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Abstract 
Fitness landscapes are a central concept in evolutionary biology and have been thoroughly             
detailed in terms of genotypes. However, our understanding of the selected metabolic and gene              
expression adaptations, and their dependence on genetic background, remains limited. Here,           
we reveal multi-scale adaptation principles in the E. coli species by taking multi-omics             
measurements of six different strains throughout their adaptive evolution to glucose minimal            
media. Statistics and matrix factorization is applied to yield four key results. First, analysis of the                
metabolic and physiological data shows evolutionary convergence in growth rate, glucose           
uptake rate, glycolytic ATP and NADH production but divergence in NADPH production            
strategies. Second, factorization-based analysis of the transcriptome revealed six conserved          
transcriptomic adaptations describing increased expression of ribosome and amino acid          
biosynthetic genes and decreased expression of stress response and structural genes. Third,            
correlation analysis identifies five tradeoffs underlying the transcriptomic profiles. Fourth ,          
statistical tests leveraging ALE design identify four mutation-flux correlates and eight           
mutation-transcriptomic correlates that link mutations to systems level adaptation principles. Our           
total results reveal the dominant metabolic and regulatory constraints governing E. coli growth             
adaptation that either distinguish strains or are conserved principles. 
 

Introduction 
Advancements in biotechnology have enabled the unprecedented detailing of microbial          
evolution. The process of evolution can now be studied in a controlled laboratory environment,              
where genome sequencing and phenotypic measurements are routine (Blount et al., 2012;            
LaCroix et al., 2015). Although studies utilizing genome sequences and fitness measurements            
have provided valuable insights ranging from the dynamics of evolution on long time-scales             
(Barrick et al., 2009; Tenaillon et al., 2016; Good et al., 2017) to general features of epistasis                 
(Kryazhimskiy et al., 2014), evolutionary principles at the levels of gene regulation and             
metabolism remain unelucidated. Moreover, the generality of principles identified in          
experimental evolution studies is ambiguous since studies often focus on a single strain, not a               
species. For example, different strains of E. coli have been shown to exhibit diverse regulatory               
and metabolic functions and thus may have different constraints governing their evolutionary            
trajectories (Monk et al., 2016). A fundamental multi-scale description of evolutionary           
landscapes may therefore be deduced through multi-omic measurements of different          
strain-specific experimental evolutions. 
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Towards revealing multi-scale features of evolutionary landscapes, researchers have taken          
transcriptomic and fluxomic measurements in their experimental evolution studies (Long et al.,            
2018). However, it remains challenging to extract insights from these data types due to a lack of                 
effective data analysis methods, especially for gene expression data sets. To date, no statistical              
correlation has been made between selected mutations and these multi-omics measurements.           
Our lab has recently shown the effectiveness of independent component analysis (ICA) to             
quantitatively interpret transcriptomic datasets in terms of transcription factors (Sastry et al.,            
2019b). Therefore, ICA and novel statistical approaches may reveal fundamental regulatory           
principles and provide links between mutations and transcriptomic changes analogous to those            
seen in genetic association studies. 
 
Here, we reveal multi-scale adaptation principles in the E. coli species by taking multi-omics              
measurements of six different strains throughout their adaptive evolution to glucose minimal            
media. Our total results reveal the dominant metabolic and regulatory constraints governing E.             
coli growth adaptation that either distinguish strains or are conserved principles. 
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Results 

Figure 1 

 
Figure 1 : Overview of selected E. coli strains, experimental design, and key adaptation trends (A)               
Phylogenetic tree of six different E. coli wild-type starting strains utilized in this study. The wild-type (WT)                 
growth rates (u) of the strains are noted. (B) Adaptive laboratory evolution was performed for each strain                 
using independent triplicates. The wild-type (WT), evolved intermediate, and evolved end-point clones            
underwent multi-omics measurements. (C) Bar Plot of measured growth rates for wild type (WT),              
intermediate, and end point (EP) flasks for each strain. Clones are ordered left to right by trajectory. (D)                  
Heatmap of gene-level mutation frequency across replicate lineages of each strain. The intergenic region              
between two genes is noted by a dash “/”. 

Consistent genetics in evolution of multiple E. coli strains 

Six different E. coli wild-type strains exhibiting diverse genetics (K-12 MG1655, K-12 W3110,             
BL21, C, and Crooks) (Fig. 1A) were evolved to select for rapid growth. Independent triplicates               
of each strain were evolved under a strict selection pressure for growth in that the cultures                
never left the exponential phase under batch culture 37 C and M9 glucose (see Methods ).               
Whole genome sequencing was performed for clones of all replicate lineages while 13-C             
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fluxomics, RNA-seq, and physiological measurements were performed for a single replicate           
lineage (Fig. 1B). We find that all strains start with different growth rates but evolve to rates                 
ranging between 0.98 and 1.11 hr-1 (Dt = 42 mins) (Fig. 1C). Some strains (W and Crooks)                 
operate near this optimal in their wild-type state, while others require genetic mutations to              
achieve the observed optimal (MG1655, W3110, BL21, and C). We observed striking            
consistency in mutated genes, where each strain had at least one gene with a selected mutation                
in all replicate lineages (Fig. 1D). A total of seven genes (pykF, zwf, spoT, mrdA, hns/tdk, rpoC,                 
rpoB) had selected mutations appear both in multiple strains and in more than one replicate               
lineage. The commonality of selected mutations indicated similar evolutionary constraints facing           
these strains and motivated inquiry of their metabolic and gene expression profiles. 

Characteristics of physiological and metabolic adaptations 

Since a total of 8 selected mutations were in genes encoding metabolic enzymes—two of which               
appear multiple strains (zwf, pykF)—we hypothesized that the strains may be evolving towards             
similar metabolic states. We thus set out to examine convergent and divergent phenotypes             
along the ALE trajectory by performing statistical tests for each physiological and fluxomic             
measurement between the wild-type (WT) and end-point (EP) flasks for each strain (see             
Methods ). Of the 187 total phenotypes, 64 were identified as convergent (i.e., points became              
closer together) and 6 were identified as divergent (i.e., points became further apart) with false               
discovery rate (FDR) less than 5% (Fig. 2a). Of the convergent phenotypes, we find that 86%                
(55/64) were growth-correlated (spearman rho<0.05, FDR<0.05) (see  Supplementary File 1).  
 
We find that the convergent features are related to glucose uptake, glycolysis and oxidative              
phosphorylation while the top ranked divergent features relate to NADPH production through            
malic enzyme (ME2) and pentose phosphate pathway (PPP) (Fig. 2A). Inspection of the ALE              
trajectories for the most convergent (Mann-Whitney U>169, P<5.7x10 -5) and divergent          
(Mann-Whitney U=19, P=5.7x10 -5) phenotypes showed that phenotypes do not monotonically          
increase/decrease along the ALE (i.e., not always increasing or decreasing along trajectory)            
(Fig. 2B ). For example, although the glucose uptake rate has a significant net increase between               
WT and EP strains, four of the strains have one ALE jump where glucose uptake decreases.                
Principal component analysis of the fluxes showed that two components explain 93% of the              
variation and correspond to ATP production through oxidative phosphorylation and glycolysis           
(80%), and NADPH balance through pentose phosphate pathway and transhydrogenases          
(13%) (Supplementary Figure 1 ). 
 
To determine whether specific reaction fluxes distinguish specific strains, we tested all fluxes for              
strain-specific distributions and found four subsystems specific to BL21, Crooks and C (ANOVA             
F-test, FDR<0.05). The BL21 strain uniquely had no flux through glyoxylate shunt while having              
the highest flux through transhydrogenase (Fig. 2D). Since BL21 can’t regenerate NADPH            
through PPP due to lacking the pgl gene encoding 6-phosphogluconolactonase (PGL) reaction            
activity (Meier, Jensen and Duus, 2012), the high transhydrogenase flux likely compensates to             
regenerate NADPH. Furthermore, we find that all BL21 flask lineages select for mutations in the               
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intergenic region of a transhydrogenase (pntA/ydgH) (we test for mutation correlates later in this              
study) (Fig. 1D ). C strain uniquely had high flux through the Entner-Doudoroff (ED) pathway              
while BL21, MG1655, and W3110 had almost none (Fig. 2E). Crooks uniquely had the highest               
flux through TCA (Fig. 2F). In total, these results describe convergent and divergent phenotypes              
that are either conserved or distinguish strains.  
 

Figure 2 

 
Figure 2 . Adaptation in physiology and metabolism. (A) Pie chart describing the fraction of              
phenotypes that converge or diverge. Numbers in parentheses describe the number of related             
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phenotypes. (B) Line plots of glucose uptake (top) and PPP NADPH balance (bottom) vs growth rate.                
Line plots and frequency distributions for WT and EP are plotted to the right for both cases. (C) Metabolic                   
map of reactions in glycolysis, PPP, and exchange reactions colored according to whether they diverge or                
converge. Blue describes divergence and red describes convergence. (D-F) Bar plots of four reaction              
fluxes (absolute) that have strain-specific distributions. Abbreviations: abs, absolute flux (mmol/gDW/hr);           
rel, relative flux (mol/mol glucose); TCA, citric acid cycle; PPP, pentose phosphate pathway; ME2, malic               
enzyme; OxPhp, Oxidative phosphorylation; PDH, pyruvate dehydrogenase. 
 

Characteristics of transcriptome adaptation in E. coli 

Underlying the phenotypic differences of these strains are differences in gene expression            
strategies. We thus set out to analyze the transcriptome of these strains by performing both               
differential expression analysis and a matrix factorization approach. Differential expression          
analysis showed that the number of differentially expressed genes (DEGs) generally decreases            
along the trajectory, with the exception of the last BL21 flask (Fig. 3A). To make sense of these                  
expression changes, we applied an alternative RNA-seq analysis workflow that was shown to             
enable quantitative analysis of the E. coli transcriptome from the perspective of transcription             
factors (Sastry et al., 2019b). The authors showed that independent component analysis (ICA)             
deconvolved a large compendium of E. coli MG1655 RNA-seq data into a linear combination of               
independent sources that reflect known regulons (“iModulons”), and source weightings          
(“iModulon activities”), which describe the global regulatory state (Sastry et al., 2019a). Using             
the previous set of 92 iModulons, we transformed the flask-specific gene expression profiles             
into flask-specific iModulon activities (see Methods, Supplementary Figure 2).  
 
In order to first understand the different starting points of the strains, we tested for iModulons                
that distinguish WT expression profiles and identify a total of 38 iModulons (Table 1,              
FDR<0.005). For BL21, the iModulons imply an original environment that was cold (cspA),             
anaerobic and nitrate rich (ArcA-2), with gluconate (GntR/TyrR), allantoin, fructose, and           
arabinose (AllR/AraC/FucR) as possible carbon sources. For C, the identified iModulons hint at             
a background with high acidity and osmotic stress (EvgA, proVWX). The low OxyR activity in               
Crooks implies a WT environment facing low oxidative stress while high FliA activity in MG1655               
implies that high motility was advantageous to its original environment. The relatively high             
GadEWX in W3110 implies an original environment with high acid stress. 
 

Table 1 

Strain iModulons distinguishing WT gene expression profiles 

BL21 AllR/AraC/FucR, GntR/TyrR, CspA, deletion-1, ArcA-2, lipopolysaccharide, SrlR+GutM, 
YneJ, YgbI, translation, membrane, gadWX-KO, fur-KO, RpoS, hns, sgrT, e14-deletion 

C NarL, flu-yeeRS, nitrate-related, uncharacterized-4, RbsR, NagC/TyrR 

Crooks OxyR 

MG1655 FliA 
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W uncharacterized-1, ydcI-KO, ArcA-1, RcsAB, SoxS, Nac, CpxR 

W3110 PuuR, PurR-2, GadWX, curli, fimbriae, GadEWX 

Table 1. Strain-specific regulatory backgrounds . Table of conserved iModulons determined through           
ANCOVA with FDR<0.1. Bolded iModulons indicate that they also distinguish strains when looking at only               
WT flasks. iModulons with an Asterisk (*) describe iModulons distinguishing WT flasks but not all and                
double (**) describes iModulons specific to only EP flasks. 
 
 
To understand what iModulons changed the most throughout the ALEs, we performed            
differential activity analysis between the WT and EP flasks of each strain (see Methods ). We               
find a total of 57 iModulons that were differentially activated at least once amongst the different                
strains (P<0.05, FC>2). The most commonly activated iModulons corresponded to stress           
response and amino/nucleic acid biosynthesis (Fig. 3B). The W3110 strain had the largest             
number of differentially activated stress response iModulons while BL21 had the most activated             
amino/nucleic acid biosynthesis iModulons. With respect to the total number of differentially            
activated iModulons, we find that BL21 has the most while W has the least (Fig. 3D), which                 
reflects their respective change in growth rate. Of those activated, we find decreased activity in               
iModulons describing stress response (rpoS, gadEWX, rpoH, hns-related, proVWX) and motility           
(FlhDC, FliA, curli, fimbriae, RcsAB) while increased activity in iModulons describing translation            
machinery (translation), amino acid biosynthesis (ArgR, His-tRNA).  
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Figure 3 

 
Figure 3. Characterization of gene expression adaptations. (A ) Number of differentially expressed            
genes (DEG) for each strain-specific jump in growth rate during ALE. (B) Bar plot of total iModulon                 
activation count in terms of iModulon functional category. The count is summed across the 6 strains                
activated ranked by the total number of times they were differentially activated between WT and EP                
flasks. (C) Bar plot of iModulons ranked by the total number of times they were differentially activated in                  
an ALE jump. (D) Differential iModulon activity plots (DIMA). Comparison of iModulon activities between              
wild-type (WT) and end-point (EP) flasks for each strain. Significant altered iModulons are colored red               
and noted with text. 
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Linear growth-dependent transcriptome adaptations conserved in E. coli 

While differential activity analysis identifies general regulatory trends along the trajectory, it does             
not directly account for changes in quantitative growth rates or similarity between strains. We              
thus tested for iModulons that exhibit linear growth-dependence in all strains and identify six              
iModulons (Fig. 4, median Pearson |R|>0.75, median P-value<0.05). Of the six, three are             
positively correlated with growth-rate and describe the expression of ribosomal genes           
(translation), arginine biosynthetic genes (ArgR), and nutrient response (ppGpp). The other           
three iModulons are negatively correlated with growth-rate and describe stress response (RpoS,            
GadEWX) and structural assembly (curli). These results describe growth-dependent         
transcriptome adaptations that are mostly conserved in the E. coli species. 
 

Figure 4 

 
 

Figure 4. Conserved growth-dependent transcriptome. Strain-specific line plots of growth rate vs            
iModulon activity for six iModulons (median Pearson |R|>0.75, median P-value<0.05).  
 
 

Regulatory trade-offs governing E. coli adaptation 

The identification of both positively and negatively growth-correlated iModulons imply the           
existence of regulatory tradeoffs, and thereby a lower dimensionality of the iModulon activities             
(i.e., increased expression of certain genes requires decreased expression of others). We thus             
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used principal component analysis to further decompose iModulon activities. Prior to PCA, we             
first transform the activity matrix (flask-specific) to the difference in flask activity along the              
trajectory (jump-specific) in order to identify components describing general adaptation trends           
as opposed to strain differences (see Supplementary Figure XX for PCA of flask-specific             
iModulon activities). We find that the first three PCA components explain the majority of the               
variance and have an explained variance ratio of 40%, 28%, and 12%, respectively. The first               
component describes activation of flagella machinery and is owed to the large deviation in              
FlhDC and FliA activity seen in the first MG1655 jump (Supplementary Figure XX). The              
second component describes metal-related iModulons (Fur-1, Fur-2, iron-related, efuR-repair,         
Copper) and growth-correlated iModulons (RpoS, translation, ppGpp). The third PCA          
component primarily describes carbon metabolism iModulons (Crp-1, Crp-2, MalT, ) with           
positive weight and stress-response and structural iModulons with opposite weight (RpoS,           
GadWX, GadEWX, hns-related, CspA, curli). We test for negative correlations and identify a             
total of six potential tradeoffs (RpoS vs translation/ppGpp, Fur-2 vs translation/ppGpp, and            
Fur-1 vs Copper) in component 1 and (Crp-KO vs Crp-1, Crp-2).  
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Figure 5 

 
Figure 5. Regulatory trade-offs governing E. coli adaptations . (A ) Plot of PCA loadings for              
components 1 and 2. (B-D) Strain-specific line plots for iModulon activities for trade-offs reflecting              
growth-correlated iModulons, metal homeostasis, crp activity, proton motive force. 
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Statistical tests leveraging ALE design reveal key mutational effects 

Comparing mutations is challenging due to the large number of genetic differences between             
strains. We therefore leveraged the directionality of the ALE data by transforming the             
flask-specific reaction fluxes and iModulon activities to jump-specific differences in flux and            
activity, thereby narrowing the view of genetic differences to those selected in ALE. Using the               
jump-oriented perspective of the data, we then tested for significant associations between            
jump-specific differences in reaction flux and iModulon activity with the selection of mutations at              
both the nucleotide and gene levels (i.e., gene level groups two different ALE mutations              
together if they appear in the same gene). 
 
For the metabolic fluxes, we find four flux correlations primarily describing reactions involved in              
co-factor balancing (FDR<5%) (Fig. 6A). Specifically, zwf mutations are correlated with           
ΔG6PDH flux (NADPH balance through PP pathway), pykF mutations with ΔME2 flux (NADPH             
balance through Malic Enzyme), and lysC with ΔSUCCOAS flux (ATP and NADPH through TCA              
cycle). We find that the zwf mutation in Crooks is uniquely associated with ΔED pathway flux.                
For the iModulon activities, we identify eight mutation correlates that fall into four different              
iModulon functional categories describing stress response, motility, structural components, and          
carbohydrate metabolism (FDR<5%) (Fig. 6B-E).  
 
We find that similar statistical tests using DE fold changes instead of iModulon activities did not                
uncover any significant correlations. Notably, there are only 7 cases where the selection of a               
mutation coincided with significant differential expression of gene (Supplementary Figure 2 ).           
Factorization-based analysis therefore enables statistical associations between the        
transcriptome and selected mutations. 
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Figure 6 

 
Figure 6. Mutation correlates. (A ) Boxplots of significant correlations between mutations and changes in              
metabolic fluxes. The terms “abs” and “rel” in parenthesis refer to absolute flux (mmol/gDw/h) and relative                
flux (mol/mol gluc), respectively. (B-E) Boxplots of significant correlations between mutations and            
changes in iModulon activities. The boxplots are grouped by iModulon functional category. Genes with              
strains in parenthesis note a strain-specific mutation correlation. Mutations are grouped at the gene-level              
unless otherwise. 
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Discussion 
Taken together, our total analysis of the multi-strain ALEs revealed metabolic and transcriptomic             
adaptations principles of the E. coli species.  
 
Characterization of the phenotypic data showed specific convergent and divergent features           
between the WT and EP flasks of these strains. It remains open how many peripheral               
phenotypes change with the core genes. Since the experimental condition was glucose minimal             
media, it remains unclear what principles are specific to glucose minimal media and which ones               
are not. Future studies may gain deeper insight by diversifying the measured phenotypes of              
these strains through high throughput approaches such as biolog plates.  
 
Our ICA-based analysis of the transcriptome revealed key growth-correlated gene sets and            
tradeoffs governing E. coli adaptation.  
 
By leveraging ALE design and the ICA-determined iModulon weights, we identified . Many of              
these associations make sense (i.e., zwf with ΔG6PDH flux, hns/tdk with Δhns-related iModulon             
activity) while others provide novel insights. Together, our results point to energy balance and              
proteome allocation (stress response, structural components, motility) as the dominant          
constraints governing E. coli adaptation. Including more samples would increase the           
identification of metabolic and regulatory features associated with mutations, providing a more            
clear picture of the logic underlying evolutionary selection. 
 
Our results show that fluxomics and transcriptomics data types are valuable data types for              
characterizing adaptive landscapes. 
 
 

Methods 

Mann-Whitney U tests for identifying convergent and divergent phenotypes 

To perform statistical tests for convergent and divergent features, we transformed the data vectors              
describing the mean physiological and fluxomics values for the size WT and EP flasks to vectors                
containing the pairwise distances amongst the points. The conversion resulted in a total of 15 points for                 
each the WT and EP flasks. The transformation to pairwise distances accounts for how close the strains                 
were at each point (i.e., convergence describes points coming closer together). Mann-Whitney U tests              
were then carried out to test whether the EP pairwise distances are smaller than the WT pairwise                 
distances (i.e., the EP values are closer together than the WT values). We calculated the p-values using                 
both a normal approximation implemented with the mannwhitneyu function in scipy stats and manual              
table acquired from from http://socr.ucla.edu/Applets.dir/WilcoxonRankSumTable.html . Both of the        
statistic estimates captured the general behavior, but the normal approximation was utilized due to the               
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lack of table p-values for U statistics less than 36. We then selected the convergent and divergent                 
features as those with a false discovery rate (FDR) less than 5% using the Benjamini Hochberg                
correction, implemented in the statsmodels package version 0.9.0 (Seabold and Perktold, 2010). 

Estimation of distinct growth groups 

We determined an optimal clustering of measured growth rates using the k-means method implemented              
in the scikit-learn python package (Pedregosa et al., 2011). The optimal number of total partitions was                
determined to be 7 (maximum silhouette score = 0.637). Furthermore, we performed linear regression              
using the python package seaborn [https://github.com/mwaskom/seaborn ] to fit linear rate-yield lines for            
each distinct growth group. The k-means clustering of 7 growth partitions resulted in a set of best fit                  
rate-yield lines (R 2 >0.85). We used the python packages matplotlib (Hunter, 2007) and pandas             
(McKinney, 2015)  to  perform visualization of growth groups. 

Differential expression analysis of RNA-seq 

We performed differential expression analysis of the RNA-seq profiles between consecutive ALE flasks             
(i.e., ALE evolution stages) using the R package DESeq2 (Love, Huber and Anders, 2014). Specifically,               
differential expression was performed for each pair of flasks describing the before and after of an ALE                 
experiment. We utilized an adaptive t prior shrinkage estimator (Zhu, Ibrahim and Love, 2018) to               
transform the log fold changes for better ranking and visualization of the differential expression results.               
Scatter plots of differential expression levels utilized the shrinked log fold changes (Supplementary Fig.              
X). We performed a sensitivity analysis of the p-value and Log 2 fold change thresholds on determining                
sets of significantly expressed genes. 

Transcription factor and GO enrichments of differentially expressed gene sets 

Transcription factors (TFs) and the genes they are known to regulate were obtained from a study (Fang et                  
al., 2017). GO terms were obtained from (Sastry et al., 2019a). This list was used to perform                 
hypergeometric enrichment analysis of the differentially expressed genes determined from RNAseq           
analysis. All differential expression analyses were compared to E. coli K-12 MG1655 as a reference.               
Therefore, the genes analyzed in this analysis were limited to the core set of 3306 genes contained in all                   
strains. Genes between two samples representing the before and after of a specific ALEs that were                
significantly differentially expressed (p < 0.05, log2FC < > 2) where then used for hypergeometric               
enrichment. The enrichment scores for TFs and GO terms represent whether a significant number of               
differentially expressed genes are known to be regulated by a given TF or described by a specific GO                  
term, respectively. The scipy (Jnes et al., 2001) stats package hypergeom was used to calculate               
hypergeometric enrichment values. 

iModulon analysis of RNA-seq data 

In a previous study, we showed that application of independent component analysis (ICA) deconvolved a               
large compendium of E. coli MG1655 RNA-seq data into a linear combination of independent sources               
(“iModulons”), that reflect known regulons, and source weightings (“iModulon activities”), which describe            
the global regulatory state (Sastry et al., 2019a). We therefore utilized the previous set of 92 iModulons                 
(i.e., M from ICA(X)=MA) to deconvolve our multi-strain ALE expression data into iModulon activities. We               
utilized both the X (expression data) and S (iModulon network) matrices described in Anand et al (Sastry                 
et al., 2019a) to identify corresponding iModulon activities for our 46 RNA-seq. Specifically, the              
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pseudoinverse was taken to compute the projection (see Methods , A=inv(M).dot(X)) (see           
Supplementary Figure X ). 
 
The iModulons Uncharacterized-6, Uncharacterized-3, and YYY were characterized as hns, CspA, and            
ZZZ respectively. 

Differential activity analysis of iModulons 

Distribution of differences in iModulon activities between biological replicates were first calculated and a              
log-norm distribution was fit to the differences (Poudel et al., 2020). In order to test statistical significance,                 
absolute value of difference in activity level of each iModulon between the two samples were calculated.                
This difference in activity was compared to the log-normal distribution from above to get a p-value.                
Because differences and p-value for all iModulons were calculated, the p-value was further adjusted with               
Benjamini-Hochberg correction to account for multiple hypothesis testing problem. Only iModulons with            
change in activity levels greater than 5 were considered significant. Differential activity analysis was              
performed for all ALE jumps as well as between the WT and EP flask for each strain. 
 
 

Supplementary Discussion 

Cofactor balance convergence 
Characterization of cofactor balance phenotypes showed convergence in the production and 
consumption of ATP via four subsystems: substrate uptake, biomass formation, glycolysis, and 
oxidative phosphorylation (SI Fig. Xa). We similarly observe convergence of these subsystems, 
in the production and consumption of NADH/FADH2, with the exception of substrate uptake (SI 
Fig. Xb ). In contrast, we observe divergence in NADPH production/consumption strategies via 
the and ME2 (“other” corresponds to ME2) and convergence through biomass formation. We 
find that BL21 and Crooks strains underly the divergence of NADPH balance by decreasing 
PPP-based production of NADPH along their ALE trajectories (SI Fig. Xc).  

Transcription factor and GO enrichments of differentially expressed genes 
To elucidate the DE gene sets, we performed transcription factor (TF) enrichments and found a               
total of 70 TFs enriched amongst the ALE jumps (FDR<0.1) (see Methods ,            
03_supplementary_file_DE.xlsx). Of these TFs, the most frequently enriched were fur, arcA,           
Sigma70, cra, iscR, ryhB, and histidine (Number of jumps > 4) (Fig 3b). We similarly performed                
GO enrichments and found that the most enriched GO terms (FDR<0.1) corresponded to             
respiration, ribosomal, TCA cycle, enterobactin, and histidine biosynthesis Fig 3b ), which reflect            
the enriched TFs (see SI Table 3 ). The GO term ‘iron-sulfur assembly’ is enriched in the last                 
ALE jump of BL21 and MG1655, in which an increase in DE genes is observed. In total, the DE                   
genes generally point to respiratory control as the dominant strategy in this ALE. 
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iModulons 
Together, the 92 iModulons explained 52% of the expression variance of the multi-strain core              
genome, where they explained the most expression for MG1655 (67.78%) and the least for C               
(44.23%) (Supp. Fig. 3B ). The specific iModulons explaining the largest percentage of the             
expression were described by rpoS general stress response iModulon, gadEWX acid stress            
response, and flagella motility (FliA, FlhDC) (Supp. Fig. 3B). 

Comparison of iModulons and proteome sectors 
Comparing the 65 iModulons to the 6 proteome sectors, we found that the 65 iModulons               
controlled 923 genes that describe on average 26% of total TPM in each sample, in contrast to                 
the 75% described by the 905 proteome sector genes (see Fig. Xb ) (see Methods , thresholding               
the iModulon gene weights to generate a binarized M matrix). Only 32.4% (293/905) of the               
proteome sector genes were controlled by the iModulons. The iModulon genes generally did not              
line up well with the proteome sectors, with the most overlap occurring in proteome sector C                
with 58% of genes (53/91) (see Supplementary figures/00/sectors_imods_CUTOFFS-0.csv). 
 
 

Supplementary Figures 
 

SI Figure 1 

 
SI Figure 1. Principal component analysis of fluxomic data. 
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SI Figure 2 

 
SI Figure 2. Schematic of ICA-based approach. The S matrix determined by the PRECISE database was utilized                 
to estimate the iModulon activities describing the samples in our dataset.  

 

SI Figure 3 

 
 
SI Figure 3. Explained expression by PRECISE iModulons. ( A ) Explained expression by mapped E. coli               
iModulons taken from Sastry et al. ( B) Heatmap of percent explained expression per iModulon across the 6 strains.                  
Only 8 iModulons are shown that explain more than 3.5% across the strains are shown and vertically ordered from                   
most to least. 

SI Figure 4 
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SI Figure 4. Clustered heatmap of expression changes for genes containing at least one mutant across all                 
strain-specific ALE jumps. Log2 fold changes are only shown for significant differentially expressed genes in each                
jump. 

 

 
 

Code availability 

Code is available upon request. 
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