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Abstract 

 

Objective: Estimate the time-course of the spread of key pathological markers and the 

onset of cognitive dysfunction in Alzheimer’s disease.  

Methods: In a cohort of 336 older adults, ranging in cognitive functioning, we estimated 

the time of initial changes of A, tau, and decreases in cognition with respect to the time 

of A-positivity.  

Results: Small effect sizes of change in CSF A42 and regional A PET were estimated 

to occur several decades before A-positivity. Increases in CSF tau occurred 11-12 years 

before A-positivity. Temporoparietal tau PET showed increases 4-5 years before A-

positivity. Subtle cognitive dysfunction was observed 7-9 years before A-positivity. 

Conclusions: Increases in tau and cognitive dysfunction occur years before the presence 

of significant A. Explicit estimates of the time for these events provide a clearer picture 

of the time course of the amyloid cascade and identify potential windows for specific 

treatments.  
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Introduction 

 Disconcerting clinical trial results for the treatment of Alzheimer’s disease (AD) 

have led to a shift toward earlier intervention, focusing on the early clinical or 

presymptomatic phases, when biomarkers are needed to identify the disease. The amyloid 

cascade (Hardy and Selkoe, 2002) is thought to start with elevated levels of two key 

amyloids in the brain, -amyloid (A) and tau, and end with severe cognitive and 

functional impairment (Jack et al., 2010). Growing evidence suggests that an early sign 

that the cascade has begun is change in cerebrospinal fluid (CSF) A, potentially 

detectable prior to significant A deposition in the brain as measured by positron 

emission tomography (PET) (Palmqvist et al., 2016). This accumulation of A has been 

suggested to be followed by increases in CSF tau and the spread of tau pathology beyond 

the temporal lobe (Braak and Braak, 1991; Schöll et al., 2016). The build-up and spread 

of these two brain pathologies is paralleled by gradual cognitive and functional decline 

(Zetterberg and Mattsson, 2014). 

Previous neuropathological and biomarker data suggest that the overall time 

course of AD is several decades (Li et al., 2017; Villemagne et al., 2013). In autosomal 

dominant AD, the estimated years to clinical onset has been used to estimate the time-

course of different biomarkers in AD (Bateman et al., 2012). However, the time-course of 

the spread of A and tau and the onset of clinical symptoms in sporadic AD is unknown. 

With repeated measures of A over time, the level and rate of change with respect to the 

key initiating AD pathology may offer a measure of disease progression in sporadic AD. 

With level and change information, the time from the threshold for significant A 

pathology can be estimated within individuals, providing the temporal disease 
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progression information important for evaluating biomarker trajectories. Without 

longitudinal information, cross-sectional studies frequently categorize subjects into two 

groups – those below a threshold for significant pathology and those above, where 

subjects just below the threshold who will cross over within months are considered 

pathologically equivalent to subjects who will not cross over for decades. By 

incorporating longitudinal information, disease progression with respect to A pathology 

can be represented to reflect its continuous nature, resulting in a more powerful way to 

model the relationship between A and downstream processes. 

The aim of this study was to evaluate time-from-A-positivity (TFA+) in 

sporadic AD. Using serial 18F-florbetapir (A) PET measurements, rates of change of A 

were estimated and used to calculate the time-from-threshold for each subject. These 

subject-specific estimates of the proximity to the threshold for A-positivity (A+) were 

then used to model the trajectories and temporal ordering of other key markers in AD 

including CSF A42, regional A PET, several measures of tau including CSF 

phosphorylated (P-tau) and total tau (T-tau), regional 18F-flortaucipir (AV-1451) tau PET, 

and cognition. Estimates of the time and ordering of these pathophysiological changes 

may facilitate the design of future prevention trials and identify a window for early 

treatment.  
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Materials and methods   

 

Standard protocol approvals, registrations, and patient consents. 

 This study was approved by the Institutional Review Boards of all of the 

participating institutions. Informed written consent was obtained from all participants at 

each site. 

Data Availability 

All data is publicly available (http://adni.loni.usc.edu/).  

 

Participants 

 Data were obtained from the Alzheimer's Disease Neuroimaging Initiative 

(ADNI) database (http://adni.loni.usc.edu/, www.adni-info.org) on 1/21/2020. An initial 

analysis was done on all ADNI participants with available A PET data (in N=963 CU, 

A+ MCI and A+ AD), to facilitate the estimation of TFA+. The population in the 

primary analysis only included ADNI participants with measurements of both A and tau 

PET. Of these, all cognitively unimpaired (CU), prodromal AD (A+ MCI) and A+ AD 

dementia participants were included in the analysis, where A-positivity was defined 

using a previously established threshold (Standardized Uptake Value Ratio, SUVR = 

1.10) (Joshi et al., 2012). A- MCI (N=224, including A- CU to MCI progressors) and 

A- “AD dementia” subjects (N=51, including A- MCI to AD dementia progressors; we 

consider these to be misdiagnosed, because we assume AD requires A+) were not 

included in the main analysis given our aim to model disease progression over the AD 

continuum and not other diseases, but visualizations of their biomarker data are included 
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for comparison in Figures 2-4 (see Figure legends). Additional description is included in 

the statistical analysis section.    

 

Cerebrospinal fluid biomarker concentrations 

 Cerebrospinal fluid (CSF) samples were collected at baseline by lumbar puncture 

in a subsample (N=185). CSF A42, total tau (T-tau) and phosphorylated tau (P-tau) 

were measured by an xMAP assay (INNOBIA AlzBio3, Ghent, Belgium, Fujirebio), as 

described previously (Olsson et al., 2005; Shaw et al., 2009).  

 

PET Imaging 

 Methods to acquire and process A (18F-florbetapir) PET image data were 

described previously (Landau et al., 2012). We used an a priori defined threshold for A-

positivity (SUVR=1.1) (ADNI, 2012; Joshi et al., 2012) applied to the ratio of the 

average of the four target regions (temporal, cingulate, frontal, and parietal lobes) and the 

cerebellum, in the estimation of time-from-A-positivity, described in detail below. In a 

second part of the analysis, five A PET ROI outcomes were considered (Landau and 

Jagust, 2015; Mormino et al., 2009), (1) the temporal lobe (middle and superior temporal 

lobe), (2) the parietal lobe (precuneus, supramarginal, inferior and superior parietal lobe), 

(3) the cingulate gyrus (isthmus, posterior, caudal and rostral anterior cingulate), (4) the 

frontal lobe (pars opercularis, pars triangularis, pars orbitalis, caudal/rostral middle 

frontal, medial/lateral orbitofrontal, frontal pole, and superior frontal lobe), and (5) a 

composite of regions thought to be early in accumulating A (precuneus and posterior 
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cingulate) (Palmqvist et al., 2017). 18F-florbetapir ROIs were expressed as SUVRs with 

a cerebellar reference region. 

 Methods to acquire and process tau (18F-flortaucipir) PET image data were 

described previously (Maass et al., 2017). Six tau ROI outcomes, corrected for partial-

volume, were considered: (1) the medial temporal lobe (MTL) (amygdala, entorhinal and 

parahippocampal cortex), (2) the lateral temporal lobe (LTL) (inferior/middle/superior 

temporal lobe, banks of the superior temporal sulcus, transverse temporal lobe, temporal 

pole), (3) the medial parietal lobe (MPL) (isthmus cingulate, precuneus), (4) the lateral 

parietal lobe (LPL) (inferior/superior parietal lobe, supramarginal), (5) frontal lobe (pars, 

orbitofrontal and middle/superior frontal lobe), and (6) the occipital lobe (cuneus, lingual, 

pericalcarine, and lateral occipital lobe). 18F-flortaucipir ROIs were expressed as SUVRs 

with an inferior cerebellar grey matter reference region. Full details of PET acquisition 

and analysis can be found at http://adni.loni.usc.edu/methods/.  

 

Cognition 

 Cognitive measures assessed included the Mini-Mental State Examination 

(MMSE) as a measure of global cognition, and the Preclinical Alzheimer’s Cognitive 

Composite (PACC), as a measure of early AD-related cognitive changes. The PACC 

comprised the MMSE, the Logical Memory Delayed Word Recall from the Wechsler 

Memory Scale, the Alzheimer’s Disease Assessment Scale—Cognitive Subscale Delayed 

Word Recall, and the Trail Making Test part B (log transformed) (Donohue et al., 2017, 

2014).   
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Statistical Analysis 

 

 The aims of these analyses were to evaluate the relationship between the 

estimated TFA+ and CSF, PET, and cognitive responses. Because TFA+ was not 

directly observed, in a first step, linear mixed-effects models were fit to all available 

longitudinal global A PET SUVR data to estimate subject-specific intercepts and slopes 

of A pathology. Because A slopes are unlikely to remain constant over long periods of 

time as subjects move toward and away from the A threshold, natural splines (Hastie 

and Tibshirani, 1990) were used to estimate the nonlinear shape of the slopes with respect 

to baseline A, using quantile regression. Rather than modeling the mean A slope with 

respect to baseline A, quantile regression provides a separate curve for each quantile, 

allowing the relationship between slope and intercept to differ depending on the location 

in the distribution of A slope. For each subject, TFA+ was estimated by integrating 

over each subject’s quantile curve between the subject’s intercept and the threshold for 

A-positivity (PET SUVR = 1.1). For example, for a subject with a baseline SUVR of 

1.2 and a slope in the 0.6 quantile, TFA+ was taken to be the time it would take to go 

from SUVR = 1.1 to 1.2, using the slope estimates from the quantile curve. For 

incremental changes on the x-axis (baseline SUVR), the time required to travel the 

incremental distance is equal to distance/rate. Using the trapezoid rule (Atkinson, 1989), 

TFA+ is the sum of these incremental times spanning SUVR = 1.1 to 1.2. An example 

of calculating TFA+ is given in the top left panel of Figure 1.  

 To evaluate the accuracy of the TFA+ estimates, we compared the observed 

times of A+ to the estimated times of A+ values in participants who were A- at 

baseline and became A+ during follow-up. Observed time of A+ occurred in the 
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interval between the last A- scan and the first A+ scan. The observed time was 

calculated as a weighted average of the two scan times, weighted proportionally toward 

the scan where the participant was closest to hitting the threshold. Observed and 

estimated values were compared in N=37 participants who crossed the threshold for A+ 

and remained A+ throughout follow-up.     

Our analyses aim to model participants who are ostensibly on the AD trajectory 

and had calculable TFA+. Therefore, of the 963 participants with A PET, we excluded 

N=16 participants with negative A accumulation rates (negative rates were largely 

driven by one early high A PET measure), we also excluded N=6 participants with low 

levels of A and accumulation rates such that they were predicted to become A+ later 

than 120 years of age (biomarker data from these subjects are included for visual 

comparisons in Figures 2-4, see Figure legends). We included subjects where the TFA+ 

metric indicated very early accumulation of A, but for participants estimated to have 

become A+ before age 40 (N=24, median estimated age at A+ = 30, IQR: 24 to 34), 

we truncated TFA+ to age 40, based on previously described rates of A-positivity in 

middle age (Jansen et al., 2015).      

In the second step, the relationship between TFA+ and the responses was 

modeled using monotone penalized regression splines. Generalized cross-validation was 

used to tune the smoothing parameter (Wood, 1994). Cognitive responses were covaried 

for age, gender and education; CSF A42, T-tau, P-tau and PET measures were covaried 

for age and gender.  
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 In order to account for the uncertainty across steps 1 and 2, the entire process was 

repeated in 500 bootstrap samples to estimate 95% confidence intervals for the 

association between TFA+ and the responses.   

 Meaningful effect sizes of change of increase in pathology or decrease in 

cognition with respect to TFA+ were estimated. A Cohen’s d effect size of 0.2 SD was 

considered small, 0.5 SD was considered medium, and a 0.8 SD effect was considered 

large (Cohen, 1988). A 0.2 standard deviation (SD) change from the mean response at the 

longest times (least pathological) from A-positivity was taken to be the initial point of 

meaningful change. A 0.5 SD change was also shown as a more substantial effect size of 

change. We also estimated change, 95% confidence intervals, and statistical significance 

of change for each response at TFA+ = 0, the time of A-positivity, with bootstrap-

estimated standard errors.  

 Baseline associations between demographics  and TFA+ were assessed using 

Spearman correlation for age and education and the Wilcoxon rank-sum test for gender. 

Associations between diagnosis and demographics were assessed using Wilcoxon rank-

sum test for continuous variables and Fisher’s Exact test for categorical variables. All 

analyses were done in R v3.5.1 (www.r-project.org). 
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Results 

 

Cohort Characteristics 

  Two-hundred and twenty-eight CU (128 A- and 100 A+), 70 A+ MCI and 38 

A+ AD participants were included in the analysis. The diagnostic groups varied by 

mean age (CU-, 70.1 years old [SD=5.8]; CU+, 72.9 years old [SD=6.6]; MCI, 72.0 years 

old [SD=6.9]; AD, 74.5 years old [SD=7.2]; p<0.001). The diagnostic groups varied by 

sex (CU-, 60.2% female; CU+, 58.0% female; MCI, 41.4% female; AD, 47.4% female; 

p=0.05). The groups differed by mean years of education (CU-, 16.7 years [SD=2.4]; 

CU+, 16.9 years [SD=2.3]; MCI, 16.0 years [SD=2.5]; AD, 15.6 years [SD=2.5]; 

p=0.007). The groups varied by proportion of APOE 4+ (CU-, 25.4%; CU+, 50.5%; 

MCI, 60.9%; AD, 54.3%; p<0.001).  

 

A PET and Estimation of TFA+ 

 TFA+ was estimated with a median of 3 (range: 1 to 5) A PET scans per 

participant. The average time between first and last scan was 3.3 years (SD=2.9) and the 

average time between scans was 2.2 years (SD=0.8). Across diagnoses, TFA+ ranged 

from -35.9 to 47.0 years, where higher (positive) TFA+ values indicate more time spent 

with a significant A burden. The average TFA+ was -9.3 years (SD=6.9) for CU-, 13.9 

years (SD=11.2) for CU+, 21.1 years (11.7) for MCI, and 25.8 years (11.0) for AD 

participants (p<0.001, comparing CU+, MCI, and AD only). TFA+ was highly 

correlated with observed time of A+ (=0.93, p<0.001, bottom left panel of Figure 1). 

Higher TFA+ was significantly associated with older age (=0.30, p<0.001), lower 
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education (=-0.15, p=0.01) and APOE 4-positivity (mean TFA+ in APOE 4- = 3.0 

(SD=16.5) years and mean TFA+ in APOE 4+ = 13.7 (SD=16.0) years, p<0.001). 

TFA+ was not associated with sex (mean TFA+ = 9.5 (SD=17.4) and 6.6 (SD=16.8) in 

males and females, respectively, p=0.13). Within-diagnosis TFA+ distributions are 

shown on the bottom right panel of Figure 1. Quantile curves of the relationship between 

A intercepts and slopes are also shown in the top right panel of Figure 1, displaying the 

variation of acceleration of A deposition over different levels of baseline A. 

 

Regional A PET  

 

Five regional ROIs (precuneus + posterior cingulate, frontal lobe, cingulate gyrus, 

temporal and parietal lobes) are shown plotted against TFA+ in Figure 2. All 5 regions 

were estimated to reach a small, but meaningful (0.2 SD) increase in SUVR between 16-

17 years before A-positivity, i.e. TFA+ = 0. Effect sizes over the span of TFA+ are 

shown in Figure 2. At TFA+ = 0, all regions showed large, significant increases in 

SUVR (ΔSUVR  0.13, p0.01) with the precuneus + posterior cingulate composite 

showing the largest increase (ΔSUVR = 0.19, p < 0.01) and the temporal lobe showing 

the smallest (ΔSUVR = 0.13, p < 0.01). Effect sizes for all regions were large (>1) by the 

time of A+. Table 1 summarizes the values of the responses at the longest times before 

A+, i.e. the least pathological TFA+. Table 1 also shows the value and change of each 

response at the time of A-positivity (TFA+ = 0), p-value and corresponding 95% 

confidence interval, the effect size of change of each response, and the 0.2 SD change 

point with respect to TFA+. 
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CSF  

CSF responses are plotted against TFA+ in Figure 3. A 0.2 SD drop in CSF 

A42 was estimated to occur 35 years before A-positivity (TFA+ = -35). At TFA+ = 

0, CSF A42 showed a very large effect size (ΔA42 = -74 ng/L, p<0.01, effect size = -

2.17). At TFA+ = -2, or two years before A-positivity, the population curve passes 

through a previously published CSF A42 threshold for A-positivity (192 ng/L) (Shaw 

et al., 2009).   

A 0.2 SD increase in CSF T-tau and P-tau was estimated to occur 11-12 years 

before the time of A-positivity (TFA+ = -12 and -11, respectively). At TFA+ = 0, 

significant increases of medium effect size of T-tau (ΔT-tau = 25 ng/L, p=0.01, effect 

size = 0.59) and P-tau (ΔP-tau = 14 ng/L, p=0.02, effect size = 0.55) were observed.  

 

Tau PET  

 

Six regional ROIs (MTL, LTL, MPL, LPL, frontal and occipital lobes) are shown 

plotted against TFA+ in Figure 4. Five of the six regions were estimated to reach a 0.2 

SD increase in SUVR 3-5 years before A-positivity, with the occipital lobe reaching a 

0.2 SD increase one year after A-positivity. Effect sizes over the span of TFA+ are 

shown in Figure 4. At TFA+ = 0, four regions (MTL, LTL, MPL, LPL) showed 

significant small increases in SUVR (ΔSUVR  0.12, p0.05) with the MTL showing the 

largest effect size (0.35). The frontal and occipital lobes did not increase significantly by 

TFA+ = 0 (ΔSUVR = 0.09, 0.07, respectively, p=0.13).  Estimates are summarized in 

Table 1.  
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Cognition  

Cognitive measures are shown in Figure 5. The MMSE showed a 0.2 SD drop 

nine years before A-positivity, followed by the PACC seven years before A-positivity. 

Neither measure decreased significantly by the time of A-positivity, although the PACC 

was borderline (ΔMMSE = -0.80, p=0.17, effect size=-0.34; ΔPACC = -0.61, p=0.07, 

effect size=-0.39). Summary curves and 0.2 SD change points are shown in Figure 6. 
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Discussion  

 

Several biological processes develop over time in sporadic AD, including 

accumulation of A and tau across wide areas of the brain, as well as cognitive decline. 

Based on the amyloid cascade hypothesis, a relevant overarching time scale of the disease 

processes could be based on the development of A pathology (Koscik et al., 2020). We 

have therefore integrated A PET level and rate of change information to place each 

individual on a pathological timeline. This timeline can then be used to estimate the time 

of downstream events in the amyloid cascade. We estimated several major milestone 

events of AD progression including a small drop in CSF A42 35 years before A-

positivity and a small increase in regional A PET deposition 17 years before A-

positivity. Using the biomarkers tested here, the first changes in CSF A42 may define 

the onset of AD. Small increases in tau pathology were estimated to occur 11-12 years 

before A-positivity, as measured by CSF and 5 years before, as measured by PET. More 

substantial and statistically significant increases in CSF as well as temporoparietal tau 

PET were detected by the time of A-positivity. Small effects of cognitive dysfunction 

occurred 7-9 years before A-positivity, coinciding with previous reports (Insel et al., 

2017). These findings provide a general time scale for initial changes in sporadic AD, 

which may inform clinical trials aimed at specific stages of the disease.   

A 0.2 SD difference, a small, but meaningful increase in levels of CSF tau and 

temporoparietal lobe tau are observed years before the current threshold for A-

positivity. In the context of secondary prevention trials where A-positivity at current 

thresholds is required for study inclusion, tau levels in these participants would already 
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have been increasing for several years, likely more. The finding that temporoparietal tau 

starts to increase prior to other regions is in accordance with 18F-flortaucipir studies on 

other populations. Cross-sectional studies showed early tau deposition in cognitively 

healthy elderly (with or without significant A pathology) in temporal and medial 

parietal regions, most dominant in entorhinal and parahippocampal cortex, the amygdala 

and inferior temporal cortex. Longitudinal studies further suggest that cognitively healthy 

elderly accumulate tau in the medial temporal and medial parietal lobe, while (A 

positive) AD dementia patients increased in tau primarily in the frontal lobe (Harrison et 

al., 2018). The spread of tau beyond the MTL to the parietal lobe and other regions may 

be a critical milestone in the progression of AD. The early changes observed in the MPL 

in this study coincide with a recent report of the earliest tau deposition found in medial 

parietal regions (precuneus and isthmus cingulate) in autosomal dominant AD (Gordon et 

al., 2019). Considering that a 0.2 SD increase in MPL tau can potentially be detected 

several years before A-positivity (Figure 4), these data support the use of primary 

prevention trials against A where treatment is initiated years before the current threshold 

for A-positivity, if treatment efficacy relies on early intervention, prior to the 

development of tau pathology. 

The initial descent in cognitive performance is estimated to occur 7-9 years before 

becoming A+ (Figure 5). Reduced cognitive performance has repeatedly been shown to 

be associated with elevated levels of A (Baker et al., 2017; Donohue et al., 2017; Insel 

et al., 2017, 2016), even within the subthreshold range (Landau et al., 2018), in 

cognitively unimpaired individuals. The result that CSF tau measures started to change 

between regional A and cognition in this study is in accordance with the theory that 
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cognitive impairment in AD is caused primarily by tau pathology. This is also in line with 

other recent studies which show that cognitive impairment is more strongly related to 

accumulation of tau than to A (Ossenkoppele et al., 2019), and that both tau and A 

appear necessary for cognitive decline (Sperling et al., 2019). The ordering of the 

responses coincides with the magnitude of the effect sizes at the time of A-positivity 

(Table 1), suggesting that initial changes in the responses continue to change in parallel 

through to the time of A-positivity, without any major differences in acceleration.  

In their 2018 draft guidance, the FDA indicated that because it is highly desirable 

to intervene as early as possible in AD, it follows that patients with characteristic 

pathophysiologic changes of AD but no subjective complaint, functional impairment, or 

detectable abnormalities on sensitive neuropsychological measures are an important 

target for clinical trials (Food and Drug Administration, 2018). If the spread of tau to the 

lateral temporal and parietal lobes becomes a defining characteristic of 

pathophysiological change in AD, the window to intervene as early as possible may shift 

to years before the current threshold for A-positivity. It is possible that early 

accelerations of tau may have contributed to recent failures of anti-A treatments in 

phase III clinical trials on A-positive patients (Egan et al., 2018; Honig et al., 2018). 

Although selecting subjects that are A-positive ensures that only AD patients are 

included in trials, the use of conservative thresholds to define A-positivity may bias trial 

populations toward individuals where tau pathology has already accumulated, causing 

downstream injuries independent of A, reducing the efficacy of anti-A treatments. 

This study has several limitations. Tau PET data were available for only a 

subsample of the data, limiting comparisons to a small cross-section of the full ADNI 
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data set. More data, especially longitudinal data in participants in the earliest stages of A 

changes, will be required for more precise change point estimates. These analyses lack 

the power and precision to place the temporal and parietal tau regions in a particular 

order with confidence, but instead demonstrate that temporoparietal tau increases years 

before A-positivity. The ADNI CU, MCI and AD cohorts are also age matched. The AD 

patients, on average, have dementia by age 75, while the participants in the CU cohort 

who may eventually develop AD, are unlikely to do so for many years, possibly decades. 

By design, these cohorts with age matched groups are therefore on systematically 

different disease trajectories with respect to age. If earlier onset is associated with a more 

aggressive form of the disease, then the AD cohort may have the most aggressive form 

while the CU cohort, the least aggressive. If the developing A pathology in the ADNI 

CU- cohort represents a less aggressive disease process compared with a more typical 

AD process, the estimates reported here could be conservative and biased toward later 

time estimates for downstream events. The ADNI MCI cohort may represent a more 

typical trajectory with respect to downstream events along the A pathological timeline. 

These differences in disease trajectories are apparent from the cohort estimates in Figures 

2-5. Additionally, the change point estimates are influenced by both biological variation 

and measurement error, which varies from marker to marker. Change points in measures 

with high variability in the “normal” range and excess measurement error may require 

additional biological change to detect, despite an earlier, real increase in pathology. 

ADNI participants are highly educated on average, reducing generalizability to some 

degree. The associations between increasing A pathology and downstream changes, 

including increased tau pathology reported here do not imply causality. It remains 
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unknown whether and to what degree downstream pathological changes can be directly 

attributed to the accumulation of A. Only studies with experimental interventions 

against A-pathology, with clear verification of target engagement, can be used to show 

causal relationships between A-deposition and putative downstream events.        

Longitudinal information is required to evaluate how quickly an individual’s 

pathophysiological changes are occurring and to accurately characterize their disease 

trajectory. Analyses limited to a cross-sectional evaluation of A status are naïve to the 

time spent with a significant A burden. Incorporating longitudinal information 

facilitates the estimation of the time-course of downstream events such as the spread of 

tau and the onset of subtle cognitive dysfunction. As the technology to measure AD 

pathology becomes more cost effective and noninvasive, such as plasma measures of A 

or tau (Janelidze et al., 2020; Mielke et al., 2018; Palmqvist et al., 2019; Schindler et al., 

2019), longitudinal evaluations in the context of trial-ready cohorts may greatly improve 

early diagnosis and expedite the execution of clinical trials in early AD.   
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Figures 

 

 

Figure 1. Observed vs. Estimated TFA+, Quantile Regression Curves and TFA+ 

Densities 

Top left panel: an example of how TFA+ is estimated. Here we have a participant with 

an estimated intercept of SUVR = 1.00 and an accumulation rate (slope) of 0.005 

SUVR/year. We want to calculate how long it will take for them to reach the 1.10 

threshold. A slope of 0.005 SUVR/year puts this participant on the 0.20 quantile (20% 

percentile) curve. We know this participant must accumulate 0.10 SUVR to reach the 

threshold and we will assume they will continue to have an accumulation rate in the 0.20 

quantile. Partitioning the curve into segments from SUVR = 1.00 to 1.10 and using the 

formula time = distance/rate, the time to cross each segment is calculated and summed. In 

the figure, only two segments are shown, but in the actual calculation, the curve is 

partitioned into a large number of segments. Assuming a linear rate increase within each 

segment (shown in the dashed black line along the red quantile curve), the time to travel 

the distance in the 1st segment, from SUVR 1.00 to 1.05 is given by, time1 = d1 /rate1, 

where d1 is 0.05 and rate1 is the average rate in segment 1, which is ½(h0+h1), as shown in 

the panel. A similar calculation is done for segment 2 and the results are summed to give 

TFA+ = 15. 

Top right panel: quantile regression curves of A PET slopes plotted against intercepts. 

Curves for several selected quantiles (0.01, 0.10, …, 0.99) are shown in red.  

Bottom left panel: observed time of A+ plotted against estimated time of A+.  
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Bottom right panel: distributions of TFA+ for each group, A- CU (CU-), A+ CU 

(CU+), MCI, and AD are shown.    
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Figure 2. Regional A PET 

A PET ROIs are plotted against TFA+. Effect sizes, depicting change points are shown 

as vertical dashed (0.2 SD, initial change) and solid (0.5 SD) lines. Regression curves 

(red) and corresponding 95% CIs (shaded grey) are shown. Mean values of the response 

are plotted against mean TFA+ for each of the four diagnosis groups (large symbols). 

The 0.95 quantile (approximately 1.65 SD if normally distributed) of the response for the 

CU- group is also shown (short/long dashed line). The 0.95 quantile (or 0.05 quantile for 

responses where low values are worse) of the biomarkers in CU-, provided for all 

responses to facilitate comparisons of when (in terms of TFA+) the average level of 

each response is no longer in the normal range. The boxplots to the left of each figure 

show the biomarker distribution in subjects that was determined to not be on the AD 

trajectory (including subjects where the model estimated them to become A+ at over 

120 years of age). Effect sizes of A increase are shown in the bottom panel at TFA+ = 

-20, -10, 0, 10, and 20 years.   
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Figure 3. CSF Biomarkers 

CSF biomarker responses are plotted against TFA+. Effect sizes, depicting change 

points are shown as vertical dashed (0.2 SD, initial change) and solid (0.5 SD) lines. 

Regression curves (red) and corresponding 95% CIs (shaded grey) are shown. Mean 

values of the response are plotted against mean TFA+ for each of the four diagnosis 

groups (large symbols). The 0.95 quantile (approximately 1.65 SD if normally 

distributed) of the response for the CU- group is also shown (short/long dashed line). The 

boxplots to the left of each figure show the biomarker distribution in subjects that were 

determined not to be on the AD trajectory (including subjects where the model estimated 

them to become A+ over 120 years of age). 
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Figure 4. Regional Tau PET 

Tau PET ROIs are plotted against TFA+. Effect sizes, depicting change points are 

shown as vertical dashed (0.2 SD, initial change) and solid (0.5 SD) lines. Regression 

curves (red) and corresponding 95% CIs (shaded grey) are shown. Mean values of the 

response are plotted against mean TFA+ for each of the four diagnosis groups (large 

symbols). The 0.95 quantile (approximately 1.65 SD if normally distributed) of the 

response for the CU- group is also shown (short/long dashed line). The boxplots to the 

left of each figure show the biomarker distribution in subjects that was determined to not 

be on the AD trajectory (including subjects where the model estimated them to become 

A+ at over 120 years of age). Effect sizes of tau increase are shown in the bottom panel 

at TFA+ = -20, -10, 0, 10, and 20 years.   
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Figure 5. Cognition 

MMSE and PACC scores are plotted against TFA+. Effect sizes, depicting change 

points are shown as vertical dashed (0.2 SD, initial change) and solid (0.5 SD) lines. 

Regression curves (red) and corresponding 95% CIs (shaded grey) are shown. Mean 

values of the response are plotted against mean TFA+ for each of the four diagnosis 

groups (large symbols). The 0.05 quantile (approximately -1.65 SD if normally 

distributed) of the response for the CU- group is also shown (short/long dashed line).  
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Figure 6. Summary Curves 

Summary curves are shown for all modalities on a scale from zero to one. Responses are 

scaled such that zero is the least pathological point for each response and one is the mean 

response in the AD participants. The initial effect, defined by 0.2 SD change points are 

plotted.  
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Table 1. Initial values, effect sizes and change points 

 

 

 

 

 

 

Initial Value 

(SD) 

Value at 

TFA+ = 0 

Difference at 

TFA+ = 0 

(p-value) 

95% CI 

Effect Size 

(Difference 

at TFA+ = 

0) 

TFA+ 

Change Point 

(0.2 SD) 

A PET       

Precuneus+PC 1.00 (0.14) 1.20 0.19 (<0.01) 0.09 to 0.30 1.35 -17 

Parietal Lobe 0.95 (0.12) 1.12 0.16 (<0.01) 0.06 to 0.27 1.32 -17 

Cingulate Gyrus 1.03 (0.13) 1.20 0.17 (0.01) 0.04 to 0.30 1.32 -17 

Frontal Lobe 0.93 (0.13) 1.10 0.17 (<0.01) 0.08 to 0.26 1.32 -17 

Temporal Lobe 0.91 (0.11) 1.04 0.13 (<0.01) 0.07 to 0.20 1.20 -16 

       

CSF       

A 261 (34) 186 -74 (<0.01) -123 to -25 -2.17 -35 

T-tau 46 (42) 71 25 (0.01) 7 to 43 0.59 -12 

P-tau 25 (25) 39 14 (0.02) 2 to 25 0.55 -11 

       

Tau PET       

MPL 1.22 (0.49) 1.38 0.16 (0.02) 0.02 to 0.29 0.32 -4 

MTL 1.22 (0.41) 1.37 0.15 (0.02) 0.03 to 0.26 0.35 -5 

LTL 1.40 (0.44) 1.52 0.12 (0.05) 0.00 to 0.25 0.28 -3 

LPL 1.37 (0.47) 1.51 0.14 (0.04) 0.01 to 0.27 0.29 -3 

Frontal Lobe 1.40 (0.33) 1.49 0.09 (0.13) -0.03 to 0.21 0.28 -3 

Occipital Lobe 1.44 (0.36) 1.50 0.07 (0.13) -0.02 to 0.16 0.19 1 

       

Cognition       

MMSE 29.4 (2.38) 28.6 -0.80 (0.17) -1.93 to 0.33 -0.34 -9 

PACC 0.12 (1.56) -0.49 -0.61 (0.07) -1.25 to 0.04 -0.39 -7 
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