242 TNFRSF21 TNF receptor superfamily 
member 21 

B cells 

A7/S1 M15.61 23166 STAB1 stabilin 1 Monocytes 
A8/S1 M16.30 3600 IL15 interleukin 15 Complement 
A8/S2 M16.106 57823 SLAMF7 SLAM family member 7 TBD 

A10/S1 M15.102 
246 ALOX15 arachidonate 15-

lipoxygenase 
Prostanoids 

A26/S1 M12.2 942 CD86 CD86 molecule Monocytes 
A27/S1 M12.15 608 CD38 CD38 molecule Cell Cycle 

A28/S1 M8.3 
9636 ISG15 ISG15 ubiquitin like 

modifier 
Interferon response 

A28/S2 M15.64 
10475 TRIM38 tripartite motif containing 

38 
Interferon response 

A28/S3 M10.1 
115362 GBP5 guanylate binding protein 

5 
Interferon response 

A31/S1 M16.64 1950 EGF epidermal growth factor Platelet/Prostaglandin 
A31/S2 

M15.58 
2214 FCGR3A Fc fragment of IgG 

receptor IIIa 
Monocytes 

A33/S1 M14.24 
 

91 ACVR1B activin A receptor type 1B Cytokines/chemokines, 
Inflammation 

A33/S2 M14.19 23765 IL17RA interleukin 17 receptor A Inflammation 
A34/S1 M8.2 3674 ITGA2B integrin subunit alpha 2b Platelets, Prostanoids 
A35/S1 M13.3 1241 LTB4R leukotriene B4 receptor Inflammation 

A35/S2 M12.10 51311 TLR8 toll like receptor 8 Neutrophils, Inflammation 
A36/S1 

M16.34 
2993 GYPA glycophorin A (MNS blood 

group) 
Gene transcription 

A37/S1 M11.3 2623 GATA1 GATA binding protein 1 Erythroid cells 
A38/S1 M10.4 4057 LTF lactotransferrin Neutrophil activation 
A38/S2 M16.96 56729 RETN resistin Erythroid cells 
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Table 4: Illustrative targeted panel – Therapeutic relevance focus 
 
Module 

set 
Module 

ID 
NCBI  

Entrez ID 
Symbol Name Relevance Notes 

A1/S1 M15.38 916 CD3E CD3e molecule Immunological Not suitable for targeting 
(adaptive immunity) 

A1/S2 M14.49 974 CD79B CD79b molecule Immunological Not suitable for targeting 
(adaptive immunity) 

A1/S3 M14.80 3122 HLA-
DRA 

major 
histocompatibility 
complex, class II, 

DR alpha 

Immunological Not suitable for targeting 
(adaptive immunity) 

A2/S1 M9.1 3002 GZMB Granzyme B Immunological Not suitable for targeting 
(adaptive immunity) 

A2/S2 M13.13 4282 MIF Macrophage 
migration 

inhibitory factor 

Immunological Not suitable for targeting 
(adaptive immunity -presumed) 

A4/S1 M16.77 3811 KIR3DL1 Killer cell 
immunoglobulin 

like receptor, 
three Ig domains 

and long 
cytoplasmic tail 1 

Immunological Not suitable for targeting 
(adaptive immunity) 

A5/S1 M16.95 972 CD74 CD74 molecule Immunological Not suitable for targeting 
(adaptive immunity) 

A5/S2 M16.111 27242 TNFRSF
21 

TNF receptor 
superfamily 
member 21 

Immunological Not suitable for targeting 
(adaptive immunity) 

A7/S1 M15.61 23166 STAB1 stabilin 1 Immunological No suitable candidates 
identified 

A8/S1 M16.30 1728 NQO1 NAD(P)H quinone 
dehydrogenase 1 

Therapeutic  Vatiquinone (EPI-743) has 
been found to inhibit 

ferroptosis (22), a process 
associated with tissue injury 
(23), including in sepsis (24). 

A8/S2 M16.106 57823 SLAMF7 SLAM family 
member 7 

Immunological No suitable candidates 
identified 

A10/S1 M15.102 246 ALOX15 Arachidonate 15-
lipoxygenase 

Immunological No suitable candidates 
identified 

A26/S1 M12.2 729230 CCR2 C-C motif 
chemokine 
receptor 2 

Therapeutic Anti-inflammatory properties 
have been attributed to the 

CCR2/CCR5 blocker 
Cenicriviroc (51) 

A27/S1 M12.15 608 TNFRSF
17 

TNF receptor 
superfamily 
member 17 

Immunological Not suitable for targeting 
(adaptive immunity) 

A28/S1 M8.3 4599 MX1 MX dynamin like 
GTPase 1 

Therapeutic Inducible by Interferon-beta 
treatment 

A28/S2 M15.64 1230 CCR1 C-C motif 
chemokine 
receptor 1 

Therapeutic Inducible by Interferon-beta 
treatment 

A28/S3 M10.1 3433 IFIT2 interferon induced 
protein with 

tetratricopeptide 
repeats 2 

Therapeutic Inducible by Interferon-beta 
treatment 

A31/S1 M16.64 6915 TBXA2R Thromboxane A2 
receptor 

Therapeutic Thromboxane A2 synthase 
inhibitors have antiplatelet 
aggregation activities and 

anti-inflammatory activities 
(drugs include: Defibrotide / 

Seratrodast, Ozagrel)  
A31/S2 M15.58 5743 PTGS2 Prostaglandin-

endoperoxide 
Therapeutic PTGS2 encodes COX-2. 

Several specific inhibitors 
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synthase 2 are available which possess 
anti-inflammatory properties 

(e.g. celecoxib, rofecoxib, 
valdecoxib). 

A33/S1 M15.104 5151 PDE8A Phosphodiesteras
e 8A 

Therapeutic PDE8A, is targeted by 
Pentoxifylline, a non-

selective phosphodiesterase 
inhibitor that increases 

perfusion and may reduce 
risk of acute kidney injury 

and attenuates LPS-induced 
inflammation 

A33/S2 M14.19 23765 IL17RA Interleukin 17 
receptor A 

Therapeutic Brodalumab may be 
beneficial in reducing the 
viral illness exacerbation. 

But current recommendation 
is discontinuation of use in 

COVID 19 
A34/S1 M16.109 5742 PTGS1 Prostaglandin-

endoperoxide 
synthase 1 

Therapeutic Encodes for Cox-1. COX 
inhibitors including Aspirin, 

Indomethacin, Naproxen 
have direct antiviral 

properties as well as anti-
inflammatory and 

antithrombotic properties 
A35/S1 M15.81 5293 PIK3CD phosphatidylinosit

ol-4,5-
bisphosphate 3-
kinase catalytic 
subunit delta 

Therapeutic PI3K-δ and PI3K-γ Inhibition 
by IPI-145 Abrogates 

Immune Responses and 
Suppresses Activity in 

Autoimmune and 
Inflammatory Disease 

Models (52) 
A35/S2 M15.109 3570 IL6R Interleukin 6 

receptor 
Therapeutic IL6R is a target for the 

biologic drug Tocilizumab. 
Several studies have tested 
this antagonist in open label 
single arm trials in Covid-19 

patients with the intent of 
blocking the cytokine storm 

associated with Covid-19 
disease (15,16) 

A36/S1 M16.34 2993 GYPA glycophorin A 
(MNS blood 

group) 

Immunological Not suitable for targeting 
(erythropoiesis) 

A37/S1 M11.3 2623 GATA1 GATA binding 
protein 1 

Immunological Not suitable for targeting 
(erythropoiesis) 

A38/S1 M10.4 4057 LTF Lactotransferrin Immunological No suitable candidates 
identified 

A38/S2 M16.96 56729 RETN Resistin Immunological Not suitable for targeting 
(erythropoiesis) 
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Table 5: Illustrative targeted panel – SARS biology relevance focus 
 

Module 
set 

Module 
ID 

NCBI 
Entrez 

ID 
Symbol Name Relevance Notes 

A1/S1 M15.38 916 CD3E CD3e molecule Immunological  

A1/S2 M12.1 60489 APOBEC3G 

apolipoprotein B 
mRNA editing 

enzyme catalytic 
subunit 3G 

CoV Biology 

APOBEC3G associates with SARS 
viral structural proteins (53), with a  
possible role in restriction of RNA 

virus replication (54) 

A1/S3 M14.64 51284 TLR7 toll like receptor 7 CoV Biology 
TLR7 Signaling Pathway is 

inhibited by SARS Coronavirus 
Papain-Like Protease (27) 

A2/S1 M13.21 3458 IFNG interferon gamma CoV Biology 

Interferon-gamma and interleukin-4 
Downregulate Expression of the 

SARS Coronavirus Receptor ACE2 
(55) 

A2/S2 M13.10 25 ABL1 
ABL proto-oncogene 

1, non-receptor 
tyrosine kinase 

CoV Biology 
Abl Kinase inhibitors block SARS-

Cov fusion (56) 

A4/S1 M16.77 3811 KIR3DL1 

killer cell 
immunoglobulin 

like receptor, three 
Ig domains and 
long cytoplasmic 

tail 1 

Immunological 

 

A5/S1 M16.65 4092 SMAD7 SMAD family 
member 7 CoV Biology 

MERS Coronavirus Induces 
Apoptosis in Kidney and Lung by 
Upregulating Smad7 and FGF2 

(57) 

A5/S2 M16.111 27242 TNFRSF21 
TNF receptor 
superfamily 
member 21 

Immunological 
 

A7/S1 M15.61 1958 EGR1 early growth 
response 1 CoV Biology 

SARS Coronavirus Papain-Like 
Protease Induces Egr-1-dependent 

Up-Regulation of TGF-β1 (58) 

A8/S1 M16.30 857 CAV1 caveolin 1 CoV Biology 
Severe Acute Respiratory 

Syndrome Coronavirus Orf3a 
Protein Interacts with Caveolin (59) 

A8/S2 M16.106 57823 SLAMF7 SLAM family 
member 7 

Immunological 
 

A10/S1 M15.102 246 ALOX15 arachidonate 15-
lipoxygenase 

Immunological 
 

A26/S1 M12.2 942 CD86 CD86 molecule Immunological  

A27/S1 M12.15 608 TNFRSF17 
TNF receptor 
superfamily 
member 17 

Immunological 
 

A28/S1 M8.3 9636 ISG15 ISG15 ubiquitin like 
modifier CoV Biology SARS-CoV PLpro  exhibits ISG15 

precursor processing activities (60) 

A28/S2 M15.64 1230 CCR1 C-C motif chemokine 
receptor 1 CoV Biology 

MLN-3897, a CCR1 antagonist 
inhibits replication of SARS-CoV-2 

replication (61) 

A28/S3 M10.1 6772 STAT1 
signal transducer and 

activator of 
transcription 1 

CoV Biology 
SARS ORF6 Antagonizes STAT1 

Function (28) 

A31/S1 M16.64 1950 EGF epidermal growth 
factor 

Immunological 
 

A31/S2 M15.58 5743 PTGS2 
prostaglandin-
endoperoxide 

synthase 2 
CoV Biology 

Encodes COX2, which expression 
is stimulated by SARS Spike 

protein (62) 

A33/S1 M14.24 114548 NLRP3 NLR family pyrin 
domain containing 3 CoV Biology Multiple SARS-Coronavirus protein 

have been reported to activates 
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NLRP3 inflammasomes (63,64) 

A33/S2 M14.19 23765 IL17RA interleukin 17 
receptor A 

Immunological 
 

A34/S1 M8.2 3674 ITGA2B Integrin subunit 
alpha 2b 

Immunological 
 

A35/S1 M13.3 1241 LTB4R Leukotriene B4 
receptor 

Immunological 
 

A35/S2 M15.78 290 ANPEP 
alanyl 

aminopeptidase, 
membrane 

CoV Biology 
A potential receptor for human 

CoVs (65) 

A36/S1 M16.88 6352 CCL5 C-C motif chemokine 
ligand 5 CoV Biology 

CCL5/RANTES is associated with 
the replication of SARS in THP-1 

Cells (66) 

A37/S1 M13.26 5045 FURIN 
Furin, paired basic 
amino acid cleaving 

enzyme 
CoV Biology 

Furin cleavage of the SARS 
coronavirus spike glycoprotein 
enhances cell-cell fusion (67) 

A38/S1 M10.4 4057 LTF Lactotransferrin CoV Biology 

Lactotransferrin blocks the binding 
of the SARS-CoV spike protein to 

host cells, thus exerting an 
inhibitory function at the viral 

attachment stage (25) 

A38/S2 M12.9 1508 CTSB Cathepsin B CoV Biology 

Activation of SARS- and MERS-
coronavirus is mediated cathepsin 
L (CTSL) and cathepsin B (CTSB) 

(68) 
 
 
Table 6: List of housekeeping genes that may be suitable for blood transcript profiling 
applications  
 
 
Housekeeping Genes NCBI  

Entrez ID 
Symbol Name 

Housekeeping Gene 1794 DOCK2 dedicator of cytokinesis 
2 

Housekeeping Gene 1915 EEF1A1 
eukaryotic translation 

elongation factor 1 alpha 
1 

Housekeeping Gene 90268 FAM105B/ OTULIN OTU deubiquitinase with 
linear linkage specificity 

Housekeeping Gene 2512 FTL ferritin light chain 

Housekeeping Gene 103910 MYL12B/MRLC2 myosin light chain 12B 

Housekeeping Gene 4637 MYL6 myosin light chain 6 

Housekeeping Gene 6204 RPS10 ribosomal protein S10 

Housekeeping Gene 6230 RPS25 ribosomal protein S25 
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METHODS 

Datasets 

Two Covid-19 blood transcriptional datasets available at the time this work was conducted 

were used: 1) Xiong et al. (9) obtained peripheral mononuclear cell samples obtained from 

one uninfected control individual and three patients with Covid-19. RNA abundance was 

profiled via RNAseq. The data were deposited in the Genome Sequence Archive of the 

Beijing Institute of Genomics, Chinese Academy of Sciences, under the accession number 

CRA002390. FASTQ passed QC and were aligned to reference genome GRChg38/hg19 

using Hisat2 (v2.05). BAM files were converted to a raw count expression matrix using 

subreads (v1.6.2). Raw expression data was corrected for within lane and between lane 

effects using R package EDASeq (v2.12.0) and quantile normalized using preprocessCore 

(v1.36.0). The modular analysis was performed by using 10,617 RNA-seq genes which 

overlapped with transcripts from the 3rd generation module construction (7). details of the 

analysis as described below section.   

2) Ong et al. (8) collected whole blood stabilized in RNA buffer from uninfected 

controls and three Covid-19 patients at multiple time points. RNA abundance was profiled 

using a standard immunology panel from Nanostring comprising 594 transcripts. The data 

were deposited in the arrayexpress public repository with accession ID E-MTAB-8871. The 

normalized data were downloaded, and modular analysis was performed by using 403 

NanoString genes which overlapped with transcripts from the 3nd generation module 

construction details of the analysis as described below section.   

3) We also used a reference dataset generated by our group that was previously 

used to construct the 382 blood transcriptional module repertoire (7). Briefly, this repertoire 

consists of the following cohorts of patients and respective control subjects: S. aureus 

infection (99 cases, 44 controls), sepsis (35 cases, 12 controls), tuberculosis (23 cases, 11 

controls), Influenza (25 cases, 14 controls), RSV infection (70 cases, 14 controls), HIV 

infection (28 cases, 35 controls), systemic lupus erythematosus (55 cases, 14 controls), 

multiple sclerosis (34 cases, 22 controls), juvenile dermatomyositis (40 cases, 9 controls), 
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Kawasaki disease (21 cases, 23 controls), systemic onset idiopathic arthritis (62 cases, 23 

controls), COPD (19 cases, 24 controls), melanoma (22 cases, 5 controls), pregnancy (25 

cases, 20 controls), liver transplant recipients (94 cases, 30 controls), and B-cell deficiency 

(20 cases, 13 controls). All samples were run at the same facility on Illumina HumanHT-12 

v3.0 Gene Expression BeadChips. The data have been deposited in NCBI GEO with 

accession number GSE100150. 

 

Transcriptional module repertoire 

The method used to construct the transcriptional module repertoire has been described 

elsewhere (39,40). The version used here is the third and last to have been developed by 

our group over a period of 12 years. It is the object of a separate publication (available on a 

pre-print server (7)).  

Briefly, the approach consists of identifying sets of co-expressed transcripts in a wide 

range of pathological or physiological states, focusing in this case on the blood 

transcriptome as the biological system. We determined co-expression based on patterns of 

co-clustering observed for all gene pairs across the collection of 16 reference datasets listed 

in the previous section and that encompassed viral and bacterial infectious diseases as well 

as several inflammatory or autoimmune diseases, B-cell deficiency, liver transplantation, 

stage IV melanoma and pregnancy. Overall, this collection comprised 985 blood 

transcriptome profiles. A weighted, co-expression network was built with the weight of the 

nodes connecting a gene pair being based on the number of times co-clustering was 

observed for the pair among the 16 reference datasets. Thus, the weights ranged from 1 

(where co-clustering occurs in one of 16 datasets) to 16 (where co-clustering occurs in all 16 

datasets). Next, this network was mined using a graph theory algorithm to define subsets of 

densely connected gene sets that constituted our module repertoire (“Cliques” and 

“Paracliques”).  

Overall, 382 transcriptional modules were identified, encompassing 14,168 

transcripts. A supplemental file including the definition of this module repertoire along with 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted May 22, 2020. ; https://doi.org/10.1101/2020.05.20.107243doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.20.107243


the functional annotations is available elsewhere (7). To provide another level of granularity 

and facilitate data interpretation, a second round of clustering was performed to group the 

modules into “aggregates”. This process was achieved by grouping the set of 382 modules 

according to the patterns of transcript abundance across the 16 reference datasets that were 

used for module construction. This segregation resulted in the formation of 38 aggregates, 

each comprising between one and 42 modules.  

 

Module repertoire analyses 

The modular analyses were performed using the core set of 14,168 transcripts forming the 

module repertoire. For group-level comparisons (cases vs controls), a paired t-test was 

performed on the log2-transformed data [Fold change (FC) cut off = 1.5; FDR cut off = 0.1]. 

For individual-level analyses, each sample was compared to the mean value of the 

corresponding control samples (or individual sample in the case of the Xiong et al. dataset). 

The cut off comprised an absolute FC >1.5 and a difference in counts >10. The results for 

each module are reported as the percentage of its constitutive transcripts that increased or 

decreased in abundance. Because the genes comprised in a module are selected based on 

the co-expression observed in blood, the changes in abundance within a given module tend 

to be coordinated and the dominant trend is therefore selected (the greater value of the 

percentage increased vs. percentage decreased). Thus, the values range from -100% (all 

constitutive modules are decreased) to +100% (all constitutive modules are increased). A 

module was considered to be “responsive” when the proportion of transcripts found to be 

increased was >15%, or when the proportion of transcripts found to be decreased was 

≤15%. At the aggregate-level, the percent values of the constitutive modules were averaged. 

 

Data visualization 

Changes in transcript abundance reduced at the module or module aggregate-level were 

visualized using a custom fingerprint heatmap format. For each module, the percentage of 

increased transcripts is represented by a red spot and the percentage of decreased 
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transcripts is represented by a blue spot. The fingerprint grid plots were generated using 

“ComplexHeatmap” (41). A web application was developed to generate the plots and browse 

modules and module aggregates (https://drinchai.shinyapps.io/COVID_19_project/). A 

detailed description and source code will be available as part of a separate publication 

BioRxiv deposition on GitHub and BioRxiv (in preparation). 

 

Selection of transcripts for inclusion in targeted panels 

Therapeutic relevance: Covid-19 module sets belonging to aggregates comprising module 

annotations relating to inflammation, monocytes, neutrophils or coagulation pathway were 

selected for screening (A7, A8, A26, A31, A33, A34, A35). In turn, transcripts from each of 

the corresponding module sets were selected on the basis of their status as a known 

therapeutic target of a drug for which clinical precedence exists (source: 

targetvalidation.org). Next, candidates were prioritized via expert curation on the basis of 

compatibility and a potential benefit as a Covid-19 treatment. Curators were tasked with 

prioritizing candidates within each of the Covid-19 module sets. Only the top ranked 

candidate from each set was selected for inclusion in the panel. Module sets from aggregate 

A28 (interferon response) may also be of clinical relevance, may also be of clinical 

relevance, as indicators of a treatment response since interferon administration has been 

shown to increase the activity of anti-viral drugs in Covid-19 patients (42). The selection of 

candidates for aggregate A28 sets was thus based on the amplitude of the response to beta-

interferon therapy measured in patients with multiple sclerosis [fold-change over pre-

treatment baseline (43) & NCBI GEO accession GSE26104]. The remaining nine 

aggregates, which tended to associate preferentially with adaptive immune responses and 

for which targeting by therapies might prove detrimental, were not included in this screen. 

For these, representative transcripts from the default panel of immune relevant transcripts 

were included.  

Relevance to Coronavirus biology: for the second panel, transcripts were primarily 

selected based on their relevance to SARS biology. As a first step, a literature profiling tool 
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was used to identify among the SARS, MERS, or Covid-19 literature articles that were 

associated with transcripts forming the 28 Covid-19 module sets (Literature Lab, Gene 

Profiler module; Accumenta Biotech, Boston, MA). Next, the potential associations were 

assessed by manual curation. The curators prioritized the transcripts for which the 

associations could be confirmed based on importance and robustness.        

Immunological relevance: Lists of immunologically relevant genes were retrieved 

from Immport (44), and were used along with membership to IPA pathways (Ingenuity 

Pathway Analysis, QIAGEN, Germantown MD) to annotate transcripts comprising Covid-19 

module sets. The curators prioritized annotated transcripts on the basis of their relevance to 

the functional annotations of the module set (e.g. interferon, inflammation, cytotoxic cells). 

The transcript with the highest priority rank was included in the assay. 

Housekeeping genes: A recommended set of housekeeping genes is provided in 

Table 6. These were selected on the basis of low variance observed across the 985 

transcriptome profiles generated for our reference cohorts. 

 

Annotation framework 

Links to the resources described in this section and to video demonstrations are available in 

Table 2. Interactive presentations were created via the Prezi web application. For this we 

have built and expanded upon an annotation framework established as part of the 

characterization of our reference blood transcriptome repertoire (7). Several bioinformatic 

resources were used to populate interactive presentations that served as a framework for 

annotation of Covid-19 relevant module sets. These resources include web applications 

deployed using Shiny R, which permit to plot transcript abundance patterns at the module 

and aggregate levels. Two of these applications were developed as part of a previous work 

establishing the blood transcriptome repertoire and applying it in the context of a meta-

analysis of six public RSV datasets (12). A third application was developed as part of this 

work and can generate profiles at the transcript, module and module-aggregate levels for the 

Xiong et al. and Ong et al. datasets.  
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SUPPLEMENTAL INFORMATION 

Supplemental File 1: Delineation of Covid-19 relevant modules sets in all 17 aggregates 

retained in the first step of the selection process.  
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