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 16 

Abstract 17 

Gene expression data features high dimensionality, multicollinearity, and the existence of outlier 18 

or non-Gaussian distribution noise, which make the identification of true regulatory genes 19 

controlling a biological process or pathway difficult. In this study, we embedded the Huber-Berhu 20 

(HB) regression into the partial least squares (PLS) framework and created a new method called 21 

HB-PLS for predicting biological process or pathway regulators through construction of regulatory 22 

networks. PLS is an alternative to ordinary least squares (OLS) for handling multicollinearity in 23 

high dimensional data. The Huber loss is more robust to outliers than square loss, and the Berhu 24 

penalty can obtain a better balance between the ℓ" penalty and the ℓ# penalty. HB-PLS therefore 25 

inherits the advantages of the Huber loss, the Berhu penalty, and PLS. To solve the Huber-Berhu 26 

regression, a fast proximal gradient descent method was developed; the HB regression runs much 27 

faster than CVX, a Matlab-based modeling system for convex optimization. Implementation of 28 

HB-PLS to real transcriptomic data from Arabidopsis and maize led to the identification of many 29 

pathway regulators that had previously been identified experimentally. In terms of its efficiency 30 

in identifying positive biological process or pathway regulators, HB-PLS is comparable to sparse 31 

partial least squares (SPLS), a very efficient method developed for variable selection and 32 
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dimension reduction in handling multicollinearity in high dimensional genomic data. However, 33 

HB-PLS is able to identify some distinct regulators, and in one case identify more positive 34 

regulators at the top of output list, which can reduce the burden for experimental test of the 35 

identified candidate targets. Our study suggests that HB-PLS is instrumental for identifying 36 

biological process and pathway genes.  37 

 38 

Key words: Huber regression, Berhu regression, partial least squares regiression, sparse partial 39 

least squares, Huber-Berhu partial least squares, pathway, gene regulatory network,  40 

 41 

Introduction 42 

In a gene regulatory network (GRN), a node corresponds to a gene and an edge represents a 43 

directional regulatory relationship between a transcription factor (TF) and a target gene. 44 

Understanding the regulatory relationships among genes in GRNs can help elucidate the various 45 

biological processes and underlying mechanisms in a variety of organisms. Although experiments 46 

can be conducted to acquire evidence of gene regulatory interactions, these are labor-intensive and 47 

time-consuming. In the past two decades, the advent of high-throughput techniques, including 48 

microarray and RNA-Seq, have generated an enormous wealth of transcriptomic data. As the data 49 

in public repositories grows exponentially, computational algorithms and tools utilizing gene 50 

expression data offer a more time- and cost-effective way to reconstruct GRNs. To this end, 51 

efficient mathematical and statistical methods are needed to infer qualitative and quantitative 52 

relationships between genes. 53 

Many methods have been developed to reconstruct GRNs, each employing different theories and 54 

principles. The earliest methods involved differential equations [1], Boolean networks [2], 55 

stochastic networks [3], Bayesian [4, 5] or dynamic Bayesian networks (BN) [6, 7], and ordinary 56 

differential equations (ODE) [8]. Some of these methods require time series datasets with short 57 

time intervals, such as those generated from easily manipulated single cell organisms (e.g. bacteria, 58 

yeast) or mammalian cell lines [9]. For this reason, most of these methods are not suitable for gene 59 

expression data, especially time series data involving time intervals on the scale of days, from 60 

multicellular organisms like plants and mammals (except cell lines).  61 

 62 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 17, 2020. ; https://doi.org/10.1101/2020.05.16.089623doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.16.089623
http://creativecommons.org/licenses/by-nc-nd/4.0/


 3 

In general, the methods that are useful for building gene networks with non-time series data 63 

generated from high plants and mammals include ParCorA [10], GGM [11], and mutual 64 

information-based methods such as Relevance Network (RN) [12], Algorithm for the 65 

Reconstruction of Accurate Cellular Networks (ARACNE) [13], C3NET [14], maximum 66 

relevance/minimum redundancy Network (MRNET) [15], and random forests [16, 17]. Most of 67 

these methods use the information-theoretic framework. For instance, Relevance Network (RN) 68 

[18], one of the earliest methods, infers a network in which a pair of genes are linked by an edge 69 

if the mutual information is larger than a given threshold. The context likelihood relatedness (CLR) 70 

algorithm [19], an extension of RN, derives a score from the empirical distribution of the mutual 71 

information for each pair of genes and eliminates edges with scores that are not statistically 72 

significant. ARACNE [20] is similar to RN; however, ARACNE makes use of the data processing 73 

inequality (DPI) to eliminate the least significant edge of a triplet of genes, which decreases the 74 

false positive rate of the inferred network. MRNET [21] employs the maximum relevance and 75 

minimum redundancy feature selection method to infer GRNs. Finally, triple-gene mutual 76 

interaction (TGMI) uses condition mutual information to evaluate triple gene blocks to infer gene 77 

regulatory networks [22]. Information theory-based methods are used extensively for constructing 78 

GRNs and for building large networks because they have a low computational complexity and are 79 

able to capture nonlinear dependencies. However, there are also disadvantages in using mutual 80 

information, including high false-positive rates [23] and the inability to differentiate positive 81 

(activating), negative (inhibiting), and indirect regulatory relationships. Reconstruction of the 82 

transcriptional regulatory network can be implemented by the neighborhood selection method. 83 

Neighborhood selection [24] is a sub-problem of covariance selection. Assume Γ  is a set 84 

containing all of the variables (genes), the neighborhood 𝑛𝑒' of a variable 𝑎 ∈ Γ is the smallest 85 

subset of Γ\{𝑎} such that, given all variables in 𝑛𝑒', variable 𝑎 is conditionally independent of all 86 

remaining variables. Given 𝑛 i.i.d. observations of Γ, neighborhood selection aims to estimate the 87 

neighborhood of each variable in Γ individually. The neighborhood selection problem can be cast 88 

as a multiple linear regression problem and solved by regularized methods. 89 

 90 

Following the differential equation in [25], the expression levels of a target gene 𝑦  and the 91 

expression levels of the TF genes 𝑥 form a linear relationship: 92 

𝑦/ = 𝛼∗ + 𝑥/4𝛽∗ + 𝜀/			𝑖 = 1,2,… , 𝑛	 (1) 93 
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where 𝑛 is the number of samples, 𝑥/ = (𝑥/#, … , 𝑥/?)4 is the expression level of 𝑝 TF genes, and 94 

𝑦/	is the expression level of the target gene in sample 𝑖. 𝛼∗ is the intercept and 𝛽∗ = (𝛽#∗, … , 𝛽?∗)4 95 

are the associated regression coefficients; if 𝛽A∗ ≠ 0, then TF gene 𝑗 regulates target gene 𝑖. {𝜀/} 96 

are independent and identically distributed random errors with mean 0 and variance 𝜎" . The 97 

method to get an approximation 𝛽F  for 𝛽∗  is to transform this statistical problem to a convex 98 

optimization problem: 99 

𝛽F = 𝑎𝑟𝑔𝑚𝑖𝑛J	𝑓(𝛽) = 𝑎𝑟𝑔𝑚𝑖𝑛J 	L𝐿(𝑦/ − 𝛼 − 𝑥/4𝛽)
O

/P#

+ 𝜆𝑃(𝛽)	 (2) 100 

where 𝐿(∙) is a loss function, 𝑃(∙) is a penalization function, and 𝜆 > 0 is a tuning parameter 101 

which determines the importance of penalization. Different loss functions, penalization functions, 102 

and methods for determining 𝜆 have been proposed in the literature. Ordinary least squares (OLS) 103 

is the simplest method with a square loss function 𝐿(𝑦/ − 𝛼 − 𝑥/4𝛽) = (𝑦/ − 𝛼 − 𝑥/4𝛽)" and no 104 

penalization function. The OLS estimator is unbiased. However, since it is common for the number 105 

of genes, 𝑝, 𝑡𝑜 be much larger than the number of samples, 𝑛, (i.e. 𝑝 ≫ 𝑛) in any given gene 106 

expression data set, there is no unique solution for OLS. Even when 𝑛 > 𝑝,  OLS estimation 107 

features high variance. To conquer these problems, ridge regression [26] adds a ℓ2  penalty, 108 

𝑃(𝛽) = ∑ 𝛽A",
?
AP#  on the coefficients which introduces a bias but reduces the variance of the 109 

estimated 𝛽F . In ridge regression, there is a unique solution even for the 𝑝 > 𝑛 case. Least absolute 110 

shrinkage and selection operator [27] is similar to ridge regression, except the ℓ2 penalty in ridge 111 

regression is replaced by the ℓ1 penalty, 𝑃(𝛽) = ∑ |𝛽A|
?
AP# . 112 

The main benefit of LASSO is that it performs variable selection and regularization simultaneously 113 

thereby generating a sparse solution, a desirable property for constructing GRNs. When LASSO 114 

is used for selecting regulatory TFs for a target gene, there are two potential limitations. First, if 115 

several TF genes are correlated and have large effects on the target gene, LASSO has a tendency 116 

to choose only one TF gene while zeroing out the other TF genes. Second, some studies [28] state 117 

that LASSO does not have oracle properties; that is, it does not have the capability to identify the 118 

correct subset of true variables or to have an optimal estimation rate. It is claimed that there are 119 

cases where a given 𝜆 that leads to optimal estimation rate ends up with an inconsistent selection 120 

of variables. For the first limitation, Zou and Hastie [29] proposed elastic net, in which the penalty 121 
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is a mixture of LASSO and ridge regressions: 𝑃(𝛽) = 𝛼∑ Z𝛽AZ
?
AP# + (#[\)

"
∑ 𝛽A"
?
AP# , where 𝛼	(0 <122 

𝛼 < 1) is called the elastic net mixing parameter. When 𝛼 = 1, the elastic net penalty becomes 123 

the LASSO penalty; when 𝛼 = 0, the elastic net penalty becomes the ridge penalty. For the second 124 

limitation, adaptive LASSO [28] was proposed as a regularization method, which enjoys the oracle 125 

properties. The penalty function for adaptive LASSO is: 𝑃(𝛽) = ∑ 𝑤_AZ𝛽AZ
?
AP# , where adaptive 126 

weight 𝑤_A =
#

|J̀aba|c
 , and 𝛽F/O/  is an initial estimate of the coefficients obtained through ridge 127 

regression or LASSO; 𝛾 is a positive constant, and is usually set to 1. It is evident that adaptive 128 

LASSO penalizes more those coefficients with lower initial estimates.  129 

 130 

It is well known that the square loss function is sensitive to heavy-tailed errors or outliers. 131 

Therefore, adaptive LASSO may fail to produce reliable estimates for datasets with heavy-tailed 132 

errors or outliers, which commonly appear in gene expression datasets. One possible remedy is to 133 

remove influential observations from the data before fitting a model, but it is difficult to 134 

differentiate true outliers from normal data. The other method is to use robust regression. Wang et 135 

al. [30] combined the least absolute deviation (LAD) and weighted LASSO penalty to produce the 136 

LAD-LASSO method. The objective function is: 137 

LZ𝑦/ − 𝛼 − 𝑥/4𝛽Z
O

/P#

+ 𝜆L𝑤_AZ𝛽AZ
?

AP#

(3) 138 

With this LAD loss, LAD-LASSO is more robust than OLS to unusual 𝑦 values, but it is sensitive 139 

to high leverage outliers. Moreover, LAD estimation degrades the efficiency of the resulting 140 

estimation if the error distribution is not heavy tailed [31]. To achieve both robustness and 141 

efficiency, Lambert-Lacroix et al. [32] proposed Huber-LASSO, which combined the Huber loss 142 

function and a weighted LASSO penalty. The Huber function (see Materials and Methods) is a 143 

hybrid of squared error for relatively small errors and absolute error for relatively large ones. Owen 144 

[33] proposed the use of the Huber function as a loss function and the use of a reversed version of 145 

Huber’s criterion, called Berhu, as a penalty function. For the Berhu penalty (see Materials and 146 

Methods), relatively small coefficients contribute their ℓ1 norm to the penalty while larger ones 147 

cause it to grow quadratically. This Berhu penalty sets some coefficients to 0, like LASSO, while 148 

shrinking larger coefficients in the same way as ridge regression. In [34], the authors showed that 149 

the combination of the Huber loss function and an adaptive Berhu penalty enjoys oracle properties, 150 
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 6 

and they also demonstrated that this procedure encourages a grouping effect. In [33, 34], the 151 

authors solved a Huber-Berhu optimization problem using CVX software [35], a Matlab-based 152 

modeling system for convex optimization. CVX turns Matlab into a modeling language, allowing 153 

constraints and objectives to be specified using standard Matlab expression syntax. However, since 154 

CVX is slow for large datasets, a proximal gradient descent algorithm was developed for the 155 

Huber-Berhu regression in this study, which runs much faster than CVX.  156 

 157 

Reconstruction of gene regulatory networks often involves ill-posed problems due to high 158 

dimensionality and multicollinearity. Partial least squares (PLS) regression has been an alternative 159 

to ordinary regression for handling multicollinearity in several areas of scientific research. PLS 160 

couples a dimension reduction technique and a regression model. Although PLS has been shown 161 

to have good predictive performance in dealing with ill-posed problems, it is not particularly 162 

tailored for variable selection. Chun et al. [36] first proposed a SPLS regression for simultaneous 163 

dimension reduction and variable selection. Cao et al. [37] also proposed a sparse PLS method for 164 

variable selection when integrating omics data. They added sparsity into PLS with a LASSO 165 

penalization combined with singular value decomposition (SVD) computation. In this study, the 166 

Huber-Berhu regression was embedded into a PLS framework. Real gene data was used to 167 

demonstrate that this approach is applicable for the reconstruction of GRNs. 168 

 169 

Materials and Methods 170 

 171 

High-throughput gene expression data  172 

The lignin pathway analysis used an Arabidopsis wood formation compendium dataset containing 173 

128 Affymetrix microarrays pooled from six experiments (accession identifiers: GSE607, 174 

GSE6153, GSE18985, GSE2000, GSE24781, and GSE5633 in NCBI Gene Expression Omnibus 175 

(GEO) (http://www.ncbi.nlm.nih.gov/geo/)). These datasets were originally obtained from 176 

hypocotyledonous stems under short-day conditions known to induce secondary wood formation 177 

[38]. The original CEL files were downloaded from GEO and preprocessed using the affy package 178 

in Bioconductor (https://www.bioconductor.org/ ) and then normalized with the robust multi-array 179 

analysis (RMA) algorithm in affy package. This compendium data set was also used in our 180 

previous studies [39, 40]. The maize B73 compendium data set used for predicting photosynthesis 181 
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 7 

light reaction (PLR) pathway regulators  was downloaded from three NCBI databases: (1) the 182 

sequence read archive (SRA) (https://www.ncbi.nlm.nih.gov/sra), 39 leaf samples from 183 

ERP011838; (2) Gene Expression Omnibus (GEO), 24 leaf samples from GSE61333,  and (3) 184 

BioProject (https://www.ncbi.nlm.nih.gov/bioproject/), 36 seedling samples from PRJNA483231. 185 

This compendium is a subset of that used in our earlier co-expression analysis [41]. Raw reads 186 

were trimmed to remove adaptors and low-quality base pairs via Trimmomatic (v3.3). Clean reads 187 

were aligned to the B73Ref3 with STAR, followed by the generation of normalized FPKM 188 

(fragments per kb of transcript per million reads) using Cufflinks software (v2.1.1) [42].  189 

 190 

Huber and Berhu functions 191 

In estimating regression coefficients, the square loss function is well suited if 𝑦/  follows a 192 

Gaussian distribution, but it gives a poor performance when 𝑦/ follows a heavy-tailed distribution 193 

or there are outliers. On the other hand, the LAD loss function is more robust to outliers, but the 194 

statistical efficiency is low when there are no outliers in the data. The Huber function, introduced 195 

in [43], is a combination of linear and quadratic loss functions. For any given positive real 𝑀 196 

(called shape parameter), the Huber function is defined as: 197 

𝐻i(𝑧) = k 𝑧
"																										|𝑧| ≤ 𝑀

2𝑀|𝑧| −𝑀"								|𝑧| > 𝑀	
(4) 198 

This function is quadratic for small 𝑧 but grows linearly for large values of 𝑧. The parameter 𝑀 199 

determines where the transition from quadratic to linear takes place (see Figure 1, top left). In this 200 

study, the default value of 𝑀 was set to be one tenth of the interquartile range (IRQ), as suggested 201 

by [44]. The Huber function is a smooth function with a derivative function: 202 

𝐻in (𝑧) = k2𝑧																										|𝑧| ≤ 𝑀
2𝑀	𝑠𝑖𝑔𝑛(𝑧)							|𝑧| > 𝑀	 (5) 203 

The ridge regression uses the quadratic penalty on regression coefficients, and it is equivalent to 204 

putting a Gaussian prior on the coefficients. LASSO uses a linear penalty on regression coefficients, 205 

and it is equivalent to putting a Laplace prior on the coefficients. The advantage of LASSO over 206 

ridge regression is that it implements regularization and variable selection simultaneously. The 207 

disadvantage is that, if a group of predictors is highly correlated, LASSO picks only one of them 208 

and shrinks the others to zero. In this case, the prediction performance of ridge regression 209 

dominates the LASSO. The Berhu function, introduced in [33], is a hybrid of these two penalties. 210 
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It gives a quadratic penalty to large coefficients while giving a linear penalty to small coefficients, 211 

as shown in Figure 1 (top right). The Berhu function is defined as:  212 

𝐵i(𝑧) = r
|𝑧|																									|𝑧| ≤ 𝑀
𝑧" +𝑀"

2𝑀 															|𝑧| > 𝑀	
(6) 213 

The shape parameter 𝑀 was set to be the same as that in the Huber function. As shown in Figure 214 

1 (top right), the Berhu function is a convex function, but it is not differentiable at 𝑧 = 0. Figure 215 

1 (bottom) also shows the 2D contour of Huber and Berhu functions. When the Huber loss function 216 

and the Berhu penalty were combined, an objective function, as referred as Huber_Berhu, was 217 

obtained, as shown below.  218 

𝑓(𝛽) = L𝐻i(𝑦/ − 𝑥/4𝛽)
O

/P#

+ 𝜆L𝐵it𝛽Au
v

AP#

(7) 219 

 220 
Figure 1. Huber loss function (top left) and Berhu penalty function (top right) as well as their 2D 221 

contours (bottom row). 222 

 223 

Figure 2 provides insight into the estimation of coefficients for the Huber_Berhu (left), LASSO 224 

(middle), and ridge (right) regressions. The Huber loss corresponds to the rotated, rounded 225 

rectangle contour in the top right corner, and the center of the contour is the solution of the un-226 
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 9 

penalized Huber regression. The shaded area is a map of the Berhu constraint where a smaller 𝜆 227 

corresponds to a larger area. The estimated coefficient of the Huber_Berhu regression is the first 228 

place the contours touch the shaded area; when 𝜆 is small, the touch point is not on the axes, which 229 

means the Huber_Berhu regression behaves more like the ridge regression, which does not 230 

generate a sparse solution. When 𝜆 increases, the correspondent shaded area changes to a diamond, 231 

and the touch point is more likely to be located on the axes. Therefore, for large 𝜆 , the 232 

Huber_Berhu regression behaves like Lasso, which can generate a sparse solution.  233 

 234 

Figure 2. Estimation picture for the Huber_Berhu regression (left). As a comparison, the estimation 235 

pictures for the LASSO (middle) and ridge (right) regressions are also shown. 236 

 237 

The algorithm to solve the Huber-Berhu regression 238 

Since the Berhu function is not differentiable at 𝑧 = 0, it is difficult to use the gradient descent 239 

method to solve equation (4). Although we can use the general convex optimization solver CVX 240 

[35] for a convex optimization problem, it is too slow for real biological applications. Therefore, 241 

a proximal gradient descent algorithm was developed to solve equation (4). Proximal gradient 242 

descent is an effective algorithm to solve an optimization problem with decomposable objective 243 

function. Suppose the objective function can be decomposed as 𝑓(𝑥) = 𝑔(𝑥) + ℎ(𝑥), where 𝑔(𝑥) 244 

is a convex differentiable function and ℎ(𝑥) is a convex non-differentiable function. The idea 245 

behind the proximal gradient descent [45] method is to make a quadratic approximation to 𝑔(𝑥) 246 

and leave ℎ(𝑥) unchanged. That is: 247 

𝑓(𝑧) = 𝑔(𝑧) + ℎ(𝑧) ≈ 𝑔(𝑥) + ∇𝑔(𝑥)4(𝑧 − 𝑥) +
1
2𝑡
Z|𝑧 − 𝑥|Z"

"
+ ℎ(𝑧)  248 

Huber_Berhu LASSO                                                          ridge
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At each step, 𝑥 is updated by the minimum of the right side of (5). 249 

𝑥{ = 𝑎𝑟𝑔𝑚𝑖𝑛|	𝑔(𝑥) + ∇𝑔(𝑥)4(𝑧 − 𝑥) +
1
2𝑡
Z|𝑧 − 𝑥|Z"

"
+ ℎ(𝑧)250 

= 𝑎𝑟𝑔𝑚𝑖𝑛| 	
1
2𝑡 ||𝑧 − (𝑥 − 𝑡∇𝑔

(𝑥))||"" + ℎ(𝑧) 251 

The operator 𝑃𝑟𝑜𝑥},~(𝑥) = 𝑎𝑟𝑔𝑚𝑖𝑛|
#
"}
||𝑧 − 𝑥||"" + ℎ(𝑧)  is called proximal mapping for ℎ . 252 

Therefore to solve (4), the key is to compute the proximal mapping for the Berhu function:  253 

𝜆𝐵i(𝑧) = 𝜆|𝑧|1|||�i + 𝜆
𝑧" + 𝑀"

2𝑀 1|||�i = 𝜆|𝑧| + 𝜆
(|𝑧| − 𝑀)"

2𝑀 1|||�i 254 

let 𝑢(𝑧) = 𝜆 (|||[i)
�

"i
1|||�i. As 𝑢(𝑧) satisfies theorem 4 in [46]: 255 

𝑃𝑟𝑜𝑥},��(𝑥) = 𝑃𝑟𝑜𝑥},��(𝑥) ∘ 𝑃𝑟𝑜𝑥},�|∙|(𝑥) (8) 256 

It is not difficult to verify:  257 

𝑃𝑟𝑜𝑥},��(𝑥) = 𝑠𝑖𝑔𝑛(𝑥)min k|𝑥|,
𝑀

𝑀 + 𝑡𝜆
(|𝑥| + 𝑡𝜆)� (9) 258 

𝑃𝑟𝑜𝑥},�|∙|(𝑥) = 𝑠𝑖𝑔𝑛(𝑥)min{|𝑥| − 𝑡𝜆, 0}	 (10) 259 

 260 

Algorithm 1: Accelerated proximal gradient descent method to solve equation (7) 

Input: predictor matrix (X), dependent vector (y), and penalty constant (𝝀) 

Output: regression coefficient (𝜷) 

1    Initiate 𝜷 = 𝟎, t=1, 𝜷𝒑𝒓𝒆𝒗 = 𝟎 

2    For k in 1… MAX_ITER 

3        v= 𝜷 + (k/(k+3))*(	𝜷 - 𝜷𝒑𝒓𝒆𝒗)     

4        compute the gradient of Huber loss at v using (5), denoted as 𝑮𝒗 

5        while TRUE 

6            compute 𝒑𝟏 = 𝑷𝒓𝒐𝒙𝒕,𝝀|∙|(𝒗) using (9) 

7            compute 𝒑𝟐 = 𝑷𝒓𝒐𝒙𝒕,𝝀𝒖(𝒑𝟏) using (10) 

8            if ∑ 𝑯𝑴t𝒚𝒊 − 𝒙𝒊𝑻𝒑𝟐u𝒏
𝒊P𝟏 	≤ ∑ 𝑯𝑴t𝒚𝒊 − 𝒙𝒊𝑻𝒗u𝒏

𝒊P𝟏 + 𝑮𝒗n (𝒑𝟐 − 𝒗) +
𝟏
𝟐𝒕
||𝒑𝟐 − 𝒗||𝟐𝟐 

9                break 

10          else   t=t*0.5 

11      𝜷𝒑𝒓𝒆𝒗 = 𝜷, 𝜷 = 𝒑𝟐 
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 261 

Algorithm 1 uses the accelerated proximal gradient descent method to solve (7). Line 3 implements 262 

the acceleration of [47]. Lines 6-7 compute the proximal mapping of the Berhu function. Lines 5-263 

10 use a backtracking method to determine the step size. 264 

 265 

Embedding the Huber-Berhu regression into PLS 266 

Let 𝑋	(𝑛 × 𝑝) and 𝑌	(𝑛 × 𝑞) be the standardized predictor variables (TF genes) and dependent 267 

variables (pathway genes), respectively. PLS [48] looks for a linear combination of 𝑋 and a linear 268 

combination of 𝑌 such that their covariance reaches a maximum:  269 

𝑚𝑎𝑥Z|�|Z�P#,Z|¦|Z�P#	𝑐𝑜𝑣(𝑋𝑢, 𝑌𝑣)	 (11) 270 

Here, the linear combination 𝜉 = 𝑋𝑢 and 𝜂 = 𝑌𝑣 are called component scores (or latent variables) 271 

and the 𝑝 and 𝑞 dimensional combinatory coefficients 𝑢 and 𝑣 are called loadings. After getting 272 

this first component 𝜉, two regression equations (from 𝑋 to 𝜉 and from 𝑌 to 𝜉) were set up: 273 

𝑋 = 𝜉𝑐n + 𝜀#, 𝑌 = 𝜉𝑑n + 𝜀" = 𝑋𝑏 + 𝜀	 (12) 274 

Next, X was deflated as X = X − ξcn  and Y was deflated as Y = Y − ξdn , and this process was 275 

continued until enough components were extracted. 276 

A close relationship exists between PLS and SVD. Let 𝑀 = 𝑋′𝑌, then 𝑐𝑜𝑣(𝑋𝑢, 𝑌𝑣) = #
O
𝑢′𝑀𝑣. Let 277 

the SVD of 𝑀 be:  278 

𝑀 = 𝑈Δ𝑉′ 279 

where 𝑈(𝑝 × 𝑟) and 𝑉(𝑞 × 𝑟) are orthonormal and Δ(𝑟 × 𝑟) is a diagonal matrix whose diagonal 280 

elements 𝛿¸	(𝑘 = 1…𝑟)  are called singular values. According to the property of SVD, the 281 

combinatory coefficients 𝑢 and 𝑣 in (7) are exactly the first column of 𝑈 and the first column of 282 

𝑉. Therefore, the loadings of PLS can be computed by: 283 

𝑚𝑖𝑛�,¦	||𝑀 − 𝑢𝑣′||º"  284 

where ||𝑀 − 𝑢𝑣′||º" = ∑ ∑ (𝑚/A − 𝑢/𝑣A)"
»
AP#

?
/P# . 285 

Cao et al. [37] proposed a sparse PLS approach using SVD decomposition of 𝑀 by adding a ℓ# 286 

penalty on the loadings. The optimization problem to solve is: 287 

𝑚𝑖𝑛�,¦	||𝑀 − 𝑢𝑣′||º" + 𝜆#||𝑢||# + 𝜆"||𝑣||# 288 

12      if converged 

13          break 
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As mentioned above, the Huber function is more robust to outliers and has higher statistical 289 

efficiency than LAD loss, and the Berhu penalty has a better balance between the ℓ#  and ℓ" 290 

penalty. The Huber loss and the Berhu penalty were adopted to extract each component for PLS. 291 

The optimization problem becomes: 292 

𝑚𝑖𝑛�,¦ 	LL𝐻t𝑚/A − 𝑢/𝑣Au
»

AP#

?

/P#

+ 𝜆L𝐵(𝑢/)
?

/P#

+ 𝜆L𝐵(𝑣/)
»

/P#

(13) 293 

The objective function in (13) is not convex on 𝑢 and 𝑣, but it is convex on 𝑢 when 𝑣 is fixed and 294 

convex on 𝑣 when 𝑢 is fixed. For example, when 𝑣 is fixed, each 𝑢/ in parallel can be solved by: 295 

𝑚𝑖𝑛�a 	L𝐻t𝑚/A − 𝑢/𝑣Au
»

AP#

+ 𝜆𝐵(𝑢/)	 (14) 296 

Similarly, when 𝑢 is fixed, each 𝑣A in parallel can be computed by: 297 

𝑚𝑖𝑛¦a 	L𝐻t𝑚/A − 𝑢/𝑣Au
?

/P#

+ 𝜆𝐵t𝑣Au	 (15) 298 

Equations (14) and (15) can be solved using Algorithm 1. Therefore (9) can be solved iteratively 299 

by updating 𝑢 and 𝑣 alternately. Note, it is not cost-efficient to spend a lot of effort optimizing 300 

over 𝑢  in line 6 before a good estimate for 𝑣  is computed. Since Algorithm 1 is an iterative 301 

algorithm, it may make sense to stop the optimization over 𝑢 early before updating 𝑣 . In the 302 

implementation, one step of proximal mapping was used to update 𝑢 and 𝑣. That is: 303 

𝑢 = 𝑃𝑟𝑜𝑥},�� ¼𝑢 − 𝑡
𝜕𝐻(𝑀 − 𝑢𝑣n)

𝜕𝑢 ¾ (16) 304 

𝑣 = 𝑃𝑟𝑜𝑥},�� ¼𝑣 − 𝑡
𝜕𝐻(𝑀 − 𝑢𝑣n)

𝜕𝑣 ¾ (17) 305 

The Huber–Berhu PLS regression is detailed in Algorithm 2.  306 

Algorithm 2: Huber-Berhu PLS regression 

Input: TF matrix (X), pathway matrix (Y), penalty constant (𝝀), and number of components (K) 

Output: regression coefficient matrix (A) 

1    𝑿𝟎 = 𝑿,𝑿𝟎 = 𝒀, 𝒄𝑭 = 𝑰, 𝑨 = 𝟎 

2    For k in 1...K 

3        set 𝑴𝒌[𝟏 = 𝑿𝒌[𝟏n 𝒀𝒌[𝟏 
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 307 

 308 

 309 

 310 

 311 

 312 

  313 

 314 

 315 

 316 

 317 

Tuning criteria and choice of the PLS dimension 318 

The Huber-Berhu PLS has two tuning parameters, namely, the penalization parameter 𝜆 and the 319 

number of hidden components 𝐾. To select the best penalization parameter, 𝜆, a common k-fold 320 

cross-validation (CV) procedure that minimizes the overall prediction error is applied using a grid 321 

of possible values. If the sample size is too small, CV can be replaced by leave-one-out validation; 322 

this procedure is also used in [36, 49] for tuning penalization parameters.  323 

 324 

To choose the dimension of PLS, the 𝑄~" criteria was adopted. 𝑄~" criteria were first proposed by 325 

Tenenhaus [50]; These criteria characterize the predictive power of the PLS model by performing 326 

cross-validation computation. 𝑄~" is defined as: 327 

𝑄~" = 1 −
∑ 𝑃𝑅𝐸𝑆𝑆~¸
»
¸P#
∑ 𝑅𝑆𝑆~[#¸»
¸P#

 328 

where 𝑃𝑅𝐸𝑆𝑆~¸ = ∑ (𝑦/¸ − 𝑦Ë~([/)¸ )"O
/P#  is the Prediction Error Sum of Squares, and 𝑅𝑆𝑆~¸ =329 

∑ (𝑦/¸ − 𝑦Ë~¸)"O
/P#  is the Residual Sum of Squares for the variable 𝑘 and the PLS dimension ℎ. The 330 

criterion for determining if 𝜉~ contributes significantly to the prediction is:  331 

𝑄~" ≥ (1 − 0.95") = 0.0975 332 

This criterion is also used in SIMCA-P software [51] and sparse PLS [37]. However, the choice 333 

of the PLS dimension still remains an open question. Empirically, there is little biological meaning 334 

when ℎ is large and good performance appears in 2-5 dimensions. 335 

4        Initialize 𝒖 to be the first left singular vector and initialize 𝒗 to be the product of                     

first right singular vectors and first singular value. 

5        until convergence of 𝒖 and 𝒗 

6            update 𝒖 using (16) 

7            update 𝒗 using (17) 

8        extract component 𝝃 = 𝑿𝒖 

9        compute regression coefficients in (8) 𝒄 = 𝑿n𝝃/(𝝃′𝝃), 𝒅 = 𝒀n𝝃/(𝝃′𝝃) 

10      update 𝑨 = 𝑨 + 𝒄𝑭 ∙ 𝒖 ∙ 𝒅′ 

11      update 𝒄𝑭 = 𝒄𝑭 ∙ (𝐈 − 	𝒖 ∙ 𝒄′) 

12      compute residuals for X and Y, 𝑿 = 𝑿 − 𝝃𝒄′, 𝒀 = 𝒀 − 𝝃𝒅 
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 336 

Results 337 

 338 

Validation of Huber-Berhu PLS with lignin biosynthesis pathway genes and regulators  339 

The HB-PLS algorithm was examined for its accuracy in identifying lignin pathway regulators 340 

using the A. thaliana microarray compendium data set produced from stem tissues [39]. TFs 341 

identified by HB-PLS were compared to those identified by SPLS. The 50 most relevant TFs in 342 

the lignin biosynthesis pathway were identified using HB-PLS (Figure 3A) and compared to those 343 

identified by SPLS (Figure 3B), respectively. The positive lignin biosynthesis pathway regulators, 344 

which are supported by literature evidence, are shown in coral color. The HB-PLS algorithm 345 

identified 15 known lignin pathway regulators. Of these, MYB63, SND3, MYB46, MYB85, 346 

LBD15, SND1, SND2, MYB103, MYB58, MYB43, NST2, GATA12, VND4, NST1, MYB52, 347 

are transcriptional activators of lignin biosynthesis in the SND1-mediated transcriptional 348 

regulatory network [52], and LBD15 [53] and GATA12 [54] are also involved in regulating 349 

various aspects of secondary cell wall synthesis. Interestingly, SPLS identified the same set of 350 

pathway regulators as HB-PLS, though their ranking orders derived from connectivities to psthway 351 

genes are different.   352 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 17, 2020. ; https://doi.org/10.1101/2020.05.16.089623doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.16.089623
http://creativecommons.org/licenses/by-nc-nd/4.0/


 15 

 353 

 354 
Figure 3. The 50 most important TFs in the lignin biosynthesis pathway (purple and coral nodes) were identified 355 
using Huber-Berhu-Partial Least Squares (HB-PLS) (A) and compared to those identified by sparse partial least 356 
squares (SPLS) (B). Green nodes (inside the circles) represent lignin biosynthesis genes. Coral nodes represent 357 
positive lignin pathway regulators identified in the literature, and shallow purple nodes contain other predicted 358 
transcription factors that do not have experimentally validated supporting evidence for the time being. 359 

 360 

The performance of HB-PLS with SPLS 361 
Since lignin pathway regulators have been well characterized experimentally [55], they are specifically suited 362 
for determining the efficiency of the HB-PLS method. To do this, we selected two methods, SPLS and PLS, 363 
as comparisons. For each output TF list to a pathway gene yielded from one of three methods, we applied 364 
a series of cutoffs, with the number of TFs retained varying from 1 to 40 in a shifting step of 1 at a time, 365 
and then counted the number of positive regulatory genes in each of the retained lists. The results are shown 366 
in Figure 4.   367 
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 389 

Figure 4. The performance of Huber-Berhu-Partial Least Squares (HB-PLS) was compared with 390 

the conventional partial least squares (PLS) and the sparse partial least squares (SPLS) method.   391 
 392 

The results indicate that the HB-PLS and SPLS methods, in many cases, are much more efficient 393 

in recognizing positive regulators to a pathway gene compared to PLS method. For most pathway 394 

genes, like PAL1, C4H, CCR1, C3H, and COMT1, HB-PLS method could identify more positive 395 

regulators when the top cut-off lists contained fewer than 20 regulators compared to SPLS method. 396 

For HCT, CCoAOMT1, CAD8 and F5H, HB-PLS was almost always more efficient than SPLS 397 

when the top cut-off lists contained fewer than 40 regulators. For pathway gene CAD8, SPLS and 398 

PLS both failed to identify positive regulators while HB-PLS performed efficiently.      399 

 400 

Prediction of photosynthetic pathway regulators using Huber-Berhu PLS 401 
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Photosynthesis is mediated by the coordinated action of about 3,000 different proteins, commonly 402 

referred to as photosynthesis proteins [56]. In this study, we used genes from the photosynthesis 403 

light reaction (PLR) pathway to study which regulatory genes can potentially control 404 

photosynthesis. Analysis was performed using HB-PLS, with SPLS as a comparative method. The 405 

compendium data set we used is comprised of 63 and 36 RNA-seq data sets from maize leaves and 406 

seedlings, respectively. Expression data for 2616 TFs and 30 PLR pathway genes were extracted 407 

from the above compendium data set and used for analyses. The results of HB-PLS and SPLS 408 

methods are shown in Figure 5A and 5B, respectively. HB-PLS identified 14 positive TFs while 409 

SPLS identified 13 positive TFs. Among the 14 positive TFs identified by the HB-PLS method, 410 

NF-YC4 mediates light-controlled hypocotyl elongation by modulating histone acetylation [57]. 411 

The chloroplast psbD gene encodes the D2 protein of the photosystem II (PSII) reaction center. In 412 

the green alga Chlamydomonas reinhardtii, D2 synthesis requires a high-molecular-weight 413 

complex containing the RNA stabilization factor NAC2 [58]. GBF6 is indicated to control CLPB3 414 

in an irradiance-dependent manner [59]; CLPB3 encodes a molecular chaperone involved in 415 

plastid differentiation mediating internal thylakoid membrane formation [60]. The chloroplast 416 

protein phosphatase TAP38/PPH1 is required for efficient dephosphorylation of the light-417 

harvesting complex II (LHCII) anthenna and the state transition from state 2 to state 1 [61]. The 418 

transcription factor bZIP63 is required for adjustment of circadian period by sugars [62]. PIF1 419 

negatively regulates chlorophyll biosynthesis and seed germination in the dark, and light-induced 420 

degradation of PIF1 relieves this negative regulation to promote photomorphogenesis [63]. The 421 

transcription factor HY5 is a key regulator of light signaling, acting downstream of photoreceptors. 422 

HY5 also binds sites in the promoter of the STOMAGEN (STOM) gene, which encodes a peptide 423 

regulator of stomatal development [64]. HY5 also binds and regulates the circadian clock 424 

gene PRR7, which affects the operating efficiency of PSII under blue light [65]. By QTL mapping, 425 

WRKY2 and PRR2 are predicted regulators that control photosynthesis [66]. mtTTF is induced by 426 

light (particularly blue light) [67].  mTERF6 is required for photoautotrophic growth early in 427 

development, and mterf6-5 exhibited reduced growth and defective chloroplasts [68]. Of the TFs 428 

identified by SPLS, mTTF-2 is induced by light (particularly blue light) [67]. REB3 and WRKY11 429 

are predicted TFs that control photosynthesis through QTL mapping [66].  430 

GATA16 controls greening, hypocotyl elongation [69]; TOC1 mis-expressing plants were shown 431 

to have altered ABA-dependent stomata closure [70]. FRS5 is expressed in cotyledons of light-432 
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grown seedlings, which is consistent with a potential role for FRS5 in regulating light control in 433 

Arabidopsis development [71]. Moreover, FRS6 likely acts as a positive regulator in the phyB 434 

signaling pathway controlling flowering time [71]. MTERF9 has a significant role in light 435 

signaling as well as in aminoacylation and seed storage [71]. EMB2219 encodes a mitochondrial 436 

transcription termination factor that is localized and enriched in proplastids and chloroplasts [72]. 437 

STN2 enhances the rate of photosynthesis and alleviates photoinhibition in Solanum tuberosum 438 

[73]. Vannini et al. (2004) have reported that Arabidopsis plants overexpressing OsMYB4 show 439 

improved PSII stability and higher tolerance to photoinhibition [74].  440 

 441 

 442 

Figure 5. The performance of Huber-Berhu-Partial Least Squares (HB-PLS) (A) was compared 443 

with the sparse partial least squares (SPLS) method (B) in identifying regulators that affects maize 444 

photosynthesis light reaction (PLR) pathway genes. The green nodes represent photosynthesis 445 

light reaction pathway genes. Coral nodes represent predicted biological process or pathway 446 

regulators, and shallow purple nodes contain other predicted TFs that do not have experimentally 447 

validated supporting evidence for the time being. 448 

 449 

Discussion 450 

The identification of gene regulatory relationships by the construction of gene regulatory networks 451 

from gene expression data sets has inherent challenges due to high dimensionality and 452 
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multicollinearity. High dimensionality is caused by a multitude of gene variables while 453 

multicollinearity is largely the result of a large number of genes in a relatively small number of 454 

samples. One method that can circumvent these challenges is partial least squares (PLS), which 455 

couples dimension reduction with a regression model. However, because PLS is not particularly 456 

suited for variable/feature selection, it often produces linear combinations of the original predictors 457 

that are hard to interpret due to high dimensionality [75]. To solve this problem, Chun and Keles 458 

developed an efficient implementation of sparse PLS, referred to as the SPLS method, based on 459 

the least angle regression [76]. SPLS was then benchmarked by means of comparisons to well-460 

known variable selection and dimension reduction approaches via simulation experiments [75]. 461 

We used the SPLS method in our previous study [41] and found that it was highly efficient in 462 

identifying pathway regulators and thus can be used as a benchmark for the development of new 463 

algorithms.   464 

 465 

In this study, we developed a PLS regression that incorporates the Huber loss function and the 466 

Berhu penalty for identification of pathway regulators using gene expression data. Although the 467 

Huber loss function and the Berhu penalty have been proposed in regularized regression models 468 

[43, 77], this is the first time that both have been used in the PLS regression at the same time. The 469 

Huber function is a combination of linear and quadratic loss functions. In comparison with other 470 

loss functions (e.g., square loss and least absolute deviation loss ), Huber loss is more robust to 471 

outliers and has higher statistical efficiency than the LAD loss function in the absence of outliers. 472 

The Berhu function [33] is a hybrid of the ℓ" penalty and the ℓ# penalty. It gives a quadratic penalty 473 

to large coefficients and a linear penalty to small coefficients. Therefore, the Berhu penalty has 474 

advantages of both the ℓ" and ℓ# penalties: smaller coefficients will tend to shrink to zero while 475 

the coefficients of a group of highly correlated predictive variables will not be changed much if 476 

their coefficients are large.  477 

 478 

A comparison of HB-PLS with SPLS suggests that they have comparable efficiencies. The 479 

implementation of HB-PLS and SPLS algorithms for identifying lignin pathway regulators in 480 

Arabidopsis led to the identification of 15 positive regulators using each algorithm, and 481 

implementation of the HB-PLS and SPLS algorithms for identifying PLR pathway regulators in 482 

maize resulted in 14 and 13 positive regulators, respectively. The HB-PLS and SPLS algorithms 483 
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each performed better than the conventional PLS method in identifying positive pathway 484 

regulators. The simulation of performance efficiency of both methods for each of the lignin 485 

pathway genes suggests that HB-PLS identifies more positive regulators in the top of output lists 486 

of pathway regulatros that have fewer than 20 TFs. However, as output regulatory gene lists 487 

increase to more than 20 genes, so does the efficiency of SPLS. In the output lists of HB-PLS and 488 

SPLS, the positive regulators share some common genes but their rankings are different, indicating 489 

that the two algorithms have unique specificities that can be used to identify different sets of 490 

positive pathway regulators through modeling GRNs.   491 

 492 

Conclusions 493 

A proximal gradient descent algorithm was developed to solve a regression optimization problem. 494 

In this regression, the Huber function was used as the loss function and the Berhu function was 495 

used as the penalty function. An optimal one-dimensional clustering algorithm was adopted to 496 

cluster the regression coefficients and then the elbow point was used to determine the non-zero 497 

variables. The Huber function is more robust in dealing with outlier and non-Gaussian error while 498 

the Berhu function integrates the advantages of both ℓ# and ℓ" penalties. The group effect of the 499 

Huber-Berhu regression makes it suitable for modeling transcriptional regulatory relationships. 500 

Simulation results showed that the Huber-Berhu regression has better performance in identifying 501 

non-zero variables. When modeling the regulatory relationships from TFs to a pathway, HB-PLS 502 

is capable of dealing with the high multicollinearity of both TFs and pathway genes. 503 

Implementation of the HB-PLS to Arabidopsis and maize data showed that HB-PLS can identify 504 

comparable numbers of positive TFs in the two pathways tested. However, there were differences 505 

in the pathway regulators identified and their rankings; in particular, positive TFs tended to be 506 

present in highly ranked positions in output lists. This is an advantage for selecting candidate 507 

regulators for experimental validation. Our results indicate that HB-PLS will be instrumental for 508 

identifying novel biological process or pathway regulators from high dimensional gene expression 509 

data. 510 

 511 

Contributions 512 
 513 
WD developed the methods and implemented the method in R. HW, SL, KZ are involved in 514 

desiging and improving the method. CH, ZW and LW were involved in data collection and 515 
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network construction, interpretation, and plotting. WD, HW and SL wrote the manuscript. KZ, 516 

ZW, SL and HW revised the manuscript.   517 
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