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Abstract 14 

Meta-analysis is often used to make generalizations across all available evidence at the global 15 

scale. But how can these global generalizations be used for evidence-based decision making 16 

at the local scale, if only the local evidence is perceived to be relevant to a local decision? We 17 

show how an interactive method of meta-analysis — dynamic meta-analysis — can be used 18 

to assess the local relevance of global evidence. We developed Metadataset 19 

(www.metadataset.com) as an example of dynamic meta-analysis. Using Metadataset, we 20 

show how evidence can be filtered and weighted, and results can be recalculated, using 21 

dynamic methods of subgroup analysis, meta-regression, and recalibration. With an example 22 

from agroecology, we show how dynamic meta-analysis could lead to different conclusions 23 

for different subsets of the global evidence. Dynamic meta-analysis could also lead to a 24 

rebalancing of power and responsibility in evidence synthesis, since evidence users would be 25 

able to make decisions that are typically made by systematic reviewers — decisions about 26 

which studies to include (e.g., critical appraisal) and how to handle missing or poorly 27 

reported data (e.g., sensitivity analysis). We suggest that dynamic meta-analysis could be 28 
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2 

scaled up and used for subject-wide evidence synthesis in several scientific disciplines (e.g., 29 

agroecology and conservation biology). However, the metadata that are used to filter and 30 

weight the evidence would need to be standardized within disciplines. 31 

 32 

Keywords 33 

applicability; conservation evidence; dynamic meta-analysis; external validity; 34 

generalisability; knowledge transfer; recalibration; subject-wide evidence synthesis; 35 

systematic reviews; transferability 36 

 37 

Introduction 38 

Meta-analysis is often used to make generalizations about interventions, such as agricultural 39 

practices or medical treatments (Gurevitch et al. 2018). It can be difficult to make 40 

generalizations if interventions have different effects in different contexts. For example, a 41 

meta-analysis of conservation agriculture found beneficial effects in hotter, drier climates, but 42 

not in colder, wetter climates (Steward et al. 2018). Therefore, it can be difficult to use meta-43 

analysis to make decisions about interventions in a specific context, unless the results are 44 

known to be generalizable to that specific context. 45 

What is needed is a method of meta-analysis that enables decision makers to answer 46 

the question, “How effective is this intervention in my specific context?” (Wang, Moss & 47 

Hiller 2005; Burford et al. 2013; Avellar et al. 2016). Subgroup analysis and meta-regression 48 

(Borenstein et al. 2009) are standard methods of meta-analysis that can be used to answer this 49 

question, but only if the researchers who produce the meta-analysis ask the same question as 50 

the decision makers who use a meta-analysis. In the above example of conservation 51 

agriculture (Steward et al. 2018), researchers used meta-regression to ask, “How effective is 52 

conservation agriculture in different climates?” But decision makers may want to ask, “How 53 

effective is conservation agriculture in my climate or in my country?” Researchers may not 54 

publish an answer to this specific question, not only because they do not know which 55 

variables will define the context for different decision makers, but also because they do not 56 

have the time and space to analyse and publish the results for all combinations and 57 
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permutations of context-defining variables. Instead, researchers may only publish an answer 58 

to a more generic question. 59 

The lack of context-specific evidence is a problem in evidence-based decision making 60 

(Christie et al. in press; Innvær et al. 2002; Cook, Possingham & Fuller 2013). One solution 61 

to this problem is to commission new research and/or new reviews that exactly match the 62 

local context (e.g., “co-production” of knowledge), but that takes time and money and may be 63 

impractical or impossible for many decisions. Another solution is to assess the relevance of 64 

existing research that does not exactly match the local context (e.g., “co-assessment” of 65 

knowledge (Sutherland, Shackelford & Rose 2017)). Relevance includes both “applicability” 66 

and “transferability” (Wang, Moss & Hiller 2005). Transferability is the extent to which an 67 

intervention would have the same effect in a different context (e.g., conservation agriculture 68 

might have a different effect in a different climate). Applicability is the extent to which an 69 

intervention would be feasible in a different context (e.g., conservation agriculture might not 70 

be feasible in an area without access to herbicides or seed drills). We use these terms as 71 

defined above (in the sense of Wang, Moss & Hiller 2005), but we note that applicability, 72 

transferability, external validity, and generalizability are sometimes used interchangeably and 73 

are sometimes used in somewhat different senses (Burchett, Umoquit & Dobrow 2011; 74 

Burford et al. 2013). Here, we focus on transferability, but we also discuss applicability. 75 

It has been suggested that “research cannot provide an exact match to every 76 

practitioner’s circumstances, or perhaps any practitioner’s circumstances because 77 

environments are dynamic and often changing, whereas completed research is static” (Avellar 78 

et al. 2016). A partial solution to this problem could be to make research more dynamic, by 79 

enabling decision makers to interact with it. For example, decision makers could filter a 80 

database of research publications, to find studies that are more relevant to their 81 

circumstances, or they could weight these studies by relevance to their circumstances. Several 82 

methods of interactive evidence synthesis have already been developed. For example, 83 

interactive evidence maps enable users to filter research publications by country (e.g., 84 

McKinnon et al. 2015). Decision-support systems enable users to weight evidence by value 85 

to stakeholders (e.g., Shackelford et al. 2019). However, as far as we are aware, there are no 86 

tools that enable users to filter and weight the studies in a meta-analysis, and thereby to 87 

answer the question, “How effective is this intervention in my specific context?” Therefore, 88 

we developed a tool for this purpose, and here we show how this tool could be used to assess 89 

the local relevance of a global meta-analysis in agroecology.  90 
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This tool is an example of a method that we refer to as dynamic meta-analysis. This 91 

term has been used in different disciplines and in different senses (cf. Garamszegi, Nunn & 92 

McCabe 2012; Maki, Cohen & Vandenbergh 2018; Becker et al. 2020), and sometimes in the 93 

sense of a living systematic review that can be dynamically updated by researchers (Elliott et 94 

al. 2014; Bergmann et al. 2018), instead of a meta-analysis that can be dynamically filtered 95 

and weighted by users. However, as far as we are aware, dynamic meta-analysis has not been 96 

defined as a method, and we define it here. 97 

 98 

Methods 99 

Dynamic meta-analysis 100 

As we define it here, dynamic meta-analysis is a method of interactively filtering and 101 

weighting the data in a meta-analysis. The diagnostic feature of a dynamic meta-analysis is 102 

that it takes place in a dynamic environment (e.g., a web application), not a static 103 

environment (e.g., a print publication), and this enables users to interact with it. Dynamic 104 

meta-analysis includes subgroup analysis and/or meta-regression (Borenstein et al. 2009). 105 

These are standard methods in meta-analysis, and they are used to calculate the results for a 106 

subset of the data, either by analysing only that subset (subgroup analysis) or else by 107 

analysing all of the data but calculating different results for different subsets, while 108 

accounting for the effects of other variables (meta-regression). The variables that define these 109 

subsets can include country, climate type, soil type, study design, or any other metadata that 110 

can be used to define relevance. In a dynamic meta-analysis, users filter the data to define a 111 

subset that is relevant to them, and then the results for that subset are calculated, using 112 

subgroup analysis and/or meta-regression. 113 

Dynamic meta-analysis also includes recalibration (Kneale et al. 2019), which is a 114 

method of weighting studies based on their relevance. With recalibration, users can consider 115 

a wider range of evidence — not only the data that is completely relevant, but also the data 116 

that is partially relevant. Recalibration may be the only option, if no evidence exists that is 117 

completely relevant. 118 

Dynamic meta-analysis also includes elements of critical appraisal (i.e. deciding 119 

which studies should be included in the meta-analysis, based on study quality) and sensitivity 120 
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analysis (i.e. permuting the assumptions of a meta-analysis, to test the robustness of the 121 

results). Critical appraisal and sensitivity analysis are typically performed by systematic 122 

reviewers (e.g., see the Collaboration for Environmental Evidence (CEE) 2018 for standard 123 

methods), but dynamic meta-analysis enables decision makers to participate in both critical 124 

appraisal and sensitivity analysis.  125 

For example, decision makers may want to include or exclude a controversial study. 126 

Or they may want to include studies that are relevant to their local context, even though these 127 

studies are lower-quality, if higher-quality studies are not available (McGill et al. 2015). For 128 

example, if decision makers are looking for conservation studies on a specific biome or 129 

taxon, higher-quality studies may not be available (Christie et al. in press). In some forms of 130 

evidence synthesis, lower-quality studies are excluded from the evidence base before they 131 

can be considered by decision makers (e.g., best evidence synthesis (Slavin 1986)), but in a 132 

dynamic meta-analysis these studies can be included in the evidence base and tagged with 133 

metadata, so that decision makers can consider these studies for themselves.  134 

It may also be important to include all studies, regardless of study quality, if study 135 

quality is related to study results. For example, in a review of forest conservation strategies, 136 

lower-quality studies were more likely to report negative results (Burivalova et al. 2019). By 137 

comparing the results of different analyses that are based on different studies or different 138 

assumptions (e.g., different methods for handling missing data), users can test the sensitivity 139 

of the results to these different assumptions (sensitivity analysis). 140 

 141 

Metadataset: a website for dynamic meta-analysis 142 

We developed Metadataset (www.metadataset.com) to show how dynamic meta-analysis can 143 

be used. Metadataset is a website that provides two methods of interactive evidence 144 

synthesis: (1) browsing publications by intervention, outcome, or country (using interactive 145 

evidence maps) (Figure 1), and (2) filtering and weighting the evidence in a dynamic meta-146 

analysis (Figure 2). Supplementary File 1 is a video that shows how Metadataset can be used. 147 

At present, Metadataset has evidence on two subject areas: (1) agriculture, which 148 

includes data from a meta-analysis of cover crops in Mediterranean climates (Shackelford, 149 

Kelsey & Dicks 2019) and a systematic map of cassava farming practices that is a work in 150 

progress (Shackelford et al. 2018); and (2) invasive species, which includes a systematic 151 

review of management practices for invasive plants that is also a work in progress (Martin et 152 
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al. 2020). However, we plan to expand Metadataset to other subject areas, and we welcome 153 

collaborations. Here we focus on cover crops in Mediterranean climates as an example of 154 

dynamic meta-analysis. 155 

 156 

Figure 1. A screenshot from Metadataset (www.metadataset.com) that shows an interactive 157 

evidence map. 158 

 159 

 160 
 161 

Cover crops are often grown over the winter, as an alternative to bare soil or fallow, 162 

and cash crops are grown over the following summer. Shackelford et al. (2019) analysed the 163 

effects of cover crops on ten outcomes (e.g., cash crop yield and soil organic matter) and 164 

recorded the metadata that we use here for subgroup analysis and meta-regression (e.g., 165 

country, cover crop type, fertilizer usage, and tillage). Shackelford et al. (2019) presented 166 

some subgroup analyses (e.g., legumes vs non-legumes as cover crop types), but noted the 167 

problem of not being able to report all combinations of subgroups that might be of interest to 168 

a reader (e.g., legumes in California, without synthetic fertilizer). We entered their data into 169 

Metadataset, to show how dynamic meta-analysis is a solution to this problem. 170 
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Figure 2. A screenshot from Metadataset (www.metadataset.com) that shows a dynamic 171 

meta-analysis. 172 

 173 

 174 
 175 

Metadataset uses hierarchical classifications of interventions and outcomes, so that 176 

the evidence can be analysed at different levels of resolution. For example, users can analyse 177 

the effects of one intervention (e.g., growing cover crops) on one outcome (e.g., soil organic 178 

matter) or multiple outcomes (e.g., all soil outcomes, including soil organic matter, but also 179 

soil erosion, soil nutrients, etc.). Not only can users decide which studies should be included 180 

in the meta-analysis, but they can also decide which interventions and outcomes should be 181 

included. Please see the Metadataset website for examples of these classification systems 182 

(e.g., https://www.metadataset.com/subject/cassava/browse-by-intervention/publications/).   183 

The Metadataset website is built on two separate web frameworks: (1) the Django 184 

framework for Python (www.djangoproject.com), and (2) the Shiny framework for R 185 

(https://shiny.rstudio.com). Using the Django app, researchers can screen publications for 186 

inclusion in evidence maps and can tag these publications with interventions, outcomes, and 187 

other metadata. They can then enter the data that will be used for dynamic meta-analysis 188 
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(e.g., the mean values for treatment groups and control groups, standard deviations, numbers 189 

of replicates, and P-values), and they can write paragraphs that summarize each study.  190 

Users can browse this evidence by intervention, outcome, or country, to find relevant 191 

publications and/or datasets. They can then click a link to the Shiny app, to interact with their 192 

selected datasets using dynamic meta-analysis. The code is open source (Django app: 193 

https://github.com/gormshackelford/metadataset), Shiny app: 194 

https://github.com/gormshackelford/metadataset-shiny), and the data is open access (the data 195 

can be downloaded in CSV files via the Shiny app). Metadataset was developed as part of 196 

Conservation Evidence (www.conservationevidence.com) and BioRISC (the Biosecurity 197 

Research Initiative at St Catharine’s College, Cambridge; www.biorisc.com). 198 

 199 

Methods for dynamic meta-analysis on Metadataset 200 

The Shiny app uses the methods from Shackelford et al. (2019) to calculate the mean effect 201 

size of an intervention as the log response ratio. The response ratio is the numerical value of 202 

an outcome, measured with the intervention, divided by the numerical value of an outcome, 203 

measured without the intervention. The natural logarithm of the response ratio (the log 204 

response ratio) is typically used for meta-analysis (Hedges, Gurevitch & Curtis 1999). Using 205 

the rma.mv function from the metafor package in R (Viechtbauer 2010), the Shiny app fits a 206 

mixed-effects meta-analysis that accounts for non-independence of data points (for example, 207 

multiple data points within one study, within one publication) by using random effects (e.g., 208 

“random ~ 1 | publication/study” in the rma.mv function in metafor). Users can select, 209 

deselect, and/or adjust settings for missing or poorly reported data. For example, there are 210 

settings for imputing the variance of studies with missing variances (using the mean 211 

variance), approximating the variance of studies with missing variances (based on their P-212 

values; see Shackelford et al. (2019)), and excluding outliers. Please see Supplementary File 213 

2 for more information on methods and settings. 214 

 Users can filter the data (e.g., they can select “Brassica” from the filter for “Cover 215 

crop type”), and then they can use subgroup analysis and/or meta-regression to recalculate the 216 

results (see Figure 2). They can view forest plots and funnel plots of their filtered data and 217 

read the paragraphs that summarize the studies that are included in their analyses. They can 218 

also assign a weight to each study, based on its relevance to their decision-making context. It 219 

has been suggested that a ratio of 5:4 (one “deciban”) is the smallest difference in the weight 220 
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of evidence that is perceptible to humans (Good 1985). Therefore, we allow users to assign 221 

weights on a scale from 0 to 1, in increments of 0.1, without allowing weights that are overly 222 

precise and beyond human perception (e.g., a ratio of 1:0.99). 223 

The standard method in meta-analysis is to weight each study by the inverse of its 224 

variance, so that studies with smaller variances have larger weights. To weight each study not 225 

only by the inverse of its variance, but also by its relevance (assigned by the user), we specify 226 

a weight matrix, W, using the following equation: 227 

𝑊 = 𝐶!/#𝑀$!𝐶!/# 228 

C is a diagonal matrix of relevance weights (one weight for each study, assigned by 229 

the user, with a default weight of 1), and M is the default variance-covariance matrix in 230 

metafor (please see Supplementary File 3 for an example). The default weight matrix in 231 

metafor is the inverse of M, and here we multiply it by the square-root of C, our relevance 232 

matrix, twice (effectively multiplying M by C, but maintaining a symmetrical weight matrix). 233 

With a relevance weight of 1 for each study (the default setting), this has no effect on the 234 

weight matrix, and thus it is also possible for users to fit a model with inverse-variance 235 

weights. However, with a relevance weight of less than 1, a study has less effect on the mean 236 

effect size. We use this method as an example of recalibration, in the sense of Kneale et al. 237 

(2019). Kneale et al. (2019) provided an example of weighting studies in a meta-analysis, 238 

based on the similarity of these studies to different decision contexts, but they noted their 239 

method was provisional. Our method of modifying the weight matrix is also provisional. 240 

However, we think it is useful as an example of recalibration. Similar methods for using 241 

study-quality weights have been implemented in other meta-analyses, but it has been 242 

suggested that these methods also need further research (Stone et al. 2020). 243 

After selecting filters and doing a subgroup analysis, with or without recalibration, 244 

users can also do a meta-regression. The Shiny app fits a model in metafor, as before, but 245 

with all of the selected filters and all of their two-way interactions as moderators. For 246 

example, if the user selects a filter for “Country” and a filter for “Cover crop type” then we 247 

fit a metafor model with “mods = ~ Country + Cover.crop.type + Country:Cover.crop.type”. 248 

We then use the MuMIn package in R (Bartoń 2009) to fit all possible combination of these 249 

moderators (e.g., a model without the two-way interaction term, or a model without any 250 

moderators). We then use the “best” model (with the lowest AICc score) to get the model 251 

predictions for the filters that the user selected (e.g., the results for brassicas in the USA; 252 

please see Supplementary File 3 for an example). We show these results to the user, together 253 
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with the results from the subgroup analysis for the same filters. If one or more of the filters 254 

were not included in the meta-regression model, then we show a warning. 255 

 If a dynamic meta-analysis is done at a high level in the hierarchy of outcomes (e.g., 256 

soil), then it may include multiple outcomes (e.g., soil organic matter, soil nitrate leaching, 257 

and soil water content), and therefore the user may need to decide whether it is better for the 258 

intervention to cause an increase or a decrease in each outcome. Without doing this, the 259 

overall effect size will not be meaningful across multiple outcomes. There are settings for this 260 

in the Shiny app (on the “Value judgements” tab). For example, the user could decide that an 261 

increase in soil organic matter and soil water content, but a decrease in soil nitrate leaching, 262 

would be good outcomes in their context. The user would then select “decrease is better” for 263 

soil nitrate leaching. The Shiny app would then invert the response ratio for that outcome, so 264 

that a positive effect size would represent a good outcome across all outcomes. 265 

 266 

An example of dynamic meta-analysis on Metadataset 267 

To show how Metadataset can be used for dynamic meta-analysis, we imagine a scenario in 268 

which a hypothetical user searches for evidence on cover crops that are brassicas (e.g., 269 

mustard or rapeseed) on irrigated farms in California. Brassicas do not fertilize the soil as 270 

legumes do (by fixing nitrogen), and their negative effects on soil fertility (including 271 

allelochemicals that poison the soil for other plants) could have negative effects on the yields 272 

of the cash crops that are grown over the following summer, even if they do successfully 273 

suppress weeds over the winter. Thus, there is reason to believe that the evidence on cover 274 

crops in general may not be transferable to specific cover crops, such as brassicas or legumes, 275 

which have different effects on the soil (Shackelford, Kelsey & Dicks 2019). We show how 276 

this hypothetical user filters and weights the evidence on Metadataset (also see Table 1 for a 277 

summary of the steps in a dynamic meta-analysis, based on this scenario; see Supplementary 278 

File 1 for a video that shows this scenario; and see Supplementary File 3 for offline R code 279 

that reproduces the online results from the Shiny app). 280 

The evidence on cover crops includes 57 publications from 5 countries: France (2 281 

publications), Greece (2), Italy (24), Spain (9), and the United States of America (20) 282 

(https://www.metadataset.com/subject/cover-crops/). Browsing the data by outcome, this user 283 

finds the hierarchical classification of outcomes. She clicks “filter by intervention” for one 284 

outcome (“10.10.10. Crop yield”) and she sees that there are 316 data points for this outcome. 285 
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She clicks an intervention (“Rotating cash/food crops with cover crops”), and the Shiny app 286 

opens. 287 

 288 

Table 1. An example of the steps in a dynamic meta-analysis. 289 

 290 

Step Action Result 

1. Meta-analysis of all studies Browse Metadataset by intervention 

and/or outcome, make selections, and 

click “Start your analysis” in the Shiny 

app 

Crop yield: 0% different after cover 

crops (non-significant) 

2. Subgroup analysis of selected 

studies 
Select filters and then click “Update 

your analysis” 

Crop yield: 13% lower after cover 

crops (non-significant) (brassicas in 

the USA, with irrigated cash crops) 

3. Meta-regression of all studies, with 

results for selected studies 
With the same selections, click “Meta-

regression” 

Crop yield: 9% lower after cover crops 

(significant) (brassicas in the USA, but 

irrigation was not included in the best 

model) 

4. Recalibration of selected studies Move the sliders on the tab for “Study 

summaries and weights” and then click 

”Update your analysis” 

Crop yield: 17% lower (significant) 

(brassicas in the USA, with irrigated 

cash crops, and with a relevance 

weight of 0.5 assigned to one study) 

5. Sensitivity analysis Permute the settings (e.g., methods for 

handling missing data) and then 

compare the results 

Crop yield: significantly lower than 0% 

  291 

To see the results for all 316 data points in the Shiny app, she deselects the option for 292 

“Exclude rows with exceptionally high variance (outliers)” and then she clicks “Start your 293 

analysis” to start a dynamic meta-analysis for her selected intervention and outcome (Step 1 294 

in Table 1). Based on all 316 data points from 38 publications, cover crops do not have 295 

significant effects on cash crop yields (response ratio = 1; P = 0.9788; cash crop yields are 296 

0% different with cover crops than they are without cover crops, with a 95% confidence 297 

interval from 4% lower to 4% higher). 298 

However, these are the generic results for all of the global evidence. To find results 299 

that are transferable to her specific context, she filters the evidence (Step 2 in Table 1). She 300 

selects “United States of America” from the filter for “Country”, “Brassica” from the filter 301 

for “Cover crop type”, and “Yes” from the filter for “Irrigated cash crop”. She then clicks 302 
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“Update your analysis” to see the subgroup analysis for these filters (Figure 2). Based on 14 303 

data points from 2 publications (the only publications in which the cover crops were 304 

brassicas, grown in the USA, followed by irrigated cash crops), cash crop yields are lower 305 

after cover crops, but not significantly lower (13% lower, with a 95% confidence interval 306 

from 30% lower to 9% higher; P = 0.2381). 307 

She clicks “Meta-regression” to see if the results from this subgroup analysis are 308 

relatively similar to the results from the meta-regression (Step 3 in Table 1). In the meta-309 

regression, cash crop yields are significantly lower after cover crops (9% lower, with a 95% 310 

confidence interval from 12% lower to 5% lower; P < 0.0001). This is not surprising, since 311 

meta-regression is potentially more powerful statistically than subgroup analysis (it uses all 312 

of the data, and it potentially produces better estimates of variance). However, she sees a 313 

warning that one of her selected filters (“Irrigated cash crop”) did not have a significant effect 314 

on this outcome (i.e. this moderator was not included in the “best” meta-regression model, 315 

with the lowest AICc). She deselects this filter and clicks “Update your analysis”. There are 316 

now 30 data points from 3 publications in the subgroup analysis, and yields are now 317 

significantly lower (P = 0.0436). So far, it seems that the global evidence is not transferable 318 

to her local conditions (neutral effects vs negative effects on cash crop yields). However, she 319 

has found some evidence that seems transferable, and she has recalculated the results for this 320 

evidence, using subgroup analysis and meta-regression. 321 

She clicks the tab for “Study summaries and weights” to see the paragraphs that 322 

summarize each of these three studies (Figure 3). She sees one study on maize, one on 323 

tomatoes, and one on beans. Tomatoes are less applicable in her interests (she is mostly 324 

interested in grains or pulses as cash crops), so she sets a relevance weight of 0.5 for the 325 

study on tomatoes. She then returns to the tab for “Dynamic meta-analysis” and clicks 326 

“Update your analysis” to see the effects of this recalibration (Step 4 in Table 1). The results 327 

are still negative, but slightly more significant (P = 0.0224). 328 

She then considers the sensitivity of these results by permuting the settings. For 329 

example, there are several options for handling missing data, and these can be selected, 330 

deselected, and/or adjusted for sensitivity analysis (Step 5 in Table 1). Deselecting the option 331 

for “approximate the variance of the log response ratio” (below the filters), the result is still 332 

significantly negative. Permuting several other options (e.g., the sliders for assumed P-333 

values), this result seems to be robust (all of the results are significantly negative). 334 

 335 
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Figure 3. A screenshot from Metadataset (www.metadataset.com) that shows a method of 336 

recalibration in a dynamic meta-analysis. Users can adjust the weight of a study, based on its 337 

relevance to their context. 338 

 339 

 340 
 341 

She reaches the conclusion that cover crops could have negative effects on cash crop 342 

yields in her local conditions (brassicas as cash crops on irrigated fields in California, and 343 

preferably with grains or pulses as cash crops). She would have reached a very different 344 

conclusion using the global evidence (cover crops have neutral effects on cash crop yields). 345 

However, she found only three relevant studies, and there is some uncertainty in these results. 346 

It has been suggested that uncertainty could be incorporated into decision analysis (Gregory 347 

et al. 2012). She could use results of her dynamic meta-analysis — the mean effect size and 348 

its confidence interval — as inputs for decision analysis. However, we will leave this 349 

hypothetical user here, having shown some of the key features of dynamic meta-analysis on 350 

Metadataset. 351 

 352 

Discussion 353 

Dynamic meta-analysis provides a partial solution to an important problem in evidence-based 354 

decision making — lack of access to relevant evidence (Christie et al. in press; Innvær et al. 355 

2002; Cook, Possingham & Fuller 2013) — not only by helping users to find locally-relevant 356 

evidence in a global evidence base, but also by helping them to use this evidence to reach 357 
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locally-relevant conclusions. We showed how the Metadataset website can be used for 358 

dynamic meta-analysis. For example, we showed how a hypothetical user could reach a 359 

different conclusion when using the global evidence (cover crops have no effect on cash crop 360 

yields) instead of the locally-relevant evidence (brassicas have negative effects on cash crop 361 

yields in California). As a next step, this evidence could be used as an input into decision 362 

analysis (Shackelford et al. 2019), but that is beyond the scope of our work here. Here we 363 

discuss some strengths and weaknesses of dynamic meta-analysis, and we suggest that this 364 

method could be scaled up and used for subject-wide evidence synthesis. 365 

 366 

Dynamic meta-analysis for subject-wide evidence synthesis 367 

Metadataset was developed as part of the Conservation Evidence project (Sutherland et al. 368 

2019), which provides summaries of scientific studies (including the studies of cover crops 369 

(Shackelford et al. 2017) that we used as an example of dynamic meta-analysis). By 370 

browsing and searching the Conservation Evidence website 371 

(www.conservationevidence.com), users may already be able to find summaries of studies 372 

that match their local conditions. In this sense, Metadataset does not represent progress 373 

beyond the interface that is already available on Conservation Evidence. However, 374 

Metadataset goes a step further. It enables users to reach new conclusions based on these 375 

studies.  376 

This is only possible because Metadataset provides quantitative evidence (effect sizes) 377 

that can be dynamically reanalysed, whereas Conservation Evidence provides qualitative 378 

evidence (“effectiveness categories” (Sutherland et al. 2019)) that cannot yet be dynamically 379 

reanalysed. It is possible that dynamic methods could be developed for Conservation 380 

Evidence, perhaps by using expert assessment to assign quantitative scores to each study. 381 

However, there are good reasons that Conservation Evidence does not yet use quantitative 382 

methods. For example, the populations and outcomes of conservation studies are 383 

heterogeneous, and this suggests that meta-analysis might not be an appropriate method of 384 

evidence synthesis (Christie et al. in press), whereas agricultural studies may be more 385 

homogenous. Nevertheless, in subject areas for which quantitative methods are appropriate, 386 

Metadataset represents progress towards the co-assessment of evidence (Sutherland, 387 

Shackelford & Rose 2017), and dynamic meta-analysis complements the qualitative methods 388 

that are used by Conservation Evidence. 389 
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We suggest that dynamic meta-analysis could be particularly useful in the context of 390 

subject-wide evidence synthesis (Sutherland & Wordley 2018; Sutherland et al. 2019), which 391 

is a method of evidence synthesis that was developed by the Conservation Evidence project. 392 

Whereas a typical systematic review includes studies of only one or a few interventions, a 393 

subject-wide evidence synthesis includes studies of all interventions in a subject area (e.g., 394 

bird conservation), and thus it benefits from economies of scale (Sutherland & Wordley 395 

2018). For example, a publication only needs to be read once, and all of the data can be 396 

extracted for all interventions, rather than needing to be read once for each review of each 397 

intervention.  398 

Subject-wide evidence synthesis is evidence synthesis on the scale that is needed for 399 

multi-criteria decision analysis (Shackelford et al. 2019), and thus it is particularly relevant to 400 

a discussion of evidence-based decision making. Because subject-wide evidence synthesis is 401 

global in scale, it begs the question, “How relevant is this global evidence for my local 402 

decision?” We suggest that dynamic meta-analysis, or some similar method of assessing the 403 

local relevance of global evidence, could be especially useful for subject-wide evidence 404 

synthesis. On Metadataset, our work on invasive plant management (Martin et al. 2020) is an 405 

example of subject-wide evidence syntheses in conservation biology, and it will soon be 406 

possible to assess the transferability of this evidence using dynamic meta-analysis. It will also 407 

be possible to browse this evidence by intervention and outcome, and thus to consider its 408 

applicability to a specific decision (using dynamic meta-analysis only for those interventions 409 

and outcomes that are considered to be applicable). 410 

 411 

Metadataset compared to other tools 412 

Researchers in psychology have suggested “community augmented meta-analysis” (CAMA), 413 

in which open-access databases of effect sizes could be updated and reused by researchers for 414 

future meta-analyses (Tsuji, Bergmann & Cristia 2014). MetaLab 415 

(http://metalab.stanford.edu) is an implementation of CAMA that includes data from several 416 

meta-analyses in psychology (Bergmann et al. 2018). It enables researchers to test the effects 417 

of covariates on the mean effect size (using meta-regression), but it does not provide options 418 

for subgroup analysis or recalibration. Metalab and other interactive databases of effect sizes 419 

could presumably be modified to provide these options. However, as we suggested above, 420 

dynamic meta-analysis could be particularly useful for subject-wide evidence synthesis, and 421 
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therefore it would perhaps be better to have one large database for each subject, with 422 

interoperable data and metadata, rather than many small databases. 423 

 An older, offline tool that seems to be more similar to Metadataset in both function 424 

and intention is the Transparent Interactive Decision Interrogator (TIDI) in medicine 425 

(Bujkiewicz et al. 2011). TIDI provides options for subgroup analysis and study exclusion, 426 

but not recalibration. A newer, online tool is IU-MA (www.iu-ma.org), which provides 427 

“interactive up-to-date meta-analysis” of two datasets in medicine (Becker et al. 2020). 428 

Becker et al. (2020) also refer to dynamic meta-analyses, but they do not provide a definition 429 

of the term, and although their IU-MAs provide options for subgroup analysis, they do not 430 

provide options for recalibration.  431 

All of these tools are clearly useful, and there are clearly many similarities between 432 

them, but there are also many differences. One important difference is that none of these 433 

tools, with the exception of Metadataset, provides options for recalibration (i.e. weighting 434 

individual studies based on their relevance) or for analysing the data at different levels of 435 

resolution (i.e., lumping or splitting interventions and outcomes before starting a dynamic 436 

meta-analysis). We see recalibration as a key feature for dynamic meta-analysis. We also see 437 

this lumping or splitting of evidence (which we will refer to as the dynamic scoping of a 438 

meta-analysis) as a key feature. As well as assessing the transferability of evidence using 439 

dynamic meta-analysis, we suggest that users should be able to assess the applicability of 440 

evidence by dynamically scoping the meta-analysis (which is also a process of filtering the 441 

evidence, like subgroup analysis, but it is done before starting the meta-analysis). Dynamic 442 

scoping could also provide a partial solution to the “apples and oranges” problem in meta-443 

analysis (Sharpe 1997), since users could decide for themselves which “apples” and which 444 

“oranges” should be compared (e.g., deciding which interventions and/or outcomes should be 445 

analysed together). Therefore, we think that both filtering (subgroup analysis and dynamic 446 

scoping) and weighting (recalibration) should be seen as key features of dynamic meta-447 

analysis. However, we note that both recalibration and dynamic scoping need to be further 448 

developed (see below). 449 

Recalibration has the potential to improve evidence synthesis in subject areas where 450 

there is not any evidence that is completely relevant to decision makers (where subgroup 451 

analysis would not be useful). This relates to another important difference between these 452 

tools, which is that they are solutions to different problems, in different disciplines 453 

(agroecology, conservation biology, medicine, and psychology). In some disciplines, the need 454 
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for recalibration may be less important than we perceive it to be in agroecology and 455 

conservation biology, in which there may be no evidence for a specific biome or taxon 456 

(Christie et al. in press; Cook, Possingham & Fuller 2013), and in which heterogeneity may 457 

be higher than it is in carefully controlled clinical or laboratory sciences. Thus, recalibration 458 

and other methods of assessing existing evidence may be especially important in disciplines 459 

with sparse evidence (cf. Sutherland & Wordley 2018). 460 

 461 

Protocols for evidence use  462 

Dynamic meta-analysis could lead to a rebalancing of power and responsibility in evidence-463 

synthesis, since evidence users would be able to make decisions that are typically made by 464 

researchers (Table 2). Protocols for evidence synthesis by researchers are well developed 465 

(e.g., CEE 2018), but protocols for evidence use by decision makers may need to be 466 

developed. Researchers who reanalyse existing datasets already need to take extra steps to 467 

avoid conflicts of interest and other perverse incentives (Christakis & Zimmerman 2013). 468 

However, these steps may become even more important as data is reanalysed not by 469 

researchers but by policy makers or other evidence users, especially if they have political 470 

agendas or other conflicts of interest that might bias their conclusions. 471 

For example, if a user does multiple analyses, selecting and deselecting different 472 

filters, then it will be difficult to interpret the statistical significance of their results, because 473 

of the multiple hypothesis tests that this involves (the problem of “data dredging”) (Szucs 474 

2016). Furthermore, if a user does multiple analyses, and selects only one of these analyses as 475 

the basis for their decision (perhaps because it supports their political agenda), then it will be 476 

difficult to defend the credibility of their conclusions (the problem of “cherry picking”). 477 

Protocols for evidence use could require dynamic meta-analyses to be predefined (e.g., 478 

predefining the filters that would be selected), and users could be restricted to a limited 479 

number of analyses. 480 

 481 

Standardized classification systems for metadata 482 

Dynamic meta-analysis is limited by the quantity and quality of data and metadata that are 483 

available for each study. It has often been suggested that standards of data reporting need to 484 
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be improved (e.g., Gurevitch & Hedges 1999), but here we suggest that standards of metadata 485 

reporting also need to be improved, and standardized systems for classifying metadata need 486 

to be developed for use in evidence synthesis. For Metadataset, we developed hierarchical 487 

classification systems for interventions and outcomes, and we will refine these systems as we 488 

review new studies. Standardized classification systems for other forms of metadata (e.g., 489 

terrestrial ecoregions (Olson et al. 2001)) will either need to be adopted or developed (e.g., as 490 

an extension of Ecological Metadata Language (Michener et al. 1997)). If a unified system 491 

could be developed for classifying all of the interventions, outcomes, and other metadata 492 

within a discipline, then the evidence from multiple subject-wide evidence syntheses could be 493 

integrated into a single discipline-wide database with interoperable data and metadata (cf. 494 

Sutherland et al. 2019). This should not be seen as a precondition for dynamic meta-analysis, 495 

but it could be a vision for the future. 496 

 497 

Conclusion 498 

Nature is infinitely variable, and in many disciplines it is simply not possible to make 499 

generalizations that are universally applicable and transferable. But neither is it possible to be 500 

infinitely patient in waiting for locally-relevant evidence to be co-produced for every 501 

decision. If decisions need to be made quickly and efficiently, they may need to be based on 502 

the co-assessment of existing evidence, rather than the co-production of new evidence 503 

(Sutherland, Shackelford & Rose 2017). Here we have defined dynamic meta-analysis as a 504 

method that can be used for the co-assessment of existing evidence. We have also shown how 505 

this method could be used to reach new conclusions from existing evidence, with the example 506 

of Metadataset. 507 

 508 

  509 
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Table 2. Some comparisons between static and dynamic meta-analysis. In dynamic meta-510 

analysis, many decisions are made by users, not researchers. However, these decisions are 511 

informed by researchers, who provide the metadata on which the decisions are based. In a 512 

static meta-analysis, most decisions are made by researchers. However, these decisions are 513 

often informed by users, who are often consulted when the protocol for a meta-analysis is 514 

being developed. Thus, both researchers and users can be involved in both static and dynamic 515 

meta-analysis, but only in dynamic meta-analysis can users interact with the methods and 516 

results. 517 

 518 

Questions Static Dynamic  Strengths (+) and weaknesses (-) of dynamic meta-analysis 

Which interventions 

should be reviewed? 

Which outcomes should 

be reviewed? 

Researchers 

decide 

Users 

decide 

+ Users can decide whether interventions and outcomes should 

be split or lumped (e.g., as comparisons of “apples and 

oranges”) 

– Researchers may not have classified interventions and 

outcomes in a way that is relevant to users 

Which studies should be 

included? High-quality 

studies only? Low-

quality studies that are 

locally relevant? 

Researchers 

decide 

Users 

decide 

+ Users can include/exclude studies based on relevance and 

study quality 

+ Users can weight studies based on relevance and study 

quality 

– Users may not understand the limitations of study quality (e.g., 

blocking, controls, correlation vs causation, etc.) 

– Researchers may not have classified study quality or 

described methods in a way that is relevant to users (poor 

reporting of methods or missing metadata) 

Which results are 

informative? 

Researchers 

decide 

Users 

decide 

+ Users can explore results that researchers may not have 

explored (e.g., cover crops that are brassicas, in the USA, with 

irrigation)  

– Users may not understand, or may be overwhelmed by, the 

analysis methods and results (e.g., multiple options) 

– Researchers may not have classified metadata in a way that is 

relevant to users 

Which results are 

credible? 

Researchers 

decide 

Users 

decide  

+ Users can select, deselect, and adjust settings to control the 

assumptions 

+ Users can permute settings for sensitivity analysis  

– Users may not understand the limitations of the analysis 

methods and results (e.g., model validity) 

– Results may be vulnerable to cherry picking, data dredging, 

and other biases, if protocols for evidence use are not developed 

 519 
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