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ABSTRACT

Mice emit ultrasonic vocalizations (USV) to transmit socially-relevant information. To detect and
classify these USVs, here we describe the development of VocalMat. VocalMat is a software that uses
image-processing and differential geometry approaches to detect USVs in audio files, eliminating
the need for user-defined parameter tuning. VocalMat also uses computational vision and machine
learning methods to classify USVs into distinct categories. In a dataset of >4,000 USVs emitted by
mice, VocalMat detected more than >98% of the USVs and accurately classified ≈86% of USVs
when considering the most likely label out of 11 different USV types. We then used Diffusion Maps
and Manifold Alignment to analyze the probability distribution of USV classification among different
experimental groups, providing a robust method to quantify and qualify the vocal repertoire of mice.
Thus, VocalMat allows accurate and highly quantitative analysis of USVs, opening the opportunity
for detailed and high-throughput analysis of this behavior.
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1 Introduction

Vertebrates use vocal communication to transmit information about the state of the caller and influence the state of
the listener. This information can be relevant for the identification of individuals or groups [18]; status within the
group (e.g.: dominance, submissive, fear or aggression) [25]; next likely behavior (e.g.: approach, flee, play or mount)
[22]; environment conditions (e.g.: presence of predators, location of food) [33]; and facilitation of mother-offspring
interactions [12].

Mice emit ultrasonic vocalizations (USVs) in a frequency range (≈30 – 110kHz) above the human hearing range (≈2 –
20kHz) [39, 23, 25, 26, 24, 29, 5, 17, 13, 6]. These USVs are organized in phrases or bouts composed by sequences
of syllables. The syllables are defined as continuous units of vocal sound not interrupted by a period of silence. The
syllables are composed of one or more notes and are separated by salient pauses and occur as part of sequences [3, 19].
These transitions across syllables do not occur randomly [19, 8], and the changes in the syllables sequences, prevalence
and acoustic structure match current behavior [9], genetic strain [36, 30], and developmental stage [16]. USVs are most
commonly emitted by mouse pups [31] and are modulated during development [16, 14, 8]. In the adult mouse, USVs
are emitted in both positive and negative contexts [2]. Thus, understanding the complex structure of USVs emitted by
mice is key to advancing vocal and social communication research in mammals.

In the past years, tools for USV analysis advanced significantly [10, 36, 22, 9, 3, 34]. In terms of USV detection, the
majority of the software tools available depend on user inputs [22, 36, 34] or present limited detection capabilities [3,
9]. An exception is DeepSqueak [10], which uses automated detection of USVs from audio recordings. Regarding USV
classification, no consensus exists on the biological function of the various USV sub-classes, making it challenging to
develop a tool for all purposes. Thus, different tools use supervised [3, 9, 10] and unsupervised [7, 36, 10] methods to
classify USVs into different syllable classes. Our goal was to create a tool with high accuracy for USV detection that
allows for the flexible use of any classification method.

Here, we describe the development of VocalMat, a software for robust and automated detection and classification
of mouse USVs from audio recordings. VocalMat uses image-processing and differential geometry approaches to
detect USVs in spectrograms, eliminating the need for parameter tuning. VocalMat shows high accuracy in detecting
USVs, outperforming previous tools. This high accuracy allows the use of multiple tools for vocal classification. In the
current version of VocalMat, we embedded a supervised classification method that uses computer vision techniques and
machine learning to label each USV in eleven different sub-classes. The output of the vocal classification provides
the additional benefit of a probability distribution of vocal classes, allowing for the use of nonlinear dimensionality
reduction techniques to analyze the vocal repertoire. We provide an example of such analysis by applying Diffusion
Maps and Manifold Alignment to an experimental dataset. Thus, VocalMat is a highly accurate software to detect and
classify mouse USVs in an automated and flexible manner.

2 Results

2.1 Detection of mouse USVs using imaging processing

VocalMat uses multiple steps to analyze USVs from vocalizing mice in audio files (see Figure 1A for the general
workflow). Initially, the audio recordings are converted into high-resolution spectrograms through a short-time Fourier
transformation (see Methods and Materials). The resulting spectrogram consists of a matrix, wherein each element
corresponds to an intensity value (power spectrum represented in decibels) for each time-frequency component. The
spectrogram is then analyzed in terms of its time-frequency plane, where high-intensity values are represented by
brighter pixels in a gray-scale image (Figure 1B). The gray-scale image undergoes contrast enhancement and adaptive
thresholding for binarization (see Methods and materials). The segmented objects are further refined via morphological
operations (Figure 1C and Figure S1), thus resulting in a list of segmented blobs (hereafter referred to as USV candidates)
with their corresponding spectral features (Figure 1D).

This list of USV candidates may contain noise (i.e., detected particles that are not part of any USV) and multiple
candidates that correspond to the same USV. To address this, a minimum of 10 ms interval between two successive and
distinct syllables is assumed based on experimental observations [9]. To reduce the amount of data stored for each USV,
the features extracted from detected candidates are represented by a mean frequency and intensity every 0.5 ms. The
means are calculated for all the individual candidates, including the ones overlapping in time, hence preserving relevant
features such as duration, frequency, intensity, and harmonic components (Figure 1D).

Harmonic components are also referred to as nonlinear components or composite [31, 30]. Here, we did not consider
harmonic components as a different syllable, but rather as an extra feature of a syllable [16]. Therefore, each detected
USV candidate may or may not present a harmonic component. A harmonic component was considered as a continuous
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Figure 1: Overview of the VocalMat pipeline for USV detection and analysis. (A) Workflow of the main steps used by
VocalMat, from audio acquisition to data analysis. (B) Illustration of a segment of spectrogram. The time-frequency
plan is depicted as a gray scale image wherein the pixel values correspond to intensity in decibels. (C) Example of
segmented USV after contrast enhancement, adaptive thresholding and morphological operations (see Figure S1 for
further details of the segmentation process). (D) Illustration of some of the spectral information obtained from the
segmentation. Information on intensity is kept for each time-frequency point along the segmented USV candidate.

USV candidate (i.e., no discontinuities in time and/or frequency) overlapping in time with the main component of the
USV (similar to [16]).

Besides the list of USV candidates and their spectral features, the segmentation process also exports image files of 227
x 227 pixels, in which the USV candidate is centralized in windows of 220 ms (see Figure 1B). This temporal length is
defined as twice the maximum duration of USVs observed in mice [16], thus preventing cropping.

2.2 Eliminating noise via Local Median Filter

Initially, we used VocalMat to detect USVs in a set of 64 recordings, resulting in a pool of 59,781 USV candidates,
which includes real USVs and noise (Figure 2A and Methods and Materials). Visual inspection of the dataset revealed
that artifacts generated during the segmentation process dominated the pool of USV candidates (see Figure 2B for
examples of real USVs and noise in the pool of USV candidates). This type of artifact is characterized by its low
intensity compared to real USVs. To remove these artifacts from the pool of USV candidates, we applied a ’Local
Median Filter’ step, a method to estimate the minimum expected contrast between a USV and its background for each
audio recording. This contrast is calculated based on the median intensity of the pixels in each detected USV candidate
k (referred to as X̂k), and the median intensity of the background pixels in a bounding box containing the candidate k
(referred to as Ŵk) (Figure 2C). Thus, the contrast is defined as the ratio Ck = X̂k/Ŵk.

To validate this method, we manually inspected the spectrograms and labeled USV candidates in a subset of audio files
(hereafter referred to as test dataset and described in Table 1). A total of 7,741 USV candidates were detected using the
segmentation process described above, representing 1.75 times more USV candidates than the manual counting (4,441
USVs). Importantly, the segmentation step included 4,428 real USVs within the pool of USV candidates, therefore
missing 13 USVs. Thus, the segmentation process of VocalMat presents a rate of missing USVs of 0.29%.

The distribution of Ck for real USVs and for noise showed that the peak at high Ck (i.e., low contrast) in the distribution
was dominated by USV candidates corresponding to artifacts of the segmentation process (Figure 2D-E). The Ck of
real USVs (mean = 0.642, SEM = 1.841×10−3, median = 0.640, 95% CI [0.638, 0.646]; N = 4,428) was significantly
lower than the Ck of noise (mean = 0.922, SEM = 9.605×10−4, median = 0.936, 95% CI [0.921, 0.924]; n = 3,336; P <
10−15, D = 0.894, Kolmogorov-Smirnov test; Figure 2D-E). This unbalanced bimodal distribution causes an inflection
point on the cumulative distribution function (CDF) of Ck that matches the ratio observed for segmentation artifacts
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Figure 2: Noise elimination process for USV candidates. (A) In a set of 64 audio files, VocalMat identified 59,781 USV
candidates. (B) Examples of USVs among the pool of candidates that were manually labeled as either noise or real
USVs. The score (upper-right corner) indicates the calculated contrast Ck for the candidate. (C) Example of contrast
calculation ( Ck) for a given USV candidate k. The red dots indicate the points detected as part of the USV candidate
(Xk) and the dashed-white rectangle indicates its evaluated neighborhood (Wk). (D) Distribution of the Ck for the USV
candidates in the test dataset. (E) Each USV candidate was manually labeled as real USV or noise. The distribution of
Ck for the real USVs (cyan) compared to the the distribution for all the USV candidates (red) in the test dataset. The
blue line indicates the cumulative distribution function (CDF) of Ck for all the USV candidates. The inflection point of
the CDF curve is indicated by the arrow. (F) Example of a segment of spectrogram with 3 USVs. The analysis of this
segment without the ’Local Median Filter’ results in an elevated number of false positives (noise detected as USV).
’Red’ and ’cyan’ ticks denote the time stamp of the identified USV candidates without and with the ’Local Median
Filter’, respectively.
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(Figure 2E). Therefore, based on these results, we used the calculated inflection point as a threshold to effectively
eliminate a substantial amount of noise from the pool of USV candidates (details on this calculation are provided in
Methods and Materials).

In the test dataset, 5,171 out of 7,741 USV candidates survived the ’Local Median Filter’. This number includes
real USVs (4,421) and remaining noise of lower Ck. This remaining noise presented high intensity and commonly
originated from external sources (Figure 2B, E). The 7 real USVs eliminated in this step presented a high Ck (mean
= 0.942, SEM = 5.871×10−3, median = 0.943, 95% CI [0.927, 0.956]; n = 7). To illustrate the performance of the
’Local Median Filter’, Figure 2F shows a segment of a spectrogram with 3 real USVs and a total of 11 USV candidates
detected. After applying the ’Local Median Filter’, only the real USVs remained in the pool of USV candidates. Thus,
the ’Local Median Filter’ effectively eliminates segmentation noise from the pool of USV candidates, which provides
two main advantages: it decreases the number of USV candidates used in downstream analysis and, consequently,
reduces the number of false positives.

In an ideal experimental setting with complete sound insulation and without the generation of noise by the movement
of the animal, no further step is required to identify real USVs using VocalMat. Since this is difficult in experimental
conditions, we applied a second step in the noise elimination process.

2.3 Using Convolutional Neural Network for noise identification

To identify USVs in the pool of USV candidates that passed the ’Local Median Filtering’, we trained a Convolutional
Neural Network (CNN) to classify each USV candidate into one of 11 USV categories or noise (see Figure 4A for
examples of the different USV categories). We used a dataset containing 10,871 samples manually labeled as one of the
11 USV categories and 2,083 samples of noise (see Methods and materials). The output of the CNN is the probability
of each USV candidate belonging to one of the 12 categories. The most likely category defines the label of the USV
candidate (Figure 3A).

To evaluate the performance of VocalMat in distinguishing between USVs and noise, we used the 5,171 USV candidates
in the test dataset that passed the ’Local Median Filter’ step (Methods and materials). For the detection evaluation, we
compared the score for the label ’Noise’ (P (Noise)) to the sum over the 11 USV categories (P (USV )). The rate of
detected USVs labeled as such (true positive or sensitivity) was 99.04 ± 0.31% (mean ± SEM; median = 99.37; 95%
CI [98.27, 99.80]). A linear regression analysis between manually validated data from different audio files and the true
positives of the CNN revealed an almost-perfect linearity (r2 = 0.99, 95% CI [0.99, 1.02]), P < 10−4, and slope α =
1.01), suggesting high accuracy of VocalMat in detecting USVs from audio files and removing noise (Figure 3B). The
rate of detected USVs labeled as noise (false negative) was 0.96 ± 0.31% (mean ± SEM; median = 0.61; 95% CI [0.20,
1.73]). The rate of detected noise labeled as noise (true negative rate or specificity) was 94.40 ± 1.37 % (mean ± SEM;
median = 95.60; 95% CI [91.60, 97.74]). The rate of detected noise labeled as USV (false positive) was 5.60 ± 1.37%
(mean ± SEM; median = 4.40; 95% CI [2.26, 8.94]), representing a total of 42 wrongly detected USVs out of the 5,171
USV candidates in the test dataset. Finally, the rate of USVs not detected (missed rate) was 0.28 ± 0.09% (mean ±
SEM; median = 0.23; 95% CI [0.05, 0.51]). All together, the overall accuracy in identifying USVs was 98.63 ± 0.20%
(mean ± SEM; median = 98.55; 95% CI [98.14, 99.11]) for manually validated audio files. Thus, VocalMat fails to
identify approximately 1 in 75 USVs (Figure 3C).

2.4 Characteristics of mislabeled USV candidates by VocalMat

We further calculated other measures of performance (Figure 3D). For USVs wrongly labeled as noise (false negative),
the probability of being a USV was 0.15 ± 0.03 (mean ± SEM; median = 0.04; 95% CI [0.09, 0.22]; Figure 3D), while
for noise labeled as USV (false positive), the probability of being USV was 0.85 ± 0.03 (mean ± SEM; median = 0.86;
95% CI [0.80, 0.91]; Figure 3D). These probabilities contrast with cases in which VocalMat correctly identified USV
and noise. USVs that were correctly identified had a probability of being USV of 0.99 ± 3.78 × 10-4 (mean ± SEM;
median = 1.00; 95% CI [0.99, 0.99]; Figure 3D). Noise that was correctly identified had a probability of being noise of
0.99 ± 1.78 × 10-3 (mean ± SEM; median = 1.00; 95% CI [0.98, 0.99]; Figure 3D). These results indicate that the
probability assigned by VocalMat flags likely errors in classification. These flagged candidates (i.e., with assigned low
probability) can be manually inspected to correct the misclassification and retrain VocalMat.

2.5 Performance of VocalMat compared to other tools

In order to evaluate the performance of VocalMat in detecting USVs compared to other published tools, we analyzed the
same test dataset with Ax [22], MUPET [36], USVSEG [34], and DeepSqueak [10]. We adopted the same validation
criterion used for VocalMat (see Methods and materials).
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Figure 3: VocalMat USV classification using a Convolutional Neural Network. (A) Illustration of the AlexNet
architecture post end-to-end training on our training dataset. The last threes layers of the network were replaced in order
to perform a twelve-categories (11 USV types plus noise) classification task. The output of the CNN is a probability
distribution over the labels for each input image. (B) Linear regression between the number of USVs manually detected
versus the number reported by VocalMat for the audio files in our test dataset. (C) Overall accuracy of VocalMat in
detection and classification of detected USV candidates. VocalMat fails to identify 1 in every 75 USVs. (D) Distribution
of probabilities P (USV ) for the true positive (green), false positive (red), false negative (cyan) and true negative
(magenta). Ticks represent individual USV candidates.

Ax requires a series of manual inputs for their detection algorithm [22]. We tried three different settings to maximize
the number of detected USVs compared to the ground-truth (Table S1). Combining the best configurations tested, the
percentage of missed USVs was 4.99 ± 1.34 % (mean ± SEM; median = 4.07, 95% CI [1.73, 8.26]) and the false
discovery rate was 37.67 ± 5.59 % (mean ± SEM; median = 42.56, 95% CI [23.99, 51.34]). Since Ax does not separate
the selected USV candidates in real USV or noise, no false negative rate was calculated. In comparison to Ax, MUPET
has a lower number of parameters to be set by the user. We tested eight different configurations of MUPET to measure
its performance in detecting USVs in the validated test dataset (Table S2). Combining the best configurations tested, the
percentage of missed USVs was 33.74 ± 3.81 % (mean ± SEM; median = 33.13, 95% CI [24.41, 43.07]), and false
discovery rate of 38.78 ± 6.56 % (mean ± SEM; median = 32.97, 95% CI [22.72, 54.84]). Similarly to the other tools
tested, USVSEG requires setting parameters manually for USV detection (Table S3). USVSEG displayed the best
performance out of the manually configured tools, presenting a missed vocalization rate of 6.53 ± 2.56% (mean ±
SEM; median = 4.26, 95% CI [0.26, 12.80]), and a false discovery rate of 7.58 ± 4.31% (mean ± SEM; median = 3.27,
95% CI [-2.97, 18.15]). It is important to emphasize that the tests with Ax, MUPET, and USVSEG did not explore all
possible combinations of parameters, implying that better settings could potentially optimize the detection performance
for our test dataset.

DeepSqueak does not demand a manual setting of parameters for USV detection and, similarly to VocalMat, it also
relies on deep learning algorithms to detect and analyze USVs [10]. To measure the performance of DeepSqueak to
detect USVs and compare to VocalMat, we correlated USVs detected by DeepSqueak with the time stamp of the USVs
in our test dataset. Because DeepSqueak is not formally trained to identify the start time of USVs with precision, we
used increasing tolerance for mismatches in the starting time (±5, ±10, ±15 and ±20 ms). Using 5 ms mismatch, the
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rate of missed USVs by DeepSqueak was 41.14 ± 6.30% (mean ± SEM; median = 35.99, 95% CI [25.71, 56.56]) and
the rate of false discovery was 25.71 ± 6.74% (mean ± SEM; median = 20.89, 95% CI [9.20, 42.22]). With increasing
tolerance (±10, ±15 and ±20 ms), we observed a gradual decrease in the rate of missed USVs and the rate of false
discovery. The best values obtained were a rate of missed USVs of 27.13± 3.78% (mean± SEM; median = 24.22, 95%
CI [17.86, 36.40]) and a rate of false discovery of 7.61 ± 2.35% (mean ± SEM; median = 4.73, 95% CI [1.84, 13.39]).
The manual inspection of the USVs detected by DeepSqueak revealed cases of more than one USV being counted as
a single USV, which could lead to an inflated number of missed USVs. Since we did not train DeepSqueak with our
dataset, it is possible that DeepSqueak could present better performance than what we report here when custom-trained.

To more directly compare DeepSqueak and VocalMat, we evaluated the performance of both tools on the sample audio
provided by DeepSqueak [10]. First, we manually inspected the spectrogram of the sample audio and labeled the
starting time of each of the 762 USVs identified. Of these 762 USVs, VocalMat detected 747 with a true positive rate of
91.73%, whereas DeepSqueak detected 608, with a true positive rate of 77.95%. Thus, these comparisons suggest that
VocalMat shows an overall better sensitivity for USV detection when compared to DeepSqueak.

2.6 Detection of harmonic components

To measure the performance of VocalMat for detection of harmonic components, we compared the output of VocalMat
with the test dataset. The rate of true positives was 93.32 ± 1.96 % (mean ± SEM; median = 92.18; 95% CI [88.54,
98.11]). The rate of USVs wrongly labeled as having a harmonic component (false positive) was 5.39 ± 1.18 % (mean
± SEM; median = 5.17; 95% CI [2.50, 8.27]). The rate of missed harmonic components (false negative) was 6.68 ±
1.96 % (mean ± SEM; median = 7.82, 95% CI [1.89, 11.46]). All combined, the error rate in identifying harmonic
components was 12.19 ± 3.44 % (mean ± SEM; median = 11.92, 95% CI [3.34, 21.03]). Thus, VocalMat presents
satisfactory performance in detecting the harmonic components of the USVs.

2.7 Classification of USVs in categories

To evaluate the performance of VocalMat in classifying the detected USVs in distinct categories, we compared the most
likely label (Top-one) assigned by the CNN to the labels assigned by the investigators (i.e., ground-truth). The overall
accuracy of the VocalMat classifier module is 86.05 % (Figure 4B-C and Table S5). VocalMat shows lower accuracy to
detect rare USV types (e.g., reverse chevron; Figure 4A-C) or USVs with multiple components (e.g., multiple steps
and two steps; Figure 4A-C). When we expanded our analysis to consider the two most likely labels assigned by the
CNN (Top-two), the overall accuracy of VocalMat was 94.34 % (Figure 4E and Table S6). These observations suggest a
possible overlap between the definition of categories. Based on these analyses, we reasoned that the distribution of
probabilities for each of the 11 categories of USV types calculated by the CNN could provide a more fluid classification
method to analyze the vocal repertoire of mice.

2.8 Using VocalMat to analyze and visualize the vocal repertoire of mice

To illustrate the use of the probability distribution of USV classification by VocalMat, we used data previously published
by our group with over 45,000 USVs [38]. In this published dataset, two groups of ten days old mice were studied.
At this age, mice vocalize in the ultrasonic range when separated from the nest. Two groups of mice were analyzed
(control versus treatment) during two contiguous time points (baseline versus test). The difference between the two
groups was that in the treatment group, a specific population of neurons in the brain was activated to induce higher rates
of USV emission [38].

To visualize the probability distribution of USV classification by VocalMat, we used Diffusion Maps (see Methods
and materials). Diffusion Maps is a dimensionality reduction algorithm that allows the projection of the probability
distribution into a Euclidean space [11]. We compared all four experimental conditions against each other and visually
verified that the manifolds representing the USV repertoires showed a degree of similarity (Figure 5A).

To quantify the similarities (or differences) between the manifolds, we calculated the pairwise distance between the
centroids of USV types within each manifold (Figure 5B). The pairwise distance matrices provide a metric for the
manifold structure, allowing a direct comparison between the vocal repertoire of different groups. When we compared
the similarity between the pairwise distance matrices in the four experimental conditions, we observed that the treatment
group in the test condition presented a robust structural change in the vocal repertoire, which can be effectively
represented by a matrix correlation (Figure 5C). The degree of similarity between the experimental conditions can
also be visualized by comparing the structure of the manifolds. Since the manifolds are calculated separately, their
coordinate system needs to be aligned to allow visual comparisons, which we achieve using the Kernel Alignment
algorithm (Figure S2 and Methods and Materials) [35, 37]. The quality of the manifold alignment is assessed by
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Cohen’s coefficient and overall projection accuracy into a joint space (Figure S2), showing the lowest scores for the
treatment group in the test condition when compared to the other experimental conditions. Hence, these later analyses
illustrate the use of the probability distribution for vocal classification and the power of dimensionality reduction
techniques–such as Diffusion Maps–to provide a detailed analysis of the vocal repertoire of mice.

3 Discussion

We reported the development of VocalMat, a software to automatically detect and classify mouse USVs with high
sensitivity. VocalMat eliminates noise from the pool of USV candidates, preserves the main statistical components
for the detected USVs, and identifies harmonic components. Additionally, VocalMat’s architecture uses machine
learning algorithms to classify USV candidates into 11 different USV classes or noise. VocalMat is open-source, and
is compatible with high-performance computing clusters that use the Slurm job scheduler, allowing parallelized and
high-throughput analysis.

VocalMat adds to the repertoire of tools developed to study mouse USVs [36, 7, 9, 3, 19, 10, 34]. We found only one
study that reported the sensitivity to detect vocalizations [19]. In this manuscript, the authors reported a sensitivity
of >95% compared to >98% achieved by VocalMat. Because these previous tools depend on several parameters
defined by the user, it is difficult to compare their performance to VocalMat effectively. Still, our tests show VocalMat
outperforming the other tools in both sensitivity and accuracy in detecting USVs without the need for parameter tuning.
Moreover, VocalMat provides a flexible classification method by treating USV classification as a problem of probability
distribution across different USV categories. This approach allows the analysis, visualization, and comparison of the
repertoires of USVs of different mice and experimental groups using dimensionality reduction algorithms.

VocalMat uses a pattern recognition approach based on CNNs, which learns directly from the training set without the
need for feature extraction via segmentation processes [32, 20]. This characteristic provides the possibility for unique
adaptability of VocalMat to different experimental settings, including its use with other species and vocal types.

In summary, VocalMat is a new tool to detect and classify mouse USVs with superior sensitivity and accuracy while
keeping all the relevant spectral features, including harmonic components.

4 Methods and Material

4.1 Animals

All mice used to record the emission of USV were 5-15 days old from both sexes. Dams used were 2–6 months old and
were bred in our laboratory. The following mouse lines purchased from The Jackson Laboratories were used: C57Bl6/J,
NZO/HlLtJ, 129S1/SvImJ, NOD/ShiLtJ, and PWK/PhJ. All mice were kept in temperature- and humidity-controlled
rooms, in a 12/12 hr light/dark cycle, with lights on from 7:00 AM to 7:00 PM. Food and water were provided ad
libitum. All procedures were approved by the IACUC at Yale University School of Medicine.

4.2 Audio Acquisition

Mice were placed inside a box (40 x 40 x 40 cm) with fresh bedding and covered by anechoic material (2" Wedge
Acoustic Foam, Auralex) in order to attenuate external noise. Four boxes were recorded simultaneously, each one
containing one mouse. Audio files were recorded using the recorder module UltraSoundGate 416H and a condenser
ultrasound microphone CM16/CMPA (Avisoft Bioacoustics, Berlin, Germany) placed 15 cm above the animal. The
experiments were recorded with a sampling rate of 250 kHz. The recording system had a flat response for sounds within
frequencies between 20 kHz and 140 kHz, preventing distortions for the frequency of interest. The recordings were
made by using Avisoft RECORDER 4.2 (version 4.2.16; Avisoft Bioacoustics) in a Laptop with an Intel i5 2.4 GHz
processor and 4 GB of RAM. Using these settings, ten minutes of audio recording generated files of approximately 200
MB.

4.3 Spectral power

USVs were segmented on the audio files by analysis of their spectrograms. Aiming the configuration that would grant
us the best time-frequency resolution, the spectrograms were calculated through a short-time Fourier transformation
(STFT) using the following parameters: 1024 sampling points to calculate the discrete Fourier transform (NFFT = 1024),
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Figure 5: Vocal repertoire visualization using Diffusion Maps. (A) Illustration of the embedding of the USVs for each
experimental condition. The probability distribution of all the USVs in each experimental condition is embedded in
a euclidean space given by the eigenvectors computed through Diffusion Maps. Colors identify the different USV
types. (B) Pairwise distance matrix between the centroids of USV types within each manifold obtained for the four
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10

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 23, 2020. ; https://doi.org/10.1101/2020.05.20.105023doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.20.105023
http://creativecommons.org/licenses/by-nc/4.0/


PREPRINT - MAY 20, 2020

Hamming window with length 256 and half-overlapping with adjacent windows to reduce artifacts at the boundary. The
mathematical expression that gives us the short-time Fourier Transform is shown below:

STFT{x[n]}(m,ω) = X(n, ω) =
∞∑

n=−∞
= x[n]w[n−m]e−jωn (1)

where the original signal x[n] is divided in chunks by the windowing function w[m]. The Fourier Transformation of the
chunks result in a matrix with magnitude and phase for each time-frequency point.

The spectral power density, represented in the logarithmic unit decibels, is then given by

P (m,ω) = 10 log

∣∣∣∣∣
∞∑

m=−∞
x[m]w[n−m]e−jωn

∣∣∣∣∣
2

(2)

We used a high pass filter (45 kHz) to eliminate sources of noise in the audible range and to reduce the amount of data
stored [16].

4.4 Normalization and contrast enhancement

Since USVs present higher intensity than the background and to avoid setting a fixed threshold for USV segmentation,
we used contrast adjustment to highlight putative USV candidates and to reduce the variability across audio files.
Contrast adjustment was obtained according to the following re-scaling equation:

J =

 |10log(P )|
max(10log(P )) − Lin

Hin − Lin

γ

(3)

where Hin and Lin are the highest and the lowest intensity values of the adjusted image, respectively, and P is the
power spectrum for each time-frequency point (pixel of the image). The parameter γ describes the shape of the mapping
function between the original and the corrected image, such that γ < 1 results in darker pixels and γ > 1 in brighter
pixels. We used a linear mapping for our application (γ = 1).

4.5 Adaptive thresholding and morphological operations

Due to non-stationary background noise and dynamic changes in the intensity of USVs within and between the audio
files, we use adaptive thresholding methods to binarize the spectrograms. The threshold is computed for each pixel
using the local mean intensity around the neighborhood of the pixel [4]. This method preserves hard contrast lines and
ignores soft gradient changes. The integral image consists of a matrix I(x, y) that stores the sum of all pixel intensities
f(x, y) to the left and above the pixel (x, y). The computation is given by the following equation:

I(x, y) = f(x, y) + I(x− 1, y) + I(x, y − 1)− I(x− 1, y − 1) (4)

Therefore, the sum of the pixels values for any rectangle defined by a lower right corner (x2, y2) and upper left corner
(x1, y1) is given as:

x2∑
x=x1

y2∑
y=y1

f(x, y) = I(x2, y2)− I(x2, y1 − 1) + I(x1 − 1, y2)− I(x1 − 1, y1 − 1) (5)

Then, the method computes the average of an s × s window of pixels centered around each pixel. The average is
calculated considering neighboring pixels on all sides for each pixel. If the value of the current pixel is t percent less
than this average, then it is set to black; otherwise it is set to white, as shown in the following equation:

C(x, y) =
1

(y2 − y1)(x2 − x1)
.

x2∑
x=x1

y2∑
y=y1

f(x, y) (6)

where C(x, y) represents the average around the pixel (x, y).
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The binarized image is then constructed such as that pixels (x, y) with intensity t percent lower than C(x, y) are set to
black [4]:

B(x, y) =

{
0, if f(x, y) ≤ (1− t)C(x, y)

1, otherwise
(7)

where t represents the sensitivity factor, and it was empirically chosen as t = 0.2 for our application. The segments are
then subjected to a sequence of morphological operations: (i) opening (erosion followed by a dilation) with a rectangle
4 x 2 pixels as kernel; (ii) dilation with a line of length l = 4 and ∠ 90◦ relative to the horizontal axis as kernel; (iii)
filtering out candidates (i.e., dense set of white pixels) with < 60 pixels (correspondent to approximately 2 ms syllable);
and (iv) dilation with a line of length l = 4 and ∠ 0◦, making the USV candidates proportional to their original shape.

4.6 Local Median Filter

Noise due to the segmentation process is in the form of pixels or aggregate of pixels that are not associated with an
event in the recording (a real USV or external noise) and are part of the pool of USV candidates. To determine if a USV
candidate is relevant for further analysis, we perform a test - Local Median Filter - to compare the median intensity
of the pixels in the USV candidate k (referred to as X̂k) to the intensity of the pixels in a window that contains the
candidate (referred to as Ŵk). The Local Median Filter then determines if a USV candidate k is discarded based on the
cumulative distribution of intensity ratio over all the USV candidates detected in the audio file X̂/Ŵ . The bounding
box that defines the window Wk is a rectangle with its four vertices defined as a function of the frequencies (Fk) for
USV candidate k and its time stamps (Tk). Thus, the bounding box is defined as follows:

Wk =


(max(Fk) + 2.5)kHz,

(min(Fk)− 2.5)kHz,

(max(Tk) + 0.1)s,

(min(Tk)− 0.1)s

(8)

As seen in Equation 8, a 200 ms interval is analyzed around the USV candidate. Such a wide interval may present more
than one USV in Wk. However, the amount of pixels in Xk represents only 2.43 ± 0.10 % (mean ± SEM; median =
1.27, 95% CI [2.22 , 2.63]; n = 59,781 images analyzed) of the total number of pixels contained in the window Wk.
Given this proportion between the number of pixels in Xk and Wk, the median of the intensity distribution of the whole
window (Ŵk) tends to converge to the median intensity of the background.

We used the ratio Ck = X̂k/Ŵk to exclude USV candidates that correspond to segmentation noise. We first calculated
the cumulative distribution function (CDF) of Ck over all the USV candidates in an audio file (now referred to as Υ).
To find the inflection point in Υ, a second-order polynomial fit for every set of 3 consecutive points was used to obtain
local parametric equations (Υ(t) = (x(t), y(t))) describing the segments of Υ. Since the calculation of the inflection
point is done numerically, the number of points chosen for this calculation should be such that we can have as many
points of curvature as possible while preserving information of local curvature. Then, after a screening for the best
number of points, Υ was down-sampled to 35 equally spaced points and the inflection point was calculated. Using the
local parametric equations, we calculated the tangent and normal vectors on each of the 35 points. Using these vectors,
we estimated the changing rate of the tangent towards the normal at each point, which is the curvature κ [27] and can be
calculated as follows:

κ =
det (Υ′,Υ

′′
)

‖Υ′‖3
(9)

or by using the parametric equations:

κ =
x′y

′′ − x′′
y′

(x2 + y2)
3/2

(10)

The inflection point is then determined as the point with maximum curvature of the CDF curve, and adopted as threshold
τ . This threshold is calculated individually for each audio file since it can vary according to the microphone gain and
the distance of the microphone from the sound source. In audio files with a very low number of USVs, the point of
maximum curvature of the CDF curve was not detected, and no τ was estimated. In these cases, a default threshold
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τ = 0.92 was adopted as a conservative threshold, since no audio file presented inflection point as high as 0.92 in our
training set. Only the USV candidates satisfying Equation 11 are kept for further analysis.{

Xk ∈ χ|X̂k ≤ τŴk

}
(11)

where χ represents the set of USV candidates that survived the Local Median Filter. Of note, the intensity of each pixel
is calculated in decibels, which is given in negative units due to the low power spectrum.

4.7 Convolutional Neural Networks for USV classification

We use Convolutional Neural Networks to eliminate external noise from the pool of USV candidates and classify USVs
in distinct types (see below). We use a transfer learning approach with an AlexNet [20] model pre-trained on the
ImageNet dataset, and perform end-to-end training using our USV datasets. Briefly, the last three layers of the network
were replaced in order to handle a twelve-categories classification task for our dataset (eleven USV types + noise).

The outputs of the segmentation process with detected USV candidates were centralized in windows of 220 ms. These
windows were twice the maximum duration of USVs observed in mice [16] and were framed in individual 227 x 227
pixels images. Each image was then manually labeled by an experienced experimenter as noise (including acoustic or
segmentation noise) or one of the USV categories. The labeled dataset was used to train the CNN to classify the USV
candidates.

The images in our dataset were manually labeled according to our definitions of USV classes (adapted from [31] and
[16]). The USV classes are described below:

Complex: 1-note syllables with two or more directional changes in frequency > 6 kHz. A total of 350 images were
used for training.

Step up: 2-notes syllables in which the second element was ≥ 6 kHz higher from the preceding element and there was
no more than 10 ms between steps. A total of 1,814 images were used for training.

Step down: 2-notes syllables in which the second element was ≥ 6 kHz lower from the preceding element and there
was no more than 10 ms between steps. A total of 389 images were used for training.

Two steps: 3-notes syllables, in which the second element was ≥ 6 kHz or more different from the first, the third
element was ≥ 6 kHz or more different from the second and there was no more than 10 ms between elements.
A total of 701 images were used for training.

Multiple steps: 4-notes syllables or more, in which each element was ≥ 6 kHz or more different from the previous
one and there was no more than 10 ms between elements. A total of 74 images were used for training.

Up-frequency modulation: Upwardly frequency modulated with a frequency change ≥ 6 kHz. A total of 1,191
images were used for training.

Down-frequency modulation: Downwardly frequency modulated with a frequency change ≥ 6 kHz. A total of 1,775
images were used for training.

Flat: Constant frequency syllables with modulation ≤ 5 kHz and duration ≥ 12 ms. A total of 1,134 images were used
for training.

Short: Constant frequency syllables with modulation ≤ 5 kHz and duration ≤ 12 ms. A total of 1,713 images were
used for training.

Chevron: Shaped like an inverted U in which the peak frequency was≥ 6 kHz than the starting and ending frequencies.
A total of 1,594 images were used for training.

Reverse chevron: Shaped like an U in which the peak frequency was≥ 6 kHz than the starting and ending frequencies.
A total of 136 images were used for training.

Noise: Any sort of mechanical or segmentation noise detected during the segmentation process as a USV candidate. A
total of 2,083 images were used for training.

In order to purposely create some overlap between the categories, USV with segments oscillating between 5 and 6 kHz
were not defined or used for training. The assumption is that the CNN should find its transition method between two
overlapping categories.

Our training dataset consisted of 12,954 images, wherein 2,083 were labeled as noise. This dataset correspond to mice
of different strains (C57Bl6/J, NZO/HlLtJ, 129S1/SvImJ, NOD/ShiLtJ, and PWK/PhJ) and ages (5, 10, and 15 days of
age) from both genders.
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Table 1: Summary of experimental conditions covered in the test dataset

Age Microphone gain Chamber Heating
P9 Maximum Yes No
P9 Maximum Yes No
P9 Maximum Yes No
P10 Intermediary No No
P10 Intermediary No No
P10 Maximum Yes Yes
P10 Maximum Yes Yes

Table 2: Summary of possible outcomes for the detection validation

Manual Automated Actual meaning Label
Detected Detected Success True positive
Detected Not detected Missed or classified as noise False negative

Not detected Detected Noise False positive

The CNN was trained using stochastic gradient descent with momentum, a batch size of M=128 images, and with
a maximum number of epochs set to 100. Through a screening process for the set of hyper-parameters that would
maximize the average performance of the network, the chosen learning rate was α = 10−4, momentum of 0.9, and
weight decay λ = 10−4. To validate the training performance, each dataset was split into two disjoint sets; training
set (90%) and a validation set (10%). The training and validation sets were independently shuffled at every epoch
during training. The training was set to stop when the classification accuracy on the validation set did not improve for
3 consecutive epochs. When running in a GeForce GTX 980 TI, the final validation accuracy was 95.28% after 17
minutes of training.

4.8 Testing detection performance

To evaluate the performance of VocalMat, neonatal mice were recorded for 10 minutes upon social isolation in different
conditions (Table 1) to increase the variability of the data. The spectrograms were manually inspected for the occurrence
of USVs. The starting time for the detected USVs was recorded. USVs automatically detected by VocalMat with
a start time matching manual annotation (±5 ms of tolerance) were considered correctly detected. USVs manually
detected with no correspondent USV given by VocalMat were considered false negative. The false negatives were
originated from missed USVs or USVs that the software labeled as noise. Finally, USVs registered by VocalMat without
a correspondent in the manual annotation were considered false positive (see Table 2). In order to compare VocalMat to
the other tools available, the same metrics were applied to the output of Ax [22], MUPET [36]. USVSEG [34], and
DeepSqueak [10].

4.9 Diffusion maps for output visualization

One of the main characteristics of VocalMat is the possibility of classifying USVs as a distribution of probabilities
over all the possible labels. Since we classify USV candidates in 11 categories, to have access to the distribution of
probabilities, we would need to visualize the data in 11 dimensions. Here, as an example of analytical methods that can
be applied to the output data from VocalMat, we used Diffusion Maps [11] to reduce the dimensionality of the data to
three dimensions. Diffusion Maps allows remapping of the data into a Euclidean space, which ultimately results in a
clustering of USVs based on the similarity of their probability distribution. A Gaussian kernel function defines the
connectivity between two data points in a Euclidean manifold. Such kernel provides the similarity value between two
data points i and j as follows:

Wij = exp
(−‖xi − xj‖2

2σ2

)
(12)

where Wij represents the similarity value between observations i and j. The parameter σ corresponds to the bandwidth,
and it is set based on the average Euclidean distance observed between observations of the same label. For our
application, σ = 0.5 was set based on the distance distribution observed in our data.
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The similarity matrix is then turned into a probability matrix by normalizing the rows:

p(j|i) =
Wij∑
kWik

= D−1W = Mij (13)

where
∑
kWik = Dii has the row sum of W along its diagonal. The matrix M gives the probability of walking from

node i to any other node. In other words, the probability that the USV i is close to another USV j given their probability
distribution.

Once we take one step in such Euclidean space, the probabilities are updated, since the set of likely nodes for the next
move are now updated. This idea of moving from node to node while updating the probabilities gives us a "diffused
map".

The process of moving from a USV i to j after t steps in this Euclidean space is computed as follows:

p(t, j|i) = eTi M
tej (14)

For our application, we use t = 2.

Next, we find the coordinate functions to embed the data in a lower-dimensional space. The eigenvectors of M give
such a result. Because M is not symmetric, the eigendecomposition is computed through SVD decomposition [15]:

Ms = D1/2MD−1/2 = D1/2D−1WD−1/2 = D−1/2WD−1/2 (15)

and sinceD−1/2 andW are symmetric,Ms is also symmetric and allows us to calculate its eigenvectors and eigenvalues.
For the sake of notation, consider:

Ms = ΩΛΩT =⇒ M = D−1/2ΩΛΩTD1/2 (16)

Considering Ψ = D−1/2Ω (right eigenvectors of M ) and Φ = D1/2Ω (left eigenvectors of M ), we verify that
ΦT = Ψ−1, therefore they are mutually orthogonal and M and Ms are similar matrices. Thus,

M = ΨΛΨ−1 = ΨΛΨT (17)

and the diffusion component shown in Equation 14 is incorporated as the power of the diagonal matrix composed by
the eigenvalues of M :

M t = ΨΛtΦT (18)

We use the scaled right eigenvectors by their corresponding eigenvalues (Γ = ΨΛ) as the coordinate functions. Since
the first column of Γ is constant across all the observations, we use the 2nd to 4th coordinates in our work.

4.10 Vocal repertoire analysis via manifold alignment

The result of the embedding by Diffusion Maps allows 3D visualization of the probability distribution for the USVs.
The direct comparison of different 3D maps is challenging to obtain as the manifolds depend on data distribution,
which contains high variability in experimental samples. To address this problem and compare the topology of different
manifolds, we considered this a transfer learning problem [28]. We used a manifold alignment method for heterogeneous
domain adaptation [37, 35]. Using this method, two different domains are mapped to a new latent space, where samples
with the same label are matched while preserving the topology of each domain.

We used the probability distribution for the USVs for each dataset to build the manifolds [37]. Each manifold was
represented as a Laplacian matrix constructed from a graph that defines the connectivity between the samples in the
manifold. The Laplacian matrix is then defined as L = Wij −Dii (see Equation 12).

The final goal is to remap all the domains to a new shared space such that samples with similar labels become closer
in this new space. In contrast, samples with different labels are pushed away while preserving the geometry of the
manifolds. It leads to the necessity of three different graph Laplacians: Ls (relative to the similarity matrix and
responsible for connecting the samples with the same label), Ld (dissimilarity matrix and responsible for connecting
the samples with different labels), and L (similarity matrix responsible for preserving the topology of each domain).
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[37] show that the embedding that minimizes the joint function defined by the similarity and dissimilarity matrices is
given by the eigenvectors corresponding to the smallest non-zero eigenvalues of the following eigendecomposition:

Z(L+ µLs)Z
TV = λZLdZ

TV (19)
where Z is a block diagonal containing the data matrices Xi ∈ Rdi×ni , (ni samples and di dimensions for the ith
domain) from the two domains. Thus, Z = diag(X1, X2). The matrix V contains the eigenvectors organized in rows
for each domain, V = [v1, v2]T . The µ is weight parameter, which goes from preserving both topology and instance
matching equally (µ = 1) or focusing more on topology preservation (µ > 1).

From Equation 19, we then extract Nf =
∑D
i=1 di features, and the projection of the data to this new common space F

will be given by

PF (Xi) = vTi Xi (20)

To measure the performance of the alignment, linear discriminant analysis (LDA) [21] is used to show the ability to
project the domains in a joint space. The LDA is trained on half of the samples in order to predict the other half. The
error of the alignment is given as the percentage of samples that would be misclassified when projected into the new
space (overall accuracy) [35].

Another measurement to quantify the quality of the alignment is by calculating the agreement between the projections,
which is given by Cohen’s Kappa coefficient (κ) [1]. In this method, the labels are treated as categorical, and the
coefficient compares the agreement with that expected if ratings were independent. Thus, disagreements for labels that
are close are treated the same as labels that are far apart.

Cohen’s coefficient is defined as:

κ =
p0 − pe
1− pe

(21)

where p0 is the observed agreement (p0 =
∑k
i=1 pii for a confusion matrix p = n/N , in which n is the raw confusion

matrix and N is the total number of samples, composed by the projection of the k labels), which corresponds to the
accuracy; pe is the probability of agreement by chance (pe = 1

N2

∑k
i=1 pi.p.i, where pi. is the number of times an

entity of label i was labeled as any category and p.i is the number of times any category was predicted as label i).
Therefore, a κ = 0 represents no agreement (or total misalignment of manifolds) and κ = 1 is a total agreement.

In this context, the overall accuracy (OA) is given by OA =
∑k
i=1 pii/N , where N is the total number of samples.

The asymptotic variance for κ is given as follows:

σ̂2(κ̂) =
1

N
[
θ1(1− θ1)

(1− θ2)2
+

2θ1(1− θ1)(2θ1θ2 − θ3)

(1− θ2)3
+

(1− θ1)2(θ4 − 4θ22)

(1− θ2)4
] (22)

where

θ1 =
1

n

k∑
i=1

nii (23)

(which turns into accuracy once it is divided by N ),

θ2 =
1

n2

k∑
i=1

ni.n.i (24)

θ3 =
1

n2

k∑
i=1

nii(ni. + n.i) (25)

θ4 =
1

n3

k∑
i=1

k∑
j=1

nij(nj. + n.i)
2 (26)

From Equation 22 we can calculate the Z-score, which can express the significance of our κ:

Z =
κ

σ̂2(κ̂)
(27)

16

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 23, 2020. ; https://doi.org/10.1101/2020.05.20.105023doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.20.105023
http://creativecommons.org/licenses/by-nc/4.0/


PREPRINT - MAY 20, 2020

And the 95% confidence interval as

CI = [κ+ 1.96
√
σ̂2(κ̂), κ− 1.96

√
σ̂2(κ̂)] (28)

The third form of error measurement is the evaluation of the projection per USV class from each domain remapped into
the new space. This method is based on the fact that this new space is the one in which the cost function expressed by
Equation 19 is minimized and, therefore, the projection from each domain into the new space has its projection error for
each class. As a consequence, the mean of the projection error from each domain to the new space for each class can be
used as a quantitative measurement of misalignment of projected domains.

4.11 Quantification and statistical analysis

MATLAB (2019a or above) and Prism 8.0 were used to analyze data and plot figures. All figures were edited in Adobe
Illustrator CS6/CC. Data were first subjected to a normality test using the D’Agostino & Pearson normality test or the
Shapiro-Wilk normality test. When homogeneity was assumed, a parametric analysis of variance test was used. The
Student’s t test was used to compare two groups. The Mann-Whitney U test was used to determine significance between
groups. Two sample Kolmogorov–Smirnov test was used to calculate the statistical differences between the contrast of
USVs and noise. Statistical data are provided in text and in the figures. In the text, values are provided as mean ± SEM.
p < 0.05 was considered statistically significant. The 95% confidence intervals are reported in reference to the mean.
The true positive rate is computed as the ratio between true positive (hit) and real positive cases. The true negative rate
is the ratio between true negative (correct rejection) and real negative cases. The false negative rate is the ratio between
false negative (type I error) and real positives cases. The false positive (type II error) is the ratio between false positive
and real negative cases. The false discovery rate is the ratio between false positive and the sum of false positives and
real positives.
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Figure S1: Image processing pipeline for segmentation of USVs in spectrograms. (A) Segment of a spectrogram post
contrast adjustment (γ = 1). (B) Output image post binarization using adaptive thresholding. (C) Resulting image from
the opening operation with rectangle 4x2. (D) Result from the dilation with line l=4 and ∠ 90◦. (E) Removal of too
small objects ( ≤ 60 pixels), mean of cloud points for each detected USV candidate being shown in red and green lines
shows an interval of 10 ms. (F) Result after separating syllables based on the criterion of maximum interval between
two tones in a syllable. The different colors differentiate the syllables from each other.

Table S1: List of parameters and performance for Ax

Parameter Trial 1 Trial 2 Trial 3
FS 2.50E+05 2.50E+05 2.50E+05
NFFT 64 64 32
NW 6 6 6
K 11 11 11
PVAL 0.05 0.5 0.5
channels - - -
frequency_low 4.50E+04 4.50E+04 4.50E+04
frequency_high 1.20E+05 1.20E+05 1.20E+05
convolution_size [1300, 0.001] [1300, 0.001] [1300, 0.001]
minimum_object_area 18.75 18.75 18.75
merge_harmonics 1 1 1
merge_harmonics_overlap 0.9 0.9 0.9
merge_harmonics_ratio 0.1 0.1 0.1
merge_harmonics_fraction 0.9 0.9 0.9
minimum_vocalization_length 0 0 0
Missed rate (%) 37.10 22.34 4.99
False discovery (%) 45.25 37.67 57.31
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Figure S2: Alignment of the manifolds between pairs of experimental conditions. (A) Illustration of the resulting
manifold alignment for each pair of experimental conditions. The quality of the alignment between the manifolds is
assessed by (B) Cohen’s coefficient and (C) overall projection accuracy into joint space.

Table S2: List of parameters and performance for MUPET

Parameter Trial 1 Trial 2 Trial 3 Trial 4 Trial 5 Trial 6 Trial 7 Trial 8
noise-reduction 5 5 5 1 1 0.5 2 1
min-syllable-duration 2 2 2 2 2 2 2 2
max-syllable-duration 200 200 200 200 200 200 200 200
min-syllable-total-energy -15 -15 -25 -25 -10 -25 -25 -35
min-syllable-peak-amplitude -25 -25 -35 -35 -16 -35 -35 -45
min-syllable-distance 5 10 10 10 10 10 10 10
Missed rate (%) 41.84 44.92 44.19 34.63 41.05 33.74 37.72 34.63
False discovery (%) 38.78 40.02 41.92 52.74 51.08 53.11 51.07 53.07

Table S3: List of parameters and performance for USVSEG

Parameter Trial 1 Trial 2 Trial 3 Trial 4 Trial 5 Trial 6 Trial 7
time step 0.5 0.5 0.5 0.5 0.5 0.5 0.5
freq min 45 45 45 45 45 45 45
freq max 125 125 125 125 125 125 125
threshold 1.5 2.0 2.5 3.0 3.5 4.5 2.5
dur min 5 5 5 5 5 5 3
dur max 300 300 300 300 300 300 300
gap min 10 10 10 10 10 10 10
margin 20 20 20 20 20 20 20
read size 15 15 15 15 15 15 15
Missed rate (%) 98.11 4.38 4.07 6.26 7.52 10.6 1.25
False discovery (%) 99.30 83.0 3.77 2.28 2.31 3.06 17.53
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Table S4: List of parameters and performance for DeepSqueak

Parameter Value
overlap 0.1
frequency cut off high 120
frequency cut off low 45
neural network MouseCall_Network_V2
detection normal
Missed rate (%) 27.13
False discovery (%) 7.61

Table S5: VocalMat accuracy per class

Type N Mean ± SEM (%) Median [95% CI] (%)
Step up 902 83.58 ± 6.50 91.56 [66.85, 100.00]
Chevron 758 85.37 ± 3.93 85.28 [75.25, 85.48]

Two steps 579 74.41 ± 4.16 70.47 [63.71, 85.11]
Down-FM 557 90.74 ± 1.23 90.83 [87.56, 93.91]

Up-FM 485 88.04 ± 2.38 87.59 [81.90, 94.17]
Short 358 88.28 ± 1.88 89.62 [83.45, 93.11]

Complex 281 76.64 ± 3.72 76.24 [67.07, 86.22]
Flat 190 84.20 ± 4.14 83.51 [73.56, 94.84]

Step down 142 84.74 ± 4.60 83.77 [72.90, 96.58]
Mult. steps 80 45.89 ± 10.70 38.10 [16.18, 75.61]

Rev. Chevron 61 65.18 ± 14.17 73.87 [28.74, 100.00]
Noise 511 96.67 ± 0.55 96.67 [95.23, 98.10]

Table S6: VocalMat accuracy considering the two most likely labels

Type N Mean ± SEM (%) Median [95% CI] (%)
Step up 902 91.64 ± 4.86 97.18 [79.15, 100.00]
Chevron 758 96.08 ± 1.36 97.20 [92.57, 99.58]

Two steps 579 91.43 ± 1.80 91.77 [86.79, 96.06]
Down-FM 557 97.08 ± 0.98 96.93 [94.57, 99.59]

Up-FM 485 96.25 ± 1.40 97.30 [92.66, 99.84]
Short 358 96.53 ± 1.12 96.72 [93.66, 99.41]

Complex 281 92.10 ± 2.30 91.44 [86.20, 98.00]
Flat 190 94.21 ± 3.96 97.73 [84.02, 100.00]

Step down 142 96.11 ± 1.99 97.96 [91.01, 100.00]
Mult. steps 80 83.64 ± 7.33 85.71 [63.28, 100.00]

Rev. Chevron 61 77.65 ± 15.75 91.29 [37.17, 100.00]
Noise 511 98.00 ± 0.45 97.87 [96.84, 99.17]
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