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Abstract 
Background and Objective: 
PSEN1-H163Y carriers, at the presymptomatic stage, have reduced 18FDG-PET binding 

in the cerebrum of the brain [1]. This could imply dysfunctional energy metabolism in the 

brain. In this study, plasma of presymptomatic PSEN1 mutation carriers was analyzed to 

understand associated metabolic changes. 

Methods: 
We analyzed plasma from non-carriers (NC, n=8) and presymptomatic PSEN1-H163Y 

mutation carriers (MC, n=6) via untargeted metabolomics using gas and liquid 

chromatography coupled with mass spectrometry, which identified 1199 metabolites. All 

the metabolites were compared between MC and NC using univariate analysis, as well as 

correlated with the ratio of Aβ1-42/Aβ1-40, using Spearman’s correlation. Altered metabolites 

were subjected to Ingenuity Pathways Analysis (IPA).  

Results: 
When comparing between presymptomatic MC and NC, the levels of 116 different 

metabolites were altered. Out of 116, only 23 were annotated metabolites, which include 

amino acids, fatty acyls, bile acids, hexoses, purine nucleosides, carboxylic acids, and 

glycerophosphatidylcholine species. 1-docosapentaenoyl-GPC, glucose and uric acid 

were correlated with the ratio of plasma Aβ1-42/Aβ1-40 (p < 0.05). 

Conclusion: 
This study finds dysregulated metabolite classes, which are changed before the disease 

onset. Also, it provides an opportunity to compare with sporadic Alzheimer’s Disease. 

Observed findings in this study need to be validated in a larger and independent Familial 

Alzheimer’s Disease (FAD) cohort. 
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Introduction: 
Alzheimer’s disease (AD) is a growing health concern estimated to affect 136 million 

people worldwide by 2050 [2]. The autosomal dominant mutations found in APP, PSEN1 

and PSEN2 [3] cause early-onset Familial Alzheimer’s Disease (FAD) with the high 

penetrance PSEN1 mutations (https://www.alzforum.org/mutations/psen-1) being the 

most frequent [4]. PSEN1 is a part of the gamma-secretase protein complex, which 

cleaves the Amyloid precursor protein (APP) that leads to the production of a mixture of 

amyloid peptides Aβ1–40 (90%) and Aβ1–42 (10%) in the amyloidogenic pathway [4]. These 

peptides are known to be part of the pathobiology of FAD. The PSEN1 mutation 

p.His163Tyr (PSEN1-H163Y) results in higher levels of Aβ1-42/Aβ1-40  [5]. 

Previously, several studies have described the plasma metabolic profile of sporadic mild 

cognitive impairment (MCI) and AD cases [2, 6-12]. A targeted plasma lipid profiling was 

performed in PSEN1 mutation carriers [13].  However, no untargeted plasma metabolome 

has yet been reported for presymptomatic PSEN1 mutation carriers. 

In FAD, the preclinical phase is characterized by brain glucose hypometabolism [14, 15]. 

We had previously demonstrated glucose hypometabolism in the cerebrum at the 

presymptomatic stage of PSEN1-H163Y carriers [1]. In this follow-up study, we 

hypothesize that untargeted plasma metabolite profiling could provide clues about the 

dysregulated metabolic pathways in pre-symptomatic PSEN1 mutation carriers (MC) in 

comparison with non-carriers (NC) within the FAD PSEN1-H163Y cohort [3, 16-18]. First, 

we identified metabolites, which are differentially expressed between MC and NC and 

assessed their associated biological processes. Then, we explored the association 

between these metabolites with plasma levels of various amyloid beta species (Aβ). 

Taken together, our study provides a snapshot of the plasma metabolic changes in 

presymptomatic PSEN1 MC, which may inform about biological events that are 

characteristics of the preclinical phase. 
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Materials and Methods:  
Study population: 
Relatives with plasma samples from the PSEN1-H163Y kindred in the Swedish FAD study 

were eligible for inclusion. The prospective FAD study invites APP and PSEN1 kindreds 

at the Memory outpatient clinic in Karolinska University Hospital, Stockholm, since 1993. 

Presymptomatic relatives with 50% risk of disease are followed longitudinally with a 

comprehensive assessment battery, described in detail elsewhere [3, 16, 18]. Clinical and 

neuroradiological evaluation is accompanied by sampling of cerebrospinal fluid (CSF) and 

blood. Mean (SD) age of onset in the PSEN1-H163Y kindred is 52 ±6 years (based on 12 

individuals). Symptom onset is regarded as having the first subjective symptoms as 

experienced by participants or next-of-kin. Mutation status (carrier or non-carrier) was not 

known to participants or clinicians within the study, if not stated otherwise. The study 

procedures were approved by the Regional Ethical Review Board in Stockholm, Sweden, 

and were in agreement with the Helsinki Declaration. All participants provided written 

informed consent to participate. The plasma samples were collected in a longitudinal 

manner as a part of the battery of clinical evaluation over the years from 1995 to 2017.  

DNA extraction from Blood:  
As part of the FAD study protocol, venous blood was collected at the Memory clinic of 

Karolinska university hospital, Stockholm. Using the Gentra Puregene blood Kit (Qiagen, 

Hilden, Germany) DNA was extracted from the blood and resuspended in RNase & DNase 

free water (Qiagen, Hilden, Germany). The concentration of extracted DNA was measured 

with the QUBIT instrument (Thermofisher, Waltham, MA, USA) as described by the 

manufacturer.   

Genotyping for PSEN1-H163Y mutation: 
20ng of DNA was amplified for PSEN1-Exon6 using forward (5’ 

GGTTGTGGGACCTGTTAATT 3’) and reverse (5’ CAACAAAGTACATGGCTTTAAATGA 

3’) primers with AmpliTaq Gold® 360 PCR Master Mix (Thermofisher, Waltham, MA, 

USA). Sanger sequencing was performed using BigDye™ Terminator v3.1 Cycle 

Sequencing Kit (Thermofisher, Waltham, MA, USA) in both forward and reverse directions 

and analyzed using ABI3500 Genetic Analyzer (Thermofisher, Waltham, MA, USA).   

APOE allele genotyping: 
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The APOE genotyping was performed for SNP rs7412 and rs429358 using pre-designed 

TaqMan® SNP Genotyping Assays (Thermofisher, Waltham, MA, USA) as indicated in 

the manufacturer’s protocol. The amplified products were run on 7500 fast Real-Time PCR 

Systems (Thermofisher, Waltham, MA, USA). 

Plasma sample collection:  
Non-fasting plasma was prepared from the blood. The plasma was removed as the 

supernatant after 1hr incubation at room temperature (RT) and 10 mins centrifugation at 

2200g. Then, the plasma was aliquoted and frozen at -80°C until analysis. Plasma 

sampled between the years 1995 to 2017 were included. The metabolite analysis was 

carried out at the Swedish Metabolomics Center (SMC, 

https://www.swedishmetabolomicscentre.se/), Umeå, Sweden. 

Metabolite extraction and analysis: 
Untargeted metabolite extraction and analysis via Gas Chromatography (GC) and Liquid 

Chromatography (LC) in combination with Mass-Spectrometry (MS) were performed at 

SMC as described here [19]. Plasma was prepared by adding 900µl of extraction buffer 

(90/10 v/v methanol: water) along with internal standards for the GC-MS and LC-MS to 

100µl of plasma. The samples were prepared and analyzed in a randomized order for GC-

MS and LC-MS. Detailed methods were described in the supplementary methods section 

(Metabolite profiling of the plasma).  

Analysis of Aβ1-38, Aβ1-40, and Aβ1-42 in plasma: 
The analyses of Aβ1-38, Aβ1-40, and Aβ1-42 in plasma were performed using 

immunoprecipitation coupled to tandem Liquid Chromatography mass spectrometry (IP-

LC-MS/MS) as described previously [20, 21]. In short, calibrators were prepared using 

recombinant Aβ1-38, Aβ1-40 and Aβ1-42 (rPeptide) added to 8 % bovine serum albumin 

in phosphate-buffered saline. Recombinant 15N uniformly labeled Aβ1-38, Aβ1-40 and Aβ1-42 

(rPeptide) were used as internal standards (IS), added to samples and calibrators prior to 

sample preparation. Aβ peptides were extracted from 250 µL human plasma using 

immunoprecipitation with anti-β-Amyloid 17-24 (4G8) and anti-β-Amyloid 1-16 antibodies 

(6E10, both Biolegend®) coupled to Dynabeads™ M-280 Sheep Anti-Mouse IgG 

magnetic beads (Thermofisher, Waltham, MA, USA). Immunoprecipitation was performed 

using a KingFisher™ Flex Purification System (Thermofisher, Waltham, MA, USA). 
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Analysis of processed samples was performed using liquid chromatography-tandem mass 

spectrometry (LC-MS/MS) on a Dionex Ultimate LC-system and a Thermo Scientific Q 

Exactive quadrupole-Orbitrap hybrid mass spectrometer. Chromatographic separation 

was achieved using basic mobile phases and a reversed-phase monolith column at a flow 

rate of 0.3 mL/min. The mass spectrometer operated in parallel reaction monitoring (PRM) 

mode was set to isolate the 4+ charge state precursors of the Aβ peptides. Product ions 

(14-15 depending on peptide) specific for each precursor was selected and summed to 

calculate the chromatographic areas for each peptide and its corresponding IS. The area 

ratio of the analyte to the internal standard in unknown samples and calibrators was used 

for quantification.  

Statistical analysis: 
All statistical analyses were done using R (The R Foundation for Statistical Computing; 

version 3.6.1) and R Studio software. Group comparisons between presymptomatic 

PSEN1-H163Y MC and NC were made using Wilcoxon rank-sum tests and a p value 

below 0.05 was considered as significant. Features with p values above the significance 

threshold were excluded from downstream analysis. Correlations between the selected 

metabolites and plasma Aβ1-42/Aβ1-40 ratio were tested using Spearman’s rho statistic and 

the p values were calculated using the asymptotic t approximation. 

The correlation between the observed metabolite levels and how many years the sample 

had been kept in storage was tested using Spearman’s rho statistic and the p values were 

calculated using the asymptotic t approximation. The same was done for correlations with 

participant age at sampling and the presence of at least one APOEε4 allele. The heatmaps 

were constructed using two separate clusters, one cluster for the features and another for 

the samples. The clustering analysis was done using agglomerative hierarchical clustering 

using the Wards clustering criterion. The dissimilarity matrices were constructed using 

Pearson’s correlation. 

Metabolites biological interpretation: 
Differential metabolites between MC and NC were converted into their corresponding 

Human Metabolome Database identifier (http://www.hmdb.ca/, HMDB ID) as well as 

annotated for their metabolite class.  HMDB ID was analyzed using the Ingenuity Pathway 

Analysis (IPA) (https://www.qiagenbioinformatics.com/products/ingenuity-pathway-
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analysis/, Qiagen Inc.) software, enriched significant metabolite ontologies were filtered 

as described in the IPA’s metabolomics white paper 

(http://pages.ingenuity.com/rs/ingenuity/images/wp_ingenuity_metabolomics.pdf). 
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Results: 
Demographics of the study population: 
A total of 24 plasma samples from 17 males were included in this study, of these there 

were 6 mutation carriers (MC) and 11 non-carriers (NC). The study participants were 

relatives from the PSEN1-H163Y kindred, except for three NC from two APP kindreds 

(Table 1). The participants underwent repeated sampling of blood, meaning these 

individuals were represented more than once and contributing to an overall mean age at 

sampling of 42 ± 11 years. Distribution of mutation status, APOEε4 status and mean age 

at sampling in each dataset is described in table 1. Asymptomatic status in all participants 

was confirmed by later records of the actual age of onset in the MC and mean Mini-Mental 

State Examination (MMSE) scores [22] were 29 ±1 (maximum score 30) upon sampling. 

One of the participants from the MC group opted for presymptomatic genetic testing at the 

hospital. This has since proved to be a rare case of reduced penetrance, showing no signs 

of beta-amyloid (Aβ) retention during [11C]Pittsburgh compound B (PiB) positron emission 

tomography (PET) at the age of 60 years [16] and no cognitive deficits during the most 

recent psychological assessment, performed at the age of 65, 13 years past the expected 

age of onset. There were no known subjects with alcohol overconsumption or dietary 

restrictions.   

Comparison of plasma metabolite levels between presymptomatic MC and NC 
Untargeted GC-MS and LC-MS analysis of the plasma samples detected 1199 

metabolites, of which 23% were annotated. First, a Principal Component Analysis (PCA) 

model was built (Supplementary fig.1). The PCA analysis indicate a clear separation of 

the samples based on the number of years of storage. A similar effect was previously 

reported [23]. For that reason, the samples were stratified into two separate data sets 

based on the sample collection year (Table 1; referred to as data set A and B in the text). 

Dataset “A” contains the samples collected before the year 2008 and dataset “B” contains 

the samples collected after 2008. 

The two data sets were analyzed separately. Within them the measured levels of the 

metabolites were compared between the MC and NC. In dataset A, the levels of 79 

metabolites (14 annotated), were significantly different in MC compared with NC (P < 0.05) 

(Table 2, Supplementary table 1). The annotated metabolites belong to the metabolite 
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classes of amino acids (n = 3), carboxylic acids (n = 1), hexoses (n = 1), 

imidazopyrimidines (n = 1), fatty acyls (n = 1), glycerophospholipids (n = 6) and hydroxy 

acids (n = 1). In dataset B, the levels of 37 metabolites (9 annotated), were significantly 

different in MC compared with NC (P < 0.05) (Table 2, Supplementary table 1). The 

annotated metabolites belong to the metabolite classes of amino acids (n = 2), purine 

nucleosides (n = 1), carboxylic acids (n = 2), fatty acyls (n = 2) and bile acids (n = 2).  

In addition, the correlation between all the metabolites that showed a significant difference 

between NC and MC in the two data sets, and the number of years that the samples have 

been in storage was tested. Years in storage was calculated as the difference between 

sampling date and analysis date. This was done to investigate if the observed differences 

could be due to the above described storage effect (Supplementary table 2). In dataset A, 

one unannotated metabolite had a significant correlation with years in storage. This 

metabolite was excluded from the cluster analysis and the pathway analysis. In dataset 

B, no metabolites had a significant association with years in storage. Similar correlation 

analyses were done between metabolite levels and participant age at the time of sampling, 

as well as the presence of at least one allele of APOEε4 (Supplementary table 2). In 

dataset A, pyroglutamic acid and 2-oleoyl-GPC had a significant correlation with age at 

sampling (p=0.027 and p=0.043, respectively). In dataset B, no significant correlation was 

observed between any of the annotated metabolites and age at sampling. No significant 

correlation of metabolites with the presence of APOEε4 was observed in either set.    

Heatmaps (Fig.1A-B) for the two datasets were generated based on the hierarchal 

clustering of both the samples and the metabolites (Table 2, Supplementary table 1). In 

both datasets, the MC and the NC separate into two different clusters. Furthermore, the 

metabolites form two distinct clusters in both datasets as well, where one cluster of 

metabolites was found at higher levels in MC than in NC and the other shows the opposite 

trend (Fig.1A-B). 

Correlations between plasma metabolites and plasma Aβ1-42/Aβ1-40 ratio:  
Amyloid pathology is a hallmark of AD and Aβ levels in plasma are used as possible 

surrogate biomarkers [24, 25]. It has been shown that PSEN1-H163Y exhibit higher 

plasma Aβ1-42/Aβ1-40 levels [5]. We, therefore, tested the correlation between all 1199 

metabolites and the ratio of Aβ1-42/Aβ1-40 in plasma (Supplementary table 3). In dataset A, 
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significant correlations were observed between 50 metabolites (12 annotated) and the 

ratio of Aβ1-42/Aβ1-40 (Table 3). In dataset B, significant correlations were observed 

between 55 metabolites (18 annotated) and the ratio of Aβ1-42/Aβ1-40 (Table 3). This 

includes glucose, uric acid and 1-docosapentaenoyl-GPC, which exhibit differential levels 

in MC compared to NC (Table 3). 

Biological significance of annotated metabolites:  
To examine the biological significance of 23 annotated metabolites from dataset A and 

dataset B, we performed the Ingenuity Pathway Analysis (IPA). Canonical pathways 

identified include ‘Asparagine Biosynthesis I’, ‘tRNA Charging’, ‘Asparagine Degradation 

I’, ‘Glutamine Degradation I’ and ‘IL-12 signaling and production in Macrophages’ (Fig.2A). 

Along with pathway enrichment, the IPA also enriched metabolites for two different 

categories ‘Disease and Disorders’ and ‘Molecular and Cellular Functions’ 

(Supplementary fig. S1).  We explored these categories to understand the role of these 

metabolites in the presymptomatic MC. In ‘Molecular and Cellular functions’, the 

metabolites were part of the cellular process ‘Lipid metabolism’, ‘Cellular Growth and 

proliferation’ (Supplementary fig.S1), ‘Peroxidation of lipid’, ‘Production of reactive oxygen 

species’, and ‘Neuronal cell death’ (Fig.2B-D). In addition, under the category ‘Disease 

and Disorders’ the metabolites were linked to the disease-related phenotypes including 

‘Metabolic disease’, ‘Endocrine system disorder’, and ‘Chronic inflammatory disorder’ 

(Fig.2E-F, Supplementary fig.S1).  

Metabolites are the functional endpoint of biological processes, which do not act alone 

and are regulated by upstream regulators at a given physiological condition [26, 27]. 

Therefore, with the help of the ‘Upstream Regulator Analysis' algorithm part of IPA, 

(supported by the Ingenuity® Knowledge Base) various, statistically significant, regulators 

of the 23 metabolites were identified (Supplementary table S4). These upstream 

regulators include the transcription factors TFE3 (Transcription factor E3), ZBTB20 (Zinc 

finger- and BTB domain-containing protein 20) and CEBPB (CCAAT-Enhancer Binding 

Protein-β). Moreover, along with transcription factors, IPA identified the enzymes DDAH2 

(dimethylarginine dimethylaminohydrolase-2), FMO3 (flavin monooxygenase-3) and 

PIK3CA (phosphatidylinositol-4,5-bisphosphate 3-kinase alpha), which are part of 
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regulatory networks. Further, metabolites that are part of ‘Lipid metabolism’ and ‘Cell 

cycle’ were visualized using IPA (Fig.3A-B). 
Discussion: 
In this study, we performed an untargeted screening of plasma metabolites in male 

presymptomatic PSEN1-H163Y MC known to exhibit brain glucose hypometabolism early 

in the preclinical phase, up to 20 years prior to expected onset age [1].  APOEε4  is 

represented in both MC and NC and metabolite correlation analysis did not indicate 

skewness [28]. In presymptomatic MC, amino acids, fatty acyls, carboxylic acids, 

hexoses, purine nucleosides, glycerophosphatidylcholines, and bile acids were 

significantly altered when compared to NC (Table 2). Interestingly, these classes of 

metabolites are also associated with sporadic AD  [2, 6, 8, 9, 11, 12, 29-32]. Notably, we 

found asparagine, propionyl-l-carnitine, glycerophosphatidylcholine species and 

asymmetric dimethylarginine (Table 2), which were part of the metabolite panel that 

previously has been reported to predict the clinical transition from presymptomatic to 

prodromal or symptomatic late-onset AD[9]. 

We identified differential metabolites associated with ‘Production of reactive oxygen 

species’, ‘lipid peroxidation’, ‘glucose metabolism disorder’ and ‘chronic inflammatory 

disorder’ (Fig.2, Supplementary fig.S1) which are known to be inherent of FAD 

pathobiology [15, 33-36]. Amyloid-beta mediated mitochondrial dysfunction associated 

with glucose hypometabolism is an indicator of molecular events, which precede amyloid 

aggregation [37-39]. Oligomeric forms of Aβ can give rise to oxidative stress placing 

themselves in the lipid bilayer which causes lipid peroxidation, at the end leading to 

neuronal cell death [15, 40, 41]. Furthermore, increased levels of 1-docosapentaenoyl-

GPC, decreased levels of glucose and uric acid in MC were significantly correlated with 

Aβ1-42/Aβ1-40 (Table 2). Besides, several metabolites were significantly correlated with Aβ1-

42/Aβ1-40, but not identified in the univariate analysis, probably due to a lack of statistical 

power (Supplementary table 3). The suggested upstream regulators of the identified 

metabolites in our study are proposed to play a role in modulating different cellular events. 

In the event of mitochondrial dysfunction, TFE3 is activated and plays a vital role in 

regulating energy metabolism [42]. In addition, ZBTB20  is another upstream regulator that 

plays an essential role in glucose homeostasis [43]. 
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In the context of inflammation, astrocytes and microglia are the principal players in AD 

[26, 44] and their activation is characteristic of the preclinical phase [45]. Aβ activates  

microglia (Brain resident macrophages) which trigger a proinflammatory cascade, likely  

IL-12, and IL-23 [46, 47]. The metabolites found in our study (Fig.2A) are associated with 

the IL-12 pathway. Activated microglia induce neurotoxic reactive astrocytes [48]. 

Moreover, the metabolite upstream regulator CEBPB identified here, is activated by Aβ in 

glial cells, which in turn initiates the inflammatory cascade [49]. 

A rare case of PSEN1-H163Y reduced penetrance (RP) [16] is also part of our study. We 

included the plasma samples collected before the age of onset (52±6) and the RP case 

exhibits a similar metabolic profile to the other MC (Fig.1). Such reduced penetrance 

cases are rare and have been shown to have other protective genetic or environmental 

modifiers [50]. Further experimental studies employing single-cell genomics [51] and  

directly induced neurons from fibroblasts [52] can shed more light on possible 

mechanisms leading to resilience.  

This pilot-scale study has its limitations. The study design is observational, it is difficult to 

control all the confounding factors, for example, the metabolite profile is highly influenced 

by lifetime immunological experience [53], gut microbiota [54] and exposome [55]. Also, 

the medication history of the subjects was not accounted for. Considering the low 

frequency of the PSEN1 mutation carriers in our Swedish cohorts the sample size was 

small, and the p values were not corrected for multiple comparisons in the univariate 

analysis. It has been shown that blood metabolites are strongly associated with age, yet 

their association is highly selective [56]. In our analysis, we found pyroglutamic acid and 

2-oleoyl-GPC to be correlated with age (Supplementary table 2).   

Here, we report plasma metabolites, their upstream regulators and pathways, which were 

dysregulated in presymptomatic PSEN1-H163Y mutation carriers. These are consistent 

with previous findings of FAD pathophysiology. In this study, we found several 

unannotated metabolites [56] (Supplementary table 1 & table 3) that will be of significant 

interest to future FAD metabolomics studies. However, results from this pilot study need 

to be evaluated in a larger FAD cohort. Considering the low frequency of FAD cases in 

the Swedish population, acquiring the optimal sample size for similar studies remains the 
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biggest hurdle. The FAD cases can be highly informative on the cellular and molecular 

front when metabolomics are integrated with multi-omics datasets [27, 57]. 

Data availability: 
Datasets can be accessed at MetaboLights (https://www.ebi.ac.uk/metabolights/) with 

identifier MTBLS1721. 
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Tables, Figures & legends: 

Table 1 

 
Demographic data for dataset A (samples collected before 2008) and dataset B (samples 

collected after 2008), which were used for the univariate analysis. Plasma samples were 

stratified for univariate analysis based on the PCA (Supplementary fig.1). One “baseline” 

plasma sample from each time period was selected, and all individuals were male and 

presymptomatic upon sampling. The number of Apolipoprotein E4 (APOEε4) genotype 

carriers in each dataset is indicated. Seven of the participants (3 NC and 4 MC) are 

represented in both A and B datasets (‘y’ denotes years).  
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Fig.1: 

 
Heat map showing similarities between samples of the metabolites that were differentially 

expressed between NC (non-carrier group, dark blue) and the PSEN1-H163Y MC 

(mutation carrier group, Green). Sample from the reduced penetrance mutation carrier 

(RP) case is represented by yellow color. Legend: Red (upregulated metabolite), Blue 

(downregulated metabolite) and white (no modulation). A) Samples from dataset A.  B) 

Samples from dataset B. 
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Table 2 

 
Annotated metabolites (n=23) showed a significant (p<0.05) difference between MC and 

NC. Log2 foldchange is shown as the difference between MC and NC, with positive values 

indicating higher relative metabolite levels in MC, and vice versa. § The metabolite is 

present in both dataset A and dataset B. *Significant correlation (p<0.05) between 

metabolite and Aβ peptides. 
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Table 3 

 
Spearman correlation between 1199 detected metabolites, in both dataset A and B, and 

Aβ1-42/1-40-ratio. The table shows the annotated metabolites that show a significant 

correlation (p<0.05).   
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Fig.2: 

 

A) Enriched canonical pathways for 23 annotated metabolites, which were differentially 

expressed between presymptomatic PSEN1 MC and NC.  

B-D). In ‘Molecular and Cellular Functions’ terms, identified metabolites were associated 

with B) ‘Production of reactive oxygen species’ C) ‘Peroxidation of lipid’, D) ‘Neuronal cell 

death’.    
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E-F). In ‘Disease and Disorders’ terms, under ‘Metabolic disease’ E) ‘Glucose metabolism 

disorder’ and in ‘Inflammatory disease’ F) ‘Chronic inflammatory disorder’ metabolite 

network was identified.  

 
Fig.3: 
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A) Network of metabolites and its regulators involved in the ‘Cell cycle’.  

B) Molecular network of differentially expressed metabolites and their upstream regulators 

involved in the ‘Lipid metabolism’. 

 
 
 
Supplementary Fig.1: 

 
PCA of all 24 plasma samples in the study, which were analyzed for 1199 metabolites in 

an untargeted manner. The plasma samples used in this study were collected from the 

year 1995 to 2017. 
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Supplementary Fig.2 

 
List of GO terms under the category of ‘Molecular and Cellular Functions’ and ‘Disease 

and Disorders’, which were enriched for the 23 annotated metabolites in the Ingenuity 

Pathway Analysis. 
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Supplementary Table 1: 

 
The unannotated metabolites presented as ‘mass@retention time’, that showed a 

significant (p<0.05) difference between MC and NC. Log2 foldchange shown as the 

difference between MC and NC, with positive values indicating higher relative metabolite 
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levels in MC, and vice versa. * Significant correlation (p<0.05) between metabolite and Aβ 

peptides. 

 

 

Supplementary Table 2: 

 
 
The Spearman’s correlation between 23 metabolites and age at the time of sampling, 

number of storage years and presence of APOEε4 allele (p<0.05 value was considered 

as significant). 

 
 
 
 
 

Data set Metabolite

P value of Correlation 

with Age
 P value of Correlation 

with storage
 P value of Correlation 

with  APOEε4
B Asymmetric dimethylarginine 0.110 0.064 0.835
B Threonine § 0.298 0.639 0.835
B 2-Hydroxycaproic acid 0.334 0.300 0.210
B 3-Methylglutarylcarnitine 0.577 0.300 1.000
B N-Acetylvaline 0.589 0.742 0.403
B Ursodeoxycholic acid 0.662 0.327 0.835
B Asparagine 0.920 0.225 1.000
B Glycohyocholic acid 0.933 0.729 0.531
B N2,N2-Dimethylguanosine 0.960 0.386 0.296
A Pyroglutamic acid 0.027 0.430 0.701
A 2-oleoyl-GPC 0.043 0.745 0.898
A Glutamine 0.090 0.948 0.798
A Propionylcarnitine 0.105 0.795 0.041
A Threonine § 0.344 0.795 0.701
A 1-Palmitoyl-sn-glycero-3-phosphocholine 0.377 0.058 0.201
A Cystine 0.417 0.795 0.523
A 1-oleoyl-GPC 0.453 0.450 1.000
A 1-docosapentaenoyl-GPC 0.477 0.303 0.701
A 1-arachidonoyl-GPC 0.511 0.154 0.609
A Glucose 0.588 0.534 0.898
A 3-Hydroxybutyric acid 0.857 0.430 0.160
A 2-stearoyl-GPC 0.857 0.115 0.201
A Uric acid 0.940 0.134 0.701
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Supplementary Table 3: 

 
Spearman correlation between 1199 detected metabolites, in both dataset ‘A’ and ‘B’, and 

Aβ1-42/1-40-ratio. The table shows the unannotated metabolites, presented as 

‘mass@retention time’, that shows a significant correlation (p<0.05).  
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Supplementary Table 4: (excel file) 
List of upstream regulators, which were enriched for the 23 annotated metabolites in the 

Ingenuity Pathway Analysis (IPA). These regulators include enzymes, kinases, growth 

factor and transcription factors.   
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Supplementary methods: 
Metabolite profiling of Plasma: 
Sample preparation:  
Sample preparation of plasma was performed according to A et al [58]. In detail, 900 µL 

of extraction buffer (90/10 v/v methanol: water), including internal standards for both GC-

MS and LC-MS, were added to 100 µL of plasma. The sample was shaken at 30 Hz for 2 

minutes in a mixer mill and proteins were precipitated at +4 °C on ice. The sample was 

centrifuged at +4 °C, 14 000 rpm, for 10 minutes. The supernatant, 200µL for LC-MS 

analysis and 50µL to GC-MS analysis, was transferred to micro vials and evaporated to 

dryness in a speed-vac concentrator. Solvents were evaporated and the samples were 

stored at -80 °C until analysis. 

A small aliquot of the remaining supernatant was pooled and used to create quality control 

(QC) samples. MSMS analysis (LC-MS) was run on the QC samples for identification 

purposes. The samples were analyzed in batches according to a randomized run order 

on both GC-MS and LC-MS. 

GC-MS analysis: 
Derivatization and GC-MS analysis were performed as described previously [58]. 0.5 μL 

of the derivatized sample was injected in splitless mode by a L-PAL3 autosampler (CTC 

Analytics AG, Switzerland) into an Agilent 7890B gas chromatograph equipped with a 10 

m x 0.18 mm fused silica capillary column with a chemically bonded 0.18 μm Rxi-5 Sil MS 

stationary phase (Restek Corporation, USA) The injector temperature was 270 °C, the 

purge flow rate was 20 mL min-1 and the purge was turned on after 60 seconds. The gas 

flow rate through the column was 1 mL min-1, the column temperature was held at 70 °C 

for 2 minutes, then increased by 40 °C min-1 to 320 °C and held there for 2 minutes. The 

column effluent was introduced into the ion source of a Pegasus BT time-of-flight mass 

spectrometer, GC/TOFMS (Leco Corp., St Joseph, MI, USA). The transfer line and the 

ion source temperatures were 250 °C and 200 °C, respectively. Ions were generated by 

a 70eV electron beam at an ionization current of 2.0 mA, and 30 spectra s-1 were recorded 

in the mass range m/z 50 - 800. The acceleration voltage was turned on after a solvent 

delay of 150 seconds. The detector voltage was 1800-2300 V. 

LC-MS analysis: 
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Before LC-MS analysis the sample was re-suspended in 10 + 10 µL methanol and water. 

Each batch of samples was first analyzed in positive mode. After all samples within a 

batch had been analyzed, the instrument was switched to the negative mode and the 

second injection of each sample was performed.  

The chromatographic separation was performed on an Agilent 1290 Infinity UHPLC-

system (Agilent Technologies, Waldbronn, Germany). 2 μL of each sample were injected 

onto an Acquity UPLC HSS T3, 2.1 x 50 mm, 1.8 μm C18 column in combination with a 

2.1 mm x 5 mm, 1.8 μm VanGuard precolumn (Waters Corporation, Milford, MA, USA) 

held at 40 °C. The gradient elution buffers were A (H2O, 0.1 % formic acid) and B (75/25 

acetonitrile:2-propanol, 0.1 % formic acid), and the flow-rate was 0.5 ml min-1. The 

compounds were eluted with a linear gradient consisting of 0.1 - 10 % B over 2 minutes, 

B was increased to 99 % over 5 minutes and held at 99 % for 2 minutes; B was decreased 

to 0.1 % for 0.3 minutes and the flow-rate was increased to 0.8 mL min-1 for 0.5 minutes; 

these conditions were held for 0.9 minutes, after which the flow-rate was reduced to 0.5 

mL min-1 for 0.1 minutes before the next injection.  

The compounds were detected with an Agilent 6550 Q-TOF mass spectrometer equipped 

with a jet stream electrospray ion source operating in positive or negative ion mode. The 

settings were kept identical between the modes, with the exception of the capillary voltage. 

A reference interface was connected for accurate mass measurements; the reference ions 

purine (4 μM) and HP-0921 (Hexakis (1H, 1H, 3H-tetrafluoropropoxy) phosphazine) (1 

μM) were infused directly into the MS at a flow rate of 0.05 mL min-1 for internal calibration, 

and the monitored ions were purine m/z 121.05 and m/z 119.03632; HP-0921 m/z 

922.0098 and m/z 966.000725 for positive and negative mode respectively. The gas 

temperature was set to 150°C, the drying gas flow to 16 L min-1 and the nebulizer 

pressure 35 psig. The sheath gas temp was set to 350°C and the sheath gas flow 11 L 

min-1. The capillary voltage was set to 4000 V in positive ion mode, and to 4000 V in 

negative ion mode. The nozzle voltage was 300 V. The fragmentor voltage was 380 V, 

the skimmer 45 V and the OCT 1 RF Vpp 750 V. The collision energy was set to 0 V. The 

m/z range was 70 - 1700, and data was collected in centroid mode with an acquisition rate 

of 4 scans s-1 (1977 transients/spectrum). 

Data analysis evaluation/statistical methods: 
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For the GC-MS data, all non-processed MS-files from the metabolic analysis were 

exported from the ChromaTOF software in NetCDF format to MATLAB R2016a 

(Mathworks, Natick, MA, USA), where all data pre-treatment procedures, such as base-

line correction, chromatogram alignment, data compression and Multivariate Curve 

Resolution were performed using custom scripts. The extracted mass spectra were 

identified by comparisons of their retention index and mass spectra with libraries of 

retention time indices and mass spectra [59]. Mass spectra and retention index 

comparison was performed using NIST MS 2.0 software. The annotation of mass spectra 

was based on reverse and forward searches in the library. Masses and ratio between 

masses indicative of a derivatized metabolite were especially notified. If the mass 

spectrum according to SMC’s experience was with the highest probability indicative of a 

metabolite and the retention index between the sample and library for the suggested 

metabolite was ± 5 (usually less than 3) the deconvoluted “peak” was annotated as an 

identification of a metabolite. 

For the LC-MS data, all data processing was performed using the Agilent Masshunter 

Profinder version B.08.00 (Agilent Technologies Inc., Santa Clara, CA, USA). The 

processing was performed both in a target and an untargeted fashion. For target 

processing, a pre-defined list of metabolites commonly found in plasma and serum were 

searched for using the Batch Targeted feature extraction in Masshunter Profinder. An in-

house LC-MS library built up by authentic standards run on the same system with the 

same chromatographic and mass-spec settings, were used for the targeted processing. 

The identification of the metabolites was based on MS, MS-MS and retention time 

information.  For the untargeted data, each group was processed individually using the 

Batch Recursive Feature Extraction algorithm within Masshunter Profinder. 

Solvents and standards used: 
Solvents: Methanol, HPLC-grade was obtained from Fischer Scientific (Waltham, MA, 

USA) Chloroform, Suprasolv for GC was obtained from Merck (Darmstadt, Germany) 

Acetonitrile, HPLC-grade was obtained from Fischer Scientific (Waltham, MA, USA) 2-

Propanol, HPLC-grade was obtained from VWR (Radnor, PA, USA) H2O, Milli-Q. 

Reference and tuning standards: Purine, 4 μM, Agilent Technologies (Santa Clara, CA, 

USA) HP-0921 (Hexakis(1H, 1H, 3H-tetrafluoropropoxy)phosphazine), 1 μM, Agilent 
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Technologies (Santa Clara, CA, USA) Calibrant, ESI-TOF, ESI-L Low Concentration 

Tuning Mix, Agilent Technologies (Santa Clara, CA, USA) HP-0321 

(Hexamethoxyphosphazine), 0.1 mM, Agilent Technologies (Santa Clara, CA, USA). 

Stable isotopes internal standards: LC-MS internal standards: 13C9-Phenylalanine, 

13C3-Caffeine, D4-Cholic acid, D8-Arachidonic Acid, 13C9-Caffeic Acid were obtained 

from Sigma (St. Louis, MO, USA). GC-MS internal standards: L-proline-13C5, alpha-

ketoglutarate-13C4, myristic acid-13C3, cholesterol-D7 were obtained from Cil (Andover, 

MA, USA). Succinic acid-D4, salicylic acid-D6, L-glutamic acid-13C5,15N, putrescine-D4, 

hexadecanoic acid-13C4, D-glucose-13C6, D-sucrose-13C12 were obtained from Sigma 

(St. Louis, MO, USA). 
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