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ABSTRACT 
Autism Spectrum Disorder (ASD) is a neurodevelopmental condition with hallmark behavioral 
manifestations including impaired social communication and restricted repetitive behavior. In 
addition, many affected individuals display metabolic imbalances, immune dysregulation, 
gastrointestinal (GI) dysfunction, and altered gut microbiome compositions. We sought to better 
understand non-behavioral features of ASD by determining molecular signatures in peripheral 
tissues. Herein, we present the untargeted metabolome of 231 plasma and 97 fecal samples from 
a large cohort of children with ASD and typically developing (TD) controls. Differences in lipid, 
amino acid, and xenobiotic metabolism discriminate ASD and TD samples. We reveal 
correlations between specific metabolite profiles and clinical behavior scores, and identify 
metabolites particularly associated with GI dysfunction in ASD. These findings support a 
connection between GI physiology, metabolism, and complex behavioral traits, and may advance 
discovery and development of molecular biomarkers for ASD. 
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INTRODUCTION 

Many diseases are associated with informative metabolic signatures, or biomarkers, that enable 

diagnoses, predict disease course, and guide treatment strategies. In contrast, autism spectrum 

disorder (ASD) is diagnosed based on observational evaluation of behavioral symptoms, 

including reduced social interaction and repetitive/stereotyped behaviors (1). The average age of 

ASD diagnosis is between 3-4 years old (2), at which time children can receive behavioral 

therapy, the gold standard treatment. Because earlier diagnosis improves efficacy of behavioral 

therapies (3, 4), molecular biomarkers represent an attractive approach for identifying ‘at-risk’ 

populations and may aid development of personalized therapies. This prospect is increasingly 

important given the rising rate of ASD diagnoses, which currently stands at up to 1 in 59 children 

in the United States (2), with no FDA approved drugs for core behavioral symptoms.  

 

Metabolic abnormalities have been reported in ASD (5), though most have measured only a 

small subset of metabolites and many outcomes have not reproduced between cohorts. 

Mitochondrial disease, which heavily influences systemic metabolism, is estimated to be higher 

in ASD compared to controls (5% vs ~0.01%) (6), and genes crucial for mitochondrial function 

are risk factors for ASD in humans and rodent models (7). The metabolic abnormalities 

associated with mitochondrial dysfunction in ASD affect cellular energy, oxidative stress, and 

neurotransmission in the gut and the brain (7–19). Other metabolic profiles in ASD implicate 

aromatic and phenolic metabolites, including derivatives of nicotinic, amino acid, and hippurate 

metabolism (20–30). Various amino acids are detected at differential levels across studies and 

across sample types, but any consistent patterns are difficult to discern (15, 24, 26, 29, 31–34).  
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Some of the discrepancies between these studies are likely due to differences in sample number, 

tissue analyzed, and methodology. Other sources of variability include differences in 

environmental factors, such as diet and gut bacteria, which differ between ASD and TD 

populations (35–37). Diet is a major source of circulating metabolites, impacting the metabolome 

directly or indirectly through chemical transformation by the trillions of gut microbes, the 

microbiome, which has been proposed to modulate complex behaviors in animal models and 

humans (38–40). Such proposed environmental modulators of ASD may integrate with genetic 

risks to impact behavioral endpoints through the actions of small molecules produced in 

peripheral tissues outside the brain.  

 

Herein, we present a comprehensive comparison of an extensive panel of identified metabolites 

in human plasma and feces from a large cohort of matched ASD and TD children. We identified 

differential levels of metabolites ranging from hormones, amino acids, xenobiotics, and lipids, 

many of which correlate with clinical behavior and GI scores. To our knowledge, this is the first 

study to concurrently evaluate paired intestinal and systemic metabolomes in a high-powered 

analysis with a large number of identified metabolites, allowing direct associations between 

metabolites previously highlighted in ASD samples and discovering new metabolites of interest. 

These findings support the emerging concept of evaluating non-behavioral features in the 

diagnosis of ASD and its GI comorbidities. 

 

METHODS AND MATERIALS 

Participants: Samples for this study, aged 3-12 years old, were collected through the UC Davis 

MIND institute (41, 42). ASD diagnosis was confirmed at the MIND Institute by trained staff 
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using the Autism Diagnostic Observation Schedule (ADOS), and the Autism Diagnostic 

Interview-Revised (ADI-R). Subjects were diagnosed prior to 2013 based on DSM IV. Typically 

developing (TD) participants were screened using the Social Communication Questionnaire 

(SCQ). Participants in the TD group scored within the typical range, i.e. below 15, on the SCQ 

and above 70 on the Mullen Scales of Early Learning (MSEL) and Vineland Adaptive Behavior 

Score (VABS). Ninety-seven of the participants, who also provided the stool samples, completed 

an additional evaluation to determine gastrointestinal (GI) symptoms. GI status was determined 

using the GI symptom survey (GISS), based upon Rome III Diagnostic Questionnaire for the 

Pediatric Functional GI Disorders (43) and described in detail elsewhere (42).  

 

See Supplemental materials for additional methods. 

 

RESULTS 

Plasma and Fecal Metabolomes Differ between ASD and TD 

Plasma samples from 130 ASD and 101 TD children were analyzed along with fecal samples 

collected from a subset of these same ASD (n=57) and TD individuals (n=40) (Figures S1A-

S1G). Samples and metrics of behavioral and GI scores were obtained from the UC Davis MIND 

institute (41, 42). The ASD group was stratified into subsets of children with GI symptoms 

(ASD+GI) or without GI symptoms (ASD-GI), to explore potential effects of comorbid intestinal 

dysfunction in ASD (40 out of 130 ASD samples were +GI). This stratification was based on 

symptoms associated with ASD including diarrhea, constipation, and irritable bowel syndrome-

like symptoms.  
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Samples were analyzed by the global metabolite panel (plasma and fecal samples) and the 

complex lipid panel (plasma samples) by Metabolon, Inc. (Durham, NC), which identified a total 

panel of 1,611 plasma and 814 fecal metabolites (Tables S1-S2). Overall, we discovered that 310 

metabolites were differentially abundant between the ASD and TD groups in plasma and 112 

metabolites were differentially abundant in feces (Figures 1A-1B, S1C, and Tables S1-S2). 

Using a quantitative assay for a targeted panel of metabolites, we observed a high correlation 

between relative abundance and precise concentration (Figure S2A). Overall, these data expand 

on previous evidence that the metabolomic profile of ASD and TD populations display 

differences not only in the gut compartment, but also in circulation, which may affect the levels 

of metabolites throughout the body, including the brain (44, 45).  

 

To appreciate the biological relevance of different metabolomes between ASD and TD, 

individual metabolites were integrated into biochemical pathways for pathway enrichment 

analysis, revealing the degree of change within each. Here, we identified large scale changes, 

mostly in lipid, xenobiotic, and nucleotide pathways associated with diverse physiological 

processes (Figures 1C-1D, S2B). We then used Random Forest machine learning analysis to 

determine if metabolite profiles can unbiasedly predict whether the sample came from an ASD 

and TD donor. Overall, the modest predictive accuracy of this machine learning approach was 

68% for plasma and 67% for feces. To test whether focusing on the most discriminating 

metabolites would improve the prediction, we repeated the Random Forest analysis using the top 

30 metabolites and found that the predictive accuracy for plasma improved slightly to 69% when 

using all ASD samples, and to 73% when using only ASD-GI samples. For fecal samples, the 

predictive accuracy improved to 75% using all ASD and to 73% using only ASD-GI. The top 30 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted May 20, 2020. ; https://doi.org/10.1101/2020.05.17.098806doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.17.098806


 7 

metabolites, calculated by measuring the mean decrease in accuracy of the machine learning 

algorithm, are useful to describe the strongest drivers of overall metabolic differences between 

ASD and TD populations. These most discriminatory metabolites were primarily from the lipid, 

amino acid, xenobiotic, and cofactor/vitamin super pathways (Figures 1E-1F). Several of these 

metabolites have been previously linked to ASD, such as steroids, bile acids, acyl-carnitines, and 

nicotinamide metabolites (46–49). Further, multiple molecules known to be produced or 

manipulated by the gut microbiota also featured prominently, including 4-ethylphenyl sulfate 

(4EPS), which is elevated in an ASD mouse model, and indolelactate, a microbe-derived 

tryptophan metabolite (Figure 1E) (50, 51). The two most discriminatory molecules in plasma 

(Figures 1G-1H) and feces (Figures 1I-1J) are depicted. Metabolites correlating the strongest 

with these discriminatory metabolites are closely related on a structural and metabolic level 

(Figures 1K-1L). 

 

Global Metabolite Levels Correlate with Clinical Behavioral Scores 

Using clinical metadata for ASD individuals, we correlated the levels of individual metabolites 

to the verbal, social, and nonverbal scores of standard diagnostic measures: the Autism 

Diagnostic Interview, Revised (ADIR), a parent questionnaire, and the cumulative Autism 

Diagnostic Observation Schedule severity score (ADOS-SS), conducted by trained health 

professionals (1) (Tables S1-S2). Next, grouped correlations between the behavior metrics and 

entire metabolite pathways were calculated (Figure 1M). We found that verbal and social scores 

primarily correlate with lipid metabolism pathways and that nonverbal scores have the fewest 

correlations. The ADOS-SS correlated with diverse metabolite pathways, including amino acids 

and food/plant component pathways, which may be partly due to the diverse array of symptoms 
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integrated into the ADOS-SS score. Additionally, when stratified by severity of behavioral 

scores, we observe modest clustering according to plasma metabolites correlated to the disorder 

between the top and bottom quartiles of behavior severity groups for verbal, social, and ADOSS-

SS metrics, but not for nonverbal, and less so with fecal samples (Figures 1N, S1H-S1I). These 

correlations support the involvement of lipid, amino acid, and xenobiotic metabolism in the 

etiology of ASD, as previously described (8, 48, 52), and reveal new candidates for ASD 

biomarkers that correlate with symptom severity. 

 

Transfer of ASD Fecal Microbiota into Mice is Accompanied by Metabolic Signatures 

Since microbial metabolites ranked highly in the Random Forest machine learning analysis, we 

tested if any of the observed metabolite differences in humans could be transferred to mice via 

fecal microbial transplant. We selected 4 male donor samples from each of the ASD and TD 

groups and colonized 2-3 male germ-free mice per donor for three weeks before collecting 

plasma and fecal samples for metabolite profiling and bacterial DNA sequencing (Figure S2C-

S2D), respectively. Global metabolomic analysis revealed that colonized mice modestly cluster 

by donor and group when statistically significant metabolites are considered in PCA analysis 

(Figure S2E). We selected the human donors based on 4EPS levels (Figure S2F), due to its 

involvement in an ASD mouse model (50) and dysregulation of similar phenolic compounds in 

human ASD (22, 24, 28, 29, 53). 4EPS is not produced by the host and is strictly a bacterial 

metabolite (50, 54). Surprisingly, we observed 4EPS levels in a bimodal distribution in mouse 

samples (Figure S2G-S2H). In spite of the surprising results with 4EPS, many of the metabolites 

with the highest fold change and lowest p-value are indeed other phenolic molecules such as 

metabolites of hippurate, tyrosine, and diet-derived phenols (Figures S2I, Table S5). While 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted May 20, 2020. ; https://doi.org/10.1101/2020.05.17.098806doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.17.098806


 9 

preliminary, these studies reveal microbiome-mediated effects on xenobiotic pathways and 

phenolic metabolites dysregulated in ASD. 

 

Lipid and Xenobiotic Metabolites Correlate with GI Symptoms  

Considering the prevalence of intestinal issues in ASD, GI-dependent metabolite analysis 

between individuals may provide useful insights. Accordingly, we found a total of 87 and 24 

metabolites in plasma and feces, respectively, that were differentially abundant within the 

ASD+GI compared to ASD-GI individuals (Figures 2A-2B). At the pathway level, we found 

differences in free fatty acid and xenobiotic metabolites in the food component and plant 

pathways between ASD+GI vs ASD-GI plasma (Figure 2C), with no broad GI-dependent 

pathway alterations in fecal samples (Table S2). In plasma, free fatty acids of multiple chain 

lengths were lower in ASD+GI compared to ASD-GI samples, including monounsaturated, 

saturated, and polyunsaturated fatty acids (PUFAs) (Figure 2D). PUFAs are anti-inflammatory 

and lower levels of these fatty acids may contribute to GI dysfunction directly (12).  

 

Several metabolites from the food component and plant pathway also discriminate ASD+GI from 

ASD-GI, such as lower circulating piperine metabolites in ASD+GI plasma samples (Figures 2E-

2G). A lower level of piperine metabolites was also associated with higher ADOS-SS (Figure 

2H) and worse nonverbal scores (Table S1). Observed alterations to piperine metabolite levels 

are supported by the fact that oral administration of piperine has been successfully used as a 

treatment in preclinical ASD models, presumably due to its antioxidant quality (55). While these 

correlations are interesting, the implications of correlating an altered metabolome and GI 

symptoms in ASD remain to be determined. 
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Steroid Hormone Levels are Elevated in ASD 

Multiple human ASD studies have examined the levels of specific steroid metabolites within 

androgenic, pregnenolone and progesterone metabolism, with some finding aberrant levels, 

positive correlations with ASD severity, and behavioral improvement following treatments that 

lower levels of certain hormones (47, 56–64). On the other hand, in a recent clinical trial of ASD 

children given an antioxidant treatment, levels of pregnenolones and androgens increased and 

correlated with improved behavior (65). In our dataset, we found robust increases of almost 

every detected metabolite within the pregnenolone, androgen, progesterone, and corticosteroid 

pathways in the plasma of ASD children (Figures 1C, 3A, Table S1). Similarly, some androgenic 

steroid pathway metabolites were elevated in ASD fecal samples (Figures 3A, Table S2). This is 

a strong indicator that the physiological pathways associated with the downstream metabolism of 

cholesterol are significantly altered between ASD and TD populations (Figure 3B). There does 

not appear to be a global change in steroid metabolism, as most primary bile acid and sterol 

metabolites were unaffected (Tables S1-S2). We observed some elevation of these hormone 

levels independent of sex, which is notable considering the male bias in ASD, reflected in our 

primarily male sample set (7-15% female) (66) (Figure S3A-S3B). Because a cluster of our 

samples are from older individuals in the ASD group, and to account for age-dependent increases 

in androgens, we stratified by age and still observed heightened androgenic and pregnenolone 

metabolite levels in ASD subpopulations (Figure S3C). Taken together, these data indicate that 

steroidal hormone metabolism may be altered in the ASD population relative to TD samples and 

that these differences are not driven solely by sex or age differences in our cohort.  
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Lipid Metabolite Levels Differ in ASD  

Lipids are crucial for energy storage, cellular membrane integrity and cell signaling. They play a 

variety of roles in the central nervous system, and their dysregulation has been linked to ASD (9, 

11). Phospholipids have been measured at lower levels, while long chain fatty acids are 

reportedly elevated but PUFAs have been measured at both higher and lower levels, depending 

on the cohort (9, 12, 13). Here, we performed an untargeted, quantitative metabolite analysis on 

complex lipids. The concentrations of 999 lipids were quantified, and 13.7% of these were 

significantly different in the ASD samples, with 4.6% increased and 9.1% decreased compared to 

TD samples. Many of these differentially abundant lipids included phospholipids, cholesterol 

esters and glycerolipids. In general, shorter (14-18 chain length) saturated fatty acids were less 

abundant in ASD throughout the lipid classes (Figures 3C, S4A-S4B).  

 

PUFA lipid levels were also different, with elevations in diacylglycerols and free fatty acids, and 

an enrichment of the 18:2 (linolenic) chain length in most lipid classes (Figure 3C). Fecal 

samples generally trended in the opposite direction from plasma in PUFA lipids (Figure S4C, 

Table S2). Intriguingly, multiple lipids with linolenic and linoleic (18:3) chains were correlated 

with social behavior (Tables S1 and S2). PUFA lipids containing linolenic and linoleic acids are 

precursors to the important PUFAs (arachidonic 20:4 and docosahexaenoic 22:6 acids) for brain 

development, function, and structural integrity (12). Future studies are needed to determine if 

these specific changes in lipid levels contribute to ASD symptoms. 

 

ASD Correlates with Cellular Energy and Oxidative Stress Metabolites 
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Many lipids are markers of mitochondrial and oxidative stress, offering a snapshot into cellular 

metabolic states. These markers include acyl-carnitines, which have been highlighted in various 

ASD studies and are established indicators of mitochondrial dysfunction (11, 12, 14–18, 24, 25, 

33, 46, 58, 67–71). Acyl-carnitines are formed to allow transport of lipids across the 

mitochondrial membranes for beta-oxidation, and abnormal levels of these conjugated lipids 

accumulate to higher levels with a decrease in beta-oxidation. Interestingly, high levels of short 

acyl-carnitines are found in rodent models where ASD-like behaviors are induced with the short 

chain fatty acids, valproic and propionic acids (72).  

 

We found differential levels of various acyl-carnitines in ASD, creating a pattern of more 

abundant short chain acyl-carnitines and less abundant long chain acyl-carnitines in the ASD-GI 

samples compared to TD samples (Figure 4A). Acyl-carnitines are positively correlated with 

more severe social defects, an effect driven by structures with shorter moieties (C2-C14) (Figure 

1M, Table S1). In fecal samples, acetylcarnitine (C2) and free carnitine were elevated in ASD 

(Figures 4B-4C) and were highly discriminatory (Figure 1F). Other mitochondrial markers in 

both plasma and feces were also differentially abundant in ASD and are summarized in Figure 

4D along with markers of phospholipid metabolism, which occurs largely in the mitochondria 

and was significantly altered in fecal samples (Figures 4D, 1D). Additionally, the 5 plasma 

metabolites most positively correlated with ADOS-SS are all involved in these cellular energy 

pathways (Figure S4D, Table S1). These observed differences in energy markers and lipids could 

have a neurodevelopmental effect during periods when the high lipid and energy requirement in 

the brain is crucial (73–75), and alterations to levels of tricarboxylic acid (TCA) cycle 

intermediates have been observed in human ASD prefrontal cortex samples (49). Such defects in 
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cellular metabolism support the theory that mitochondrial dysfunction may not only be comorbid 

with ASD but also a potential contributing factor, as suggested by numerous previous reports (6, 

13, 67, 69, 72). 

 

Amino acid signatures of oxidative stress and mitochondrial function are also present in our 

dataset. Dysregulated amino acid degradation, homeostasis, and import into the brain have been 

implicated as a cause of neuronal stress in ASD, and supporting metabolomic data has shown 

perturbations of various amino acid pathways, such as glutamate, methionine, glutathione, and 

gamma-glutamyl metabolites (10, 17, 24, 26, 29, 33, 49, 52, 76), which exhibit differences as 

well (Figure 4E). We also demonstrate correlations between pathways of oxidative stress 

(cysteine, methionine, SAM and glutathione pathways) with the ADOS-SS (Figure 4F). Some of 

these molecules were found in higher levels in the ASD feces and at lower levels in the ASD 

plasma, such as hypotaurine (Figures 4E, 4G-4H), which might indicate altered fecal production, 

excretion or differential uptake into the plasma potentially through varied intestinal permeability. 

Similar to hypotaurine, levels of its precursor, taurine, were significantly increased in ASD fecal 

samples, although not altered in plasma (Figure S4E and S4F). Taurine plays many roles 

throughout the host, and has previously been measured at altered levels in ASD, although with 

little consensus (17, 18, 24–26, 33, 65, 71, 77). Hypotaurine and taurine deficiency has been 

shown to lead to defects in cell differentiation in the brain (77) and their dysregulation could 

alter neuronal signaling (78). 

 

Oxidative stress-related glutathione pathway precursors, gamma-glutamyl amino acids, are 

relevant to ASD through their influence on levels of neurotransmitters such as gamma-
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aminobutyric acid (GABA) (78, 79), which is widely thought to play a role in ASD. In a recent 

ASD study, an experimental treatment that led to increased gamma-glutamyl AAs and other 

redox pathway metabolites correlated with improved behavior metrics in children (65). Almost 

every gamma-glutamyl amino acid is negatively correlated with ADOS-SS (Figure 4I). We also 

observe perturbations in the urea cycle, which processes the amino group of amino acids for 

excretion in urine (Figure S4G-S4H). Abnormalities in this pathway can be indicative of altered 

amino acid degradation observed in ASD and can lead to neurotoxic accumulation of nitrogen-

containing compounds in the blood (80). Together, these results corroborate and extend a 

growing body of research into altered mitochondrial metabolism and oxidative stress in ASD. 

 

Differential Phenolic Xenobiotic Metabolite Levels in ASD  

Phenolic metabolites, a diverse structural class comprised of thousands of molecules containing a 

phenol moiety, come from dietary ingredients or from biotransformation of aromatic amino acids 

by the gut microbiota. In their free phenolic forms they can be readily absorbed through 

intestinal tissues; however, microbial modification of these molecules can significantly alter their 

absorption, bioavailability, and bioactivity (81), leading to various benefits or harm to the host 

(81, 82). In fact, altered levels of phenolic molecules have been highlighted in many ASD 

metabolomic studies (18, 20–26, 28, 31, 32, 53, 65, 83, 84). However, a consensus of enrichment 

or depletion of these metabolites across ASD vs. TD groups has yet to be reached, and most 

studies have only measured a small subset of this structural class of metabolites.  

 

We observed altered levels of phenolic metabolites belonging to several interrelated pathways, 

including tyrosine, benzoate, and food component and plant metabolites (Figure 5A). Some 
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molecules, such as homovanillate and tyramine, are involved in neurotransmitter metabolism 

(18). Others include hippurate derivatives, which we measured at lower levels in the ASD 

plasma samples (Figure 5A). Phytoestrogens such as daidzein, genistein, and equol derivatives 

are elevated in our ASD plasma samples (Figure 5A). These metabolites have purported health 

benefits but are also known disruptors of endocrine signaling (85). Additionally, we detected 

altered levels of molecules with structural similarity to para-cresol sulfate, a toxic molecule 

elevated in the urine of young ASD children (20, 22). These include, among others, 4-

ethylphenyl sulfate (4EPS), 2-ethylphenylsulfate, cresol derivatives, 4-allylphenyl sulfate, and 4-

methylbenzenesulfonate, the latter of which was elevated a remarkable 60-fold in a small subset 

of ASD samples (Figure 5B-5D, Table S1). Some changes in the levels of these phenolic 

molecules are also observed in animal models of ASD (50, 86). Previously, 4EPS was observed 

at a 46-fold elevated level in the maternal immune activation mouse model, and daily 

administration of synthetic 4EPS to wild type mice was sufficient to induce an anxiety-like 

phenotype (50). Here, in ASD plasma samples, 4EPS levels were increased 6.9-fold (Figure 5D). 

Other phenolic metabolite levels correlate with 4EPS in ASD samples, including 4-acetylphenyl 

sulfate, a derivative of 4EPS, and others. (Figure 5E, S5A-S5B). These observed alterations in 

phenolic molecules, combined with mounting evidence from previous studies, suggest that 

phenolic structural metabolites may play a role in ASD.  

 

DISCUSSION 

Changes in the metabolome have been linked to a number of neurodevelopmental and 

neurodegenerative disorders (87, 88). The current study includes a comprehensive profiling of 

the metabolites from 231 plasma and 97 matched fecal samples from ASD and TD individuals 
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who have been extensively behavior tested. We observed that specific individual metabolites and 

metabolic pathways in lipid, amino acid, and xenobiotic metabolism were altered between ASD 

and TD groups, and that many of these same molecules and pathways correlated to severity of 

ASD behavioral scores. The core findings are summarized in Figure 6. Various steroid hormone 

metabolite levels were elevated in ASD samples. PUFA levels, and short chain acyl-carnitines 

were generally elevated in ASD plasma, while saturated fatty acid levels and long-chain acyl-

carnitines were decreased, contributing to a general picture of dysregulated cellular energy and 

oxidative state, with potential connections to mitochondrial dysfunction in ASD. Some of the 

lipid and xenobiotic metabolites also showed interesting changes within the ASD group when 

stratified by the presence of GI symptoms. Finally, many phenolic metabolites, derived largely 

from host and bacterial metabolism of amino acids, plant polyphenols, and other food 

components were detected at differential levels in plasma and feces between the comparison 

groups. 

 

ASD is diagnosed by behavioral tests, with extensive heterogeneity of symptoms, severity, and 

etiology between individuals and little consensus on molecular mechanisms. This enigmatic 

spectrum has a strong but complex genetic basis, with hundreds of reported risk genes (89). The 

contributions of risk alleles to behavior is a vast and active area of research. In addition to 

genetics, understanding of altered metabolite levels in blood, feces, and brains of ASD 

individuals may provide a glimpse into physiologic aspects of the disorder and hold the potential 

to advance diagnosis and/or stratification of sub-populations of ASD. 
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Interestingly, multiple mouse models support the notion that gut metabolites are associated with 

brain development and function (48, 90, 91). Some metabolites are closely linked with 

neurological disorders, either to positive or negative outcomes (92, 93). Several examples have 

been reported of gut metabolites entering circulation and directly affecting the brain, as well as 

cases where metabolites stimulate pathways in the gut, immune, or autonomic nervous system 

and exert changes to the brain and to behavior (94–97). Comprehensive metabolic profiling in 

humans and animal models provides insight into the molecular status of disease and how genetic 

factors and environmental risks interact. Deeper analysis of our dataset along with additional 

studies, with future empirical studies to validate the relevance of our observations, could 

illuminate aspects of ASD pathophysiology. The intriguing correlations between ASD behaviors, 

altered levels of fecal and plasma metabolites, and GI symptoms contribute to the concept that 

ASD may be viewed as a whole-body condition, and argue for increased investigation into 

peripheral aspects of disease that may lead to advances in diagnosis and improved stratification 

of ASD populations.  
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FIGURE TITLES AND LEGENDS 
 
Figure 1. Plasma and Fecal Metabolomes Differ between ASD and TD and Global 

Metabolite Levels Correlate with Clinical Behavioral Scores 

(A-B) The number of significantly elevated and decreased metabolites (pval<0.05) in ASD 
samples compared to the TD control group by ANOVA contrasts in plasma and feces, 
respectively. Samples are stratified by all samples or samples without or with GI symptoms (-GI, 
+GI). See also Table S1 and S2. (C-D) Pathway analysis results of human plasma and fecal 
comparisons (all samples), indicating which metabolomic pathways are the most altered between 
groups, with enrichment value plotted and p-value to the right of each bar. Metabolites within 
each pathway could be observed at either higher or lower levels, as this plot only indicates 
significant changes. (E-F) Top 30 most distinguishing metabolites between each group in plasma 
and feces by random forest analysis, with mean decrease accuracy along the x-axis. Metabolites 
known to be produced by (asterisks) or influenced by (triangles) the gut microbiota are denoted. 
The super pathway to which each metabolite belongs to is indicated by color of sphere and 
defined in the legend. See also Figure S1. (G-H) Scaled intensity values indicating relative levels 
of the most distinguishing molecules between ASD and TD (all samples) in plasma. Asterisks 
indicate significance in ANOVA contrasts performed on total metabolomics dataset. p values: 
2.87E-09(G) and 1.57E-06(H). Data are represented as mean ± SEM. (I-J) Scaled intensity 
values indicating relative levels of the most distinguishing molecules between ASD and TD (all 
samples) in feces. Asterisks indicate significance in ANOVA contrasts performed on total 
metabolomics dataset. p values: 1.37E-05(I) and 0.002(J). Data are represented as mean ± SEM. 
(K) Top correlated plasma metabolites that covary with margaroylcarnitine and indolelactate. All 
p-values <0.0001. (L) Top correlated fecal metabolites that covary with nicotinamide and 9-
HOTrE. All p-values <0.0001. (M) Spearman correlations between behavior scores of ASD 
children in the ADIR diagnostic test (Verbal, Social, and Nonverbal metrics) and the ADOS-SS 
and metabolite pathways in ASD samples. Directionality of correlation is indicated in the legend 
at bottom. Colors of pathways are defined at the top left of the chart. A split box means that both 
positive and negative correlations occur with metabolites within that pathway. See also Tables S1 
and S2. (N) PCA plot comparing the metabolic profile least and most severe ~quartiles within 
verbal, social and ADOS-SS scores. PCA input included all metabolites significantly associated 
with the behavior. Clustering is denoted by ellipses of the 95% confidence interval. LPC, 
lysophosphatidylcholine; CE, cholesterol ester; FFA, free fatty acid; androst., androstane; 
hydroxypreg, hydroxypregnenalone; PFOS, perfluorooctanesulfonic acid; hydroxy-CMPF, 
hydroxy-3-carboxy-4-methyl-5-propyl-2- furanpropionate; DHEA-s, dehydroepiandrosterone 
sulfate; 9-HOTrE, 9S-hydroxy-10E,12Z,15Z-octadecatrienoic acid; AMP, adenosine 
monophosphate; HExCer, Hexosylceramide; PC, phosphatidylcholine; DAG, diacylglycerol; 
TAG, triacylglycerol; MFA, monounsaturated fatty acid; PE plas, phosphatidylethanolamine 
plasmalogens; Endocann, endocannabinoid; Met, methionine; Cys, cysteine; SAM, s-adenosyl 
methionine; Ala, alanine; Asp, aspartate; ɣ-glutAA, gamma-glutamyl amino acids; Second. Bile, 
secondary bile; MAG, monoacylglycerol; Gly, glycine; Ser, serine; thr, threonine. See also 
Figures S1 and S2. 
 
Figure 2. Lipid and Xenobiotic Metabolites Correlate with GI Symptoms  
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(A-B) Numbers of significantly (p value<0.05) elevated and decreased metabolites within the 
ASD samples, comparing ASD+GI to ASD-GI in plasma and feces, respectively, by ANOVA 
contrasts. (C) All pathways significantly altered in the comparison between ASD+GI and ASD-
GI human plasma samples, with enrichment value plotted and p-value to the right of each bar. 
Metabolites within each pathway could be observed at either higher or lower levels, as this plot 
only indicates significant changes. (D) Complex lipid panel results for the ASD+GI vs ASD-GI 
plasma samples. Along the top, length of lipid chain of the free fatty acid is displayed (chain 
length:number of unsaturations) and are grouped into saturated (SAT), monounsaturated 
(MUFA), and polyunsaturated (PUFA) fatty acids. Color legend is displayed below. (E-G) 
Scaled intensity values indicating relative levels of free and conjugated piperine in ASD+GI and 
ASD-GI symptoms. Data are represented as mean ± SEM. Asterisks indicate significance in 
unpaired t test with Welch’s correction. P-values: 0.03(E), 0.01(F), and 0.003(G). Free piperine 
does not reach statistical significance in ANOVA comparison performed on total dataset (p 
value=0.16). Individual p values (all<0.05) of each sulfated and glucuronidated form in ANOVA 
comparison can be found in Table S1. (H) Spearman correlation of piperine and derivatives with 
ADOS-SS. See also Figure S1. FFA, free fatty acid; monounsat., monounsaturated. 
 
Figure 3. Steroid Hormone Levels are Elevated in ASD and other Lipid Metabolite Levels 

Differ in ASD 

(A) Significant alterations to levels of all metabolites detected in the pregnenolone, progestin, 
and androgen steroid pathways in plasma (P) and feces (F), with colors indicating significance 
and fold change according to legend. (B) Schematic summarizing the metabolism of these 
pathways. (C) Complex lipid panel results for all the ASD plasma samples compared to TD 
controls with acyl chain length of lipids across the top, described by chain length, degree of 
unsaturation and categorized by saturated (SAT), monounsaturated (MUFA), and 
polyunsaturated (PUFA) fatty acids. Lipid classes are listed along the left. Direction of change 
and significance are indicated by the legend. Significance determined by ANOVA contrasts. See 
also Figure S3 and Table S3. 
 
Figure 4. ASD Correlates with Cellular Energy and Oxidative Stress Metabolites  

(A) Log2 fold change of acyl-carnitines in the plasma of ASD-GI samples compared to controls. 
Significance indicated by color according to legend below, determined by ANOVA contrasts. 
(B-C) Scaled intensity values indicating relative levels of acetylcarnitine(C2) and carnitine, 
respectively, in ASD fecal samples compared to TD controls (all samples). Data are represented 
as mean ± SEM. Asterisks indicate significance in ANOVA contrasts performed on total 
metabolomics dataset. p values: 6.44E-05(B) and 2.55E-03(C). (D) Schematic of mitochondrial 
markers and other metabolites closely associated with cellular energy in plasma (within center 
box) and feces (boxed to left). *=significant only in ASD-GI. Color of text indicates direction 
and significance of change according to legend above. (E) Differences in levels of metabolites 
from the cysteine, methionine, and glutathione pathways, comparing ASD vs TD. Refer to 
legends below and in D. (F) Correlation of ADOS-SS with metabolites from the cysteine, 
methionine, and glutathione pathways. Significant and trending metabolites corresponding to the 
linear regression in the graph are listed along with Pearson coefficients and p-values. 
Insignificant correlation values are not listed here. Refer to color legend in D. (G-H) Scaled 
intensity values indicating relative levels of hypotaurine in feces (G) and plasma (H) (all 
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samples). Data are represented as mean ± SEM. Asterisks indicate significance in ANOVA 
contrasts performed on total metabolomics dataset. p values: 1.61E-05(G) and 1.35E-3(H). (I) 
Correlations of gamma-glutamyl amino acids with ADOS-SS, color legend in D, with Pearson 
coefficients and p-values to the right.  
PC, phosphatidylcholine; PE, phosphatidylethanolamine; GPG, glycerophosphoglycerol; GPC, 
glycerophosphocholine; GPE, glycerophosphoethanolamine; GPS, glycerophosphoserine; GPI, 
glycerophosphoinositol; TAG, triacylglycerol; DAG, diacylglycerol; FFA, free fatty acid; SAT, 
saturated fatty acid; PUFA, polyunsaturated fatty acid. Data are represented as mean ± SEM. See 
also Figure S4 and Tables S1 and S2.  
 
Figure 5. Differential Phenolic Xenobiotic Metabolite Levels in ASD  

(A) Phenolic metabolites, belonging to the benzoate, tyrosine, and food component/plant 
pathways that are significantly different between ASD vs TD groups in plasma (P), and feces 
(F). Directionality and significance defined in legend. (B) Scaled intensity values indicating 
relative levels of 4-allylphenol sulfate in plasma (all samples). Asterisks indicate significance in 
ANOVA contrasts performed on total metabolomics dataset. p value: 2.50-03. (C) Scaled 
intensity values indicating relative levels of 2-ethylphenyl sulfate in plasma (all samples). (D) 
Scaled intensity values indicating relative levels of 4-ethylphenyl sulfate (4EPS) in plasma (all 
samples). Asterisks indicate significance in ANOVA contrasts performed on total metabolomics 
dataset. p value: 1.16E-03. Data in (B-D) are represented as mean ± SEM. (E) Nearest neighbor 
correlation between plasma 4EPS and 4-acetylphenol sulfate, log2 scale. Pearson correlation is 
indicated. p-values: 0.06(TD) and <1E-04(ASD). See also Figure S5 and Tables S1 and S2. 
 
Figure 6. Summary chart of core findings  

Categorized into metabolites of lipid, mitochondrial function marker, and xenobiotic and 
phenolic pathways as well as potential biomarkers, the metabolites of most interest (left) and 
observations made from the data (right) are summarized. 
 
 
SUPPLEMENTAL INFORMATION TITLES AND LEGENDS 
Figure S1. Related to Figures 1 and 2. Group characteristics. (A) Numbers of plasma 
samples: sex, GI symptoms, age range, and total n. (B) Numbers of fecal samples: sex, GI 
symptoms, age range, and total n. (C) PCA plot of plasma (left) and feces (right) with all 
metabolites as input. (D-F) Data are represented as mean ± SEM. (D) Ages of donors of all 
plasma samples (p=0.007), all plasma samples 11 years and younger (p=0.051), and according to 
GI status. (p=0.26) (E) Ages of donors of all fecal samples (p=0.15) and samples according to GI 
status (p=0.075). (F) ADOS-SS graphed according to GI status within the ASD sample group. 
(p=0.018) (G) Correlations between age (in months) ASD plasma sample individuals and 
behavior metrics are shown, with linear regression line, spearman correlation value, and p-value. 
(H) PCA of plasma metabolites significantly correlated with nonverbal behavior, grouped by 
severity. Ellipses indicate 95% confidence interval. (I) PCA of fecal metabolites significantly 
correlated with behavior scores, grouped by severity. Ellipses indicate 95% confidence interval. 
  
Figure S2. Related to Figures 1 and 2. Relative vs absolute values for select metabolites, 
pathway enrichment analysis of ASD-GI and ASD+GI comparisons to TD controls, and 
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transfer of human fecal microbiota into mice. (A) Correlation plots comparing the relative 
abundance measured in the untargeted analysis and the follow-up quantitated values for a subset 
of 139 plasma samples. Correlations for 4-ethylphenyl sulfate, p-cresol sulfate, 3-carboxy-4-
methyl-5-propyl-2-furanpropanoate (CMPF), 3-hydroxyhippurate, 3-indoxylsulfate, N-
acetylserine, and p-cresol glucuronide are shown. (B) Significantly affected pathways in 
ASD+GI vs TD and ASD-GI vs TD comparisons with enrichment value plotted and p-value to 
the right of each bar. At the top plasma sample results are displayed, with fecal sample results 
below. (C) 16s profiles for ASD and TD colonized mice. When identified, genus and species are 
indicated. When family was the most specific identifier, noted by f in legend. (D) Volcano plot 
for comparison of 16s sequencing in recipient ASD compared to TD mice, genus level. Arrow 
indicating significant result of Bacteroides genus, W value=39. (E) PCA of ASD and TD 
colonized mice, with all significantly different metabolites from ANOVA contrasts used as input 
(top) and all metabolites as input (bottom). Ellipses indicate 95% confidence intervals (F) Scaled 
intensity values indicating relative levels of 4EPS levels in plasma from donors used to colonize 
mice. p-value 0.23 (G) Scaled intensity values indicating relative levels of 4EPS levels in mice 
colonized with TD or ASD donors, colored according to donor. Log10 scaled intensity of 
biochemical peaks is plotted along the y-axis. (H) LeFSe analysis of fecal bacteria at the genus 
level from mice exhibiting high or low 4EPS levels (regardless of donor diagnosis) after 
colonization with human samples. (I) Volcano plot of -log10 p-value and log2 fold change of all 
mouse metabolites analyzed by mixed effects model. All metabolites above a log2 fold change of 
+/-0.5 and a -log10 p-value of 0.3 are colored. Triangles denote phenolic metabolites. Those 
phenolic metabolites also significantly altered in the human samples are labeled by name. See 
also Table S5. 
 
Figure S3. Related to Figure 3. Steroid hormones by sex and age. (A) Levels of androgens, 
pregnenolones and progestins in all female plasma samples. Scaled intensity values for each 
female plasma sample. p-values of Welch’s corrected t test are shown about each graph. (B) 
Levels of androgens, pregnenolones and progestins in all male plasma samples. Scaled intensity 
values for each male plasma sample shown. p-values of Welch’s corrected t test are shown about 
each graph. (C) Pregnenolone, progestin, and androgen steroid metabolites clustered by tighter 
age groupings, denoted in years or months. Dark red indicates significant difference (pval<0.05), 
light red indicates a trend (0.05>pval>0.1), with fold change in text. 
 
Figure S4. Related to Figures 3 and 4. Complex lipid panel, cellular energy, and amino acid 
results. (A) Sphingolipids with significantly altered levels in plasma of ASD compared to TD 
(all samples). (B) Biochemical importance plot of Random Forest analysis using complex lipid 
panel results for all plasma samples. (C) Scaled intensity values indicating relative levels of two 
representative PUFA (18:2)-containing fecal lipids that differ in directionality from the plasma 
phenotype shown in main text Figure 3B. Asterisks indicate significance in ANOVA contrasts 
performed on total metabolomics dataset. p values: 4.5E-04(left) and 5.9E-04(right). Data are 
represented as mean ± SEM. (D) The top 5 most positively correlated plasma metabolites with 
ADOS-SS. The metabolite, spearman correlation value, and p-value are listed. (E) Scaled 
intensity values indicating relative levels of taurine in feces (all samples). Asterisks indicate 
significance in ANOVA contrasts performed on total metabolomics dataset. p value: 0.012. Data 
are represented as mean ± SEM. (F) Scaled intensity values indicating relative levels of taurine 
in plasma (all samples). p-value from ANOVA contrasts performed on total metabolomics 
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dataset. Scaled intensity of taurine levels in plasma (all samples). (G) Abbreviated pathway 
schematic of significantly different metabolites in the urea cycle in plasma. Asterisk indicates 
significance only in the ASD-GI/TD comparison. (H) Scaled intensity values indicating relative 
levels of urea cycle metabolites that are altered in feces: urea, norvaline, and argininate (all 
samples). Asterisks indicate significance in ANOVA contrasts performed on total metabolomics 
dataset. p values: 1.7E-04(urea), 0.02(norvaline), and 0.014(argininate). Data are represented as 
mean ± SEM.  
 
Figure S5. Related to Figure 5. Nearest neighbor analysis of 4EPS. (A) Nearest neighbor 
analysis of 4EPS plasma levels resulting from correlations with all fecal metabolite levels. Red 
star denotes phenolic compounds. (B) Nearest neighbor analysis of 4EPS plasma levels against 
all plasma metabolite levels (minus 4-acetylphenol sulfate from Main Figure 5C). Red star 
denotes phenolic compounds. 
 
 
Table S1. Related to Figures 1-6. Fold change and statistics of human plasma metabolites 
and correlations to behavior scores. ANOVA contrasts, p-value, q-value, % filled values, 
and pearson correlation r is provided.  
 
Table S2. Related to Figure 1-6. Fold change and statistics of human fecal metabolites and 
correlations to behavior scores. ANOVA contrasts, p-value, q-value, % filled values, and 
pearson correlation r is provided.  
 
Table S3. Related to Figure 6. Fold change and p value (Welch’s t test) of human donor 
plasma metabolites.  
 
Table S4. Related to Figure 6. Fold change and p value (Welch’s t test) of human donor 
fecal metabolites.  
 
Table S5. Related to Figure 6. Fold change and statistics of mouse plasma metabolites.  
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Supplementary figure 5. 

Nearest neighbor analysis: 4EPS in plasma correlated to fecal metabolites

Nearest neighbor analysis: 4EPS in plasma correlated to plasma metabolites
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SUPPLEMENTAL METHODS 

Extended Participant Information 

Briefly, the GISS consists of 7 sections, each section asking a series of 1 to 6 questions to 

determine if the participant met the criteria for diarrhea, constipation or irritable bowel syndrome 

(IBS)- like symptoms, and if stooling/symptoms have been consistent for the last 6 months. Any 

individual with antibiotic use within 3 months was excluded, but multivitamins and over the 

counter supplements were permitted. Based on their responses, participants were placed in one of 

four groups, ASD+GI, ASD-GI, TD+GI or TD-GI. Due to the low incidence of GI issues in 

typically developing children enrolled in the study, we only have 9 individuals in the TD+GI 

groups. Our original statistical analysis resulted in many seemingly intriguing metabolites with 

differential levels between the ASD+GI and TD+GI samples. However, upon closer inspection, 

most of these differences were driven by the fact that the TD+GI group (with a small n) was very 

different from all other samples rather than the ASD+GI being unique. There were occasional 

differences that were indeed convincing between the ASD+GI and TD+GI, but these differences 

also arose in the comparison of -GI samples, so they were not specific to the GI phenotype and 

presenting them in an ASD+GI compared to TD+GI context would have been misleading. Thus, 

the TD+GI group was removed from the analysis and is not presented here.  

 

This study was approved by institutional review boards for the State of California and the 

University of California, Davis. Informed consent is obtained from a legal guardian for all study 

participants prior to data collection in accordance with the UC Davis IRB protocol. 
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Blood and stool collection: Peripheral blood was collected from participants in acid-citrate 

dextrose Vacutainers (BD Biosciences; San Jose, Ca). Blood was centrifuged at 2100 rpm for 10 

minutes followed by the collection of plasma into cryovials. Plasma was stored at -80 °C until 

analysis. In addition to blood, stool samples were also obtained, parents were given collection 

containers with RNA later to collect stool samples at home and asked to store the samples in the 

freezer and brought back frozen to the clinic within 24 hrs. 

 

Metabolite analysis: All metabolite analysis, identification, quality control were performed by 

standard procedures at Metabolon Inc. as follows. 

Sample Preparation: All samples were maintained at -80oC until processed. Samples were 

prepared using the automated MicroLab STAR® system from Hamilton Company.  Several 

recovery standards were added prior to the first step in the extraction process for QC purposes.  

To remove protein, dissociate small molecules bound to protein or trapped in the precipitated 

protein matrix, and to recover chemically diverse metabolites, proteins were precipitated with 

methanol under vigorous shaking for 2 min (Glen Mills GenoGrinder 2000) followed by 

centrifugation.  The resulting extract was divided into five fractions: two for analysis by two 

separate reverse phase (RP)/UPLC-MS/MS methods with positive ion mode electrospray 

ionization (ESI), one for analysis by RP/UPLC-MS/MS with negative ion mode ESI, one for 

analysis by HILIC/UPLC-MS/MS with negative ion mode ESI, and one sample was reserved for 

backup.  Samples were placed briefly on a TurboVap® (Zymark) to remove the organic solvent.  

The sample extracts were stored overnight under nitrogen before preparation for analysis.   

QA/QC: Several types of controls were analyzed in concert with the experimental samples: a 

pooled matrix sample generated by taking a small volume of each experimental sample (or 
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alternatively, use of a pool of well-characterized human plasma) served as a technical replicate 

throughout the data set; extracted water samples served as process blanks; and a cocktail of QC 

standards that were carefully chosen not to interfere with the measurement of endogenous 

compounds were spiked into every analyzed sample, allowed instrument performance 

monitoring and aided chromatographic alignment.  Instrument variability was determined by 

calculating the median relative standard deviation (RSD) for the standards that were added to 

each sample prior to injection into the mass spectrometers.  Overall process variability was 

determined by calculating the median RSD for all endogenous metabolites (i.e., non-instrument 

standards) present in 100% of the pooled matrix samples.  Experimental samples were 

randomized across the platform run with QC samples spaced evenly among the injections. 

Ultrahigh Performance Liquid Chromatography-Tandem Mass Spectroscopy (UPLC-

MS/MS): All methods utilized a Waters ACQUITY ultra-performance liquid chromatography 

(UPLC) and a Thermo Scientific Q-Exactive high resolution/accurate mass spectrometer 

interfaced with a heated electrospray ionization (HESI-II) source and Orbitrap mass analyzer 

operated at 35,000 mass resolution.  The sample extract was dried then reconstituted in solvents 

compatible to each of the four methods.  Each reconstitution solvent contained a series of 

standards at fixed concentrations to ensure injection and chromatographic consistency.  One 

aliquot was analyzed using acidic positive ion conditions, chromatographically optimized for 

more hydrophilic compounds.  In this method, the extract was gradient eluted from a C18 

column (Waters UPLC BEH C18-2.1x100 mm, 1.7 µm) using water and methanol, containing 

0.05% perfluoropentanoic acid (PFPA) and 0.1% formic acid (FA).  Another aliquot was also 

analyzed using acidic positive ion conditions, however it was chromatographically optimized for 

more hydrophobic compounds.  In this method, the extract was gradient eluted from the same 
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afore mentioned C18 column using methanol, acetonitrile, water, 0.05% PFPA and 0.01% FA 

and was operated at an overall higher organic content.  Another aliquot was analyzed using basic 

negative ion optimized conditions using a separate dedicated C18 column.  The basic extracts 

were gradient eluted from the column using methanol and water, however with 6.5mM 

Ammonium Bicarbonate at pH 8.  The fourth aliquot was analyzed via negative ionization 

following elution from a HILIC column (Waters UPLC BEH Amide 2.1x150 mm, 1.7 µm) using 

a gradient consisting of water and acetonitrile with 10mM Ammonium Formate, pH 10.8.  The 

MS analysis alternated between MS and data-dependent MSn scans using dynamic exclusion.  

The scan range varied slighted between methods but covered 70-1000 m/z.  Raw data files are 

archived and extracted as described below. 

Bioinformatics: The informatics system consisted of four major components, the Laboratory 

Information Management System (LIMS), the data extraction and peak-identification software, 

data processing tools for QC and compound identification, and a collection of information 

interpretation and visualization tools for use by data analysts.  The hardware and software 

foundations for these informatics components were the LAN backbone, and a database server 

running Oracle 10.2.0.1 Enterprise Edition. 

LIMS: The purpose of the Metabolon LIMS system was to enable fully auditable laboratory 

automation through a secure, easy to use, and highly specialized system.  The scope of the 

Metabolon LIMS system encompasses sample accessioning, sample preparation and instrumental 

analysis and reporting and advanced data analysis.  All of the subsequent software systems are 

grounded in the LIMS data structures.  It has been modified to leverage and interface with the in-

house information extraction and data visualization systems, as well as third party 

instrumentation and data analysis software. 
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Data Extraction and Compound Identification: Raw data was extracted, peak-identified and 

QC processed using Metabolon’s hardware and software.  These systems are built on a web-

service platform utilizing Microsoft’s .NET technologies, which run on high-performance 

application servers and fiber-channel storage arrays in clusters to provide active failover and 

load-balancing.  Compounds were identified by comparison to library entries of purified 

standards or recurrent unknown entities.  Metabolon maintains a library based on authenticated 

standards that contains the retention time/index (RI), mass to charge ratio (m/z), and 

chromatographic data (including MS/MS spectral data) on all molecules present in the library.  

Furthermore, biochemical identifications are based on three criteria: retention index within a 

narrow RI window of the proposed identification, accurate mass match to the library +/- 10 ppm, 

and the MS/MS forward and reverse scores between the experimental data and authentic 

standards.  The MS/MS scores are based on a comparison of the ions present in the experimental 

spectrum to the ions present in the library spectrum.  While there may be similarities between 

these molecules based on one of these factors, the use of all three data points can be utilized to 

distinguish and differentiate biochemicals.  More than 3300 commercially available purified 

standard compounds have been acquired and registered into LIMS for analysis on all platforms 

for determination of their analytical characteristics.  Additional mass spectral entries have been 

created for structurally unnamed biochemicals, which have been identified by virtue of their 

recurrent nature (both chromatographic and mass spectral).  These compounds have the potential 

to be identified by future acquisition of a matching purified standard or by classical structural 

analysis. 
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Complex Lipids Platform: Lipids were extracted from samples in methanol:dichloromethane in 

the presence of internal standards.  The extracts were concentrated under nitrogen and 

reconstituted in 0.25mL of 10mM ammonium acetate dichloromethane:methanol (50:50).  The 

extracts were transferred to inserts and placed in vials for infusion-MS analysis, performed on a 

Shimazdu LC with nano PEEK tubing and the Sciex SelexIon-5500 QTRAP.  The samples were 

analyzed via both positive and negative mode electrospray.  The 5500 QTRAP scan was 

performed in MRM mode with the total of more than 1,100 MRMs.  Individual lipid species 

were quantified by taking the peak area ratios of target compounds and their assigned 

internal standards, then multiplying by the concentration of internal standard added to the 

sample.  Lipid class concentrations were calculated from the sum of all molecular species within 

a class, and fatty acid compositions were determined by calculating the proportion of each class 

comprised by individual fatty acids. 

 

Peak Quantification, Normalization and Statistical analysis: Peaks were quantified using 

area-under-the-curve.  The present dataset comprises a total of 1611 and 814 compounds of 

known identity for the human plasma and fecal samples, respectively. The mouse dataset 

comprises a total of 746 known biochemicals. Following log transformation and imputation of 

missing values, if any, with the minimum observed value for each compound, ANOVA contrasts 

using ArrayStudio (Qiagen) were used to identify biochemicals that differed significantly 

between experimental groups.  Analysis by two-way ANOVA identified biochemicals exhibiting 

significant interaction and main effects for experimental parameters of disease and GI symptoms. 

For mouse samples, in addition to two-way ANOVA contrasts, in order to account for non-

independence (match to donor), we ran a linear mixed effect model where the donor match is a 
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random effect. The analysis was done in R.gui version 3.5.1. Correlation analysis was performed 

comparing the relationship between observed changes in metabolite levels and measures of 

severity. An estimate of the false discovery rate (q-value) is calculated to take into account the 

multiple comparisons that normally occur in metabolomic-based studies. In all graphs of 

individual metabolites, the significance noted in the graph is based on p-value from the ANOVA 

and can be found in the corresponding Supplemental Tables along with the q-values. 

 

Principle Components Analysis (PCA): All PCA plots were generated using the ClustVis web 

tool. In cases where ASD samples were subdivided by severity, samples were separated and 

grouped by behavioral score as close to quartiles as possible without splitting samples with the 

same score into separate groups. The groupings were as follows: for human feces scores for 

lower and higher severity groups, respectively: ADOS scores 4-5 and 8-10; nonverbal scores 1-4 

and 7-10, social scores 10-14 and 20-27, verbal scores 1-3 and 5. Groupings for human plasma 

scores for lower and higher severity groups, respectively: ADOS scores 4-5 and 9-10; nonverbal 

scores 1-4 and 8-11, social scores 10-14 and 22-27, verbal scores 1-3 and 5. 

 

Random Forest Analysis: Random Forest Analysis was performed as described previously 1. A 

random subset of the data with identifying true class information was selected to build the tree 

(“bootstrap sample” or “training set”), and then the remaining data, the “out-of-bag” (OOB) 

variables, were passed down the tree to obtain a class prediction for each sample.  This process 

was repeated thousands of times to produce the forest.  The final classification of each sample 

was determined by computing the class prediction frequency for the OOB variables over the 

whole forest.  When the full forest is grown, the class predictions were compared to the true 
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classes, generating the “OOB error rate” as a measure of prediction accuracy.  The mean 

decrease in accuracy was determined by randomly permuting a variable, running the observed 

values through the trees, and then reassessing the prediction accuracy. Thus, the Random Forest 

analysis provides an “importance” rank ordering of biochemicals.  

The further Random Forest using the top 30 metabolites was performed by first leaving out one 

sample at a time, fitting the Random Forest, keeping the top 30 metabolites, then using the top 30 

to predict the observation that was left out. This was repeated for each sample and then the actual 

result was compared to the predicted and error was calculated. 

 

Pathway Enrichment Analysis: For each individual pair-wise comparison, pathway enrichment 

determined the number of statistically significantly different compounds relative to all detected 

compounds in a sub-pathway, compared to the total number of statistically significantly different 

compounds relative to all detected compounds in the study. A pathway enrichment value greater 

than one indicates that the pathway contains more significantly changed compounds relative to 

the study overall, suggesting that the pathway may be a target of interest for further 

investigation. Enrichment Value = (# of significant metabolites in pathway(k) / total # of 

detected metabolites in pathway(m) ) / (total # of significant metabolites(n) / total # of detected 

metabolites(N) ) (k/m)/(n/N). 

 

Animal husbandry and sample collection: All mouse housing and experiments were approved 

by the California Institute of Technology IACUUC. Fecal samples were thawed, 300mls of 1.5% 

bicarbonate in PBS was added, samples were vortexed, and then allowed to settle. 150uL of fecal 

sample was then delivered by oral gavage to 5-week-old germ free mice that were then 
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maintained in sterile, microisolator cages for 3 weeks. After three weeks, fecal samples were 

collected for 16s sequencing. Blood was collected by cardiac puncture following euthanasia by 

CO2, plasma was isolated on ice using EDTA-treated collection tubes (Thermo), and samples 

were stored at -80C until analysis. One replicate GP sample was thawed prematurely and thus 

removed from further analysis.  

 

Fecal analysis for 16s sequencing: Fecal samples collected and immediately put into empty 

sterile tubes, flash frozen, and maintained at -80C until processing. Total DNA was isolated with 

Qiagen DNeasy powersoil extraction kit (Qiagen) following manufacturer instructions. 

Hypervariable V4 region of the 16s gene was amplified by PCR using 5Xprime master mix 

(Prime). Barcoded 806 reverse primers and unique forward 515 primer (IDT) were used as 

previously described. The amplification was confirmed by electrophoresis and the amplified 

products were purified with Quiaquick PCR purification kit (Qiagen).  

 

Samples were sent to MGH NGS Core facility to be sequenced on the Illumina MiSeq 

instrument using MiSeq v2 500-cycle sequencing kit, resulting in approximately 25 million 

paired-end 250 bp reads covering amplicon regions. Data were analyzed QIIME2 software 

package at the Bioinformatic core at MGH. Low quality score sequencing reads (average Q < 25) 

were truncated to 240bp followed by filtering using deblur algorithm with default setting and the 

high quality reads were aligned to the reference library using mafft. The aligned reads were 

masked to remove highly variable positions, and a phylogenetic tree was generated from the 

masked alignment using the FastTree method. Alpha and beta diversity metrics and Principal 

Component Analysis plots based on Jaccard distance were generated using default QIIME2 
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plugins. Taxonomy assignment was performed using feature-classifier method and naïve Bayes 

classifier trained on the Greengenes 13_8 99% operational taxonomic units (OTUs). Linear 

discriminant analysis Effect Size (LEfSe) was performed as described previously2 using the 

Galaxy web application.  
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