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Abstract 

Clinical trials of novel therapeutics for Alzheimer’s Disease (AD) have consumed a large amount of time 

and resources with largely negative results. Repurposing drugs already approved by the Food and Drug 

Administration (FDA) for another indication is a more rapid and less expensive option. Repurposing can 

yield a useful therapeutic and also accelerate proof of concept studies that ultimately lead to a new 

molecular entity. We present a novel machine learning framework, DRIAD (Drug Repurposing In AD), 

that quantifies potential associations between the pathology of AD severity (the Braak stage) and 

molecular mechanisms as encoded in lists of gene names. DRIAD was validated on gene lists known to 

be associated with AD from other studies and subsequently applied to evaluate lists of genes arising 

from perturbations in differentiated human neural cell cultures by 80 FDA-approved and clinically tested 

drugs, producing a ranked list of possible repurposing candidates. Top-scoring drugs were inspected for 

common trends among their nominal molecular targets and their “off-targets”, revealing a high 

prevalence of kinases from the Janus (JAK), Unc-51-like (ULK) and NIMA-related (NEK) families. These 

kinase families are known to modulate pathways related to innate immune signaling, autophagy, and 

microtubule formation and function, suggesting possible disease-modifying mechanisms of action. We 

propose that the DRIAD method can be used to nominate drugs that, after additional validation and 

identification of relevant pharmacodynamic biomarker(s), could be evaluated in a clinical trial. 

Introduction 

Alzheimer’s Disease (AD) is a growing healthcare crisis with longer life expectancy as its principal risk 

factor. It is estimated that, in the absence of effective prevention and treatment options, disease 

prevalence will more than double over the next several decades: from 5.8 million individuals living with 

AD today in the US to a projected 13.8 million by 20501. In addition to its direct impact on human health 

and welfare, the long-term care of affected individuals imposes a substantial economic burden2. 

Multiple efforts to develop disease-modifying therapeutics for AD, including 200 clinical trials to date, 

have been largely negative with many failures occurring due to excess toxicity and lack of efficacy3. 

Every failed clinical trial of a new molecular entity (NME) consumes substantial time and resources. In 

contrast, repurposing drugs already approved by the Food and Drug Administration (FDA) for another 

indication is less expensive and has a higher success rate (30%) as compared to development of an NME. 

The most obvious approach to repurposing is to use an existing drug in a new indication, perhaps at a 

different dose or in different formulation.4 An alternative is to use repurposing as a way of testing a 

therapeutic concept that could then be subsequently advanced via an NME. This is potentially valuable 
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in the case of AD in which the underlying disease mechanisms remain poorly understood and the 

potential for multiple distinct disease etiologies exists.  Repurposing drugs for AD has received 

increasing attention5,6, but approaches to date have been largely hypothesis-driven, based on overlap 

between an existing pharmacological mechanism of action (MOA) and a putative disease-causing 

mechanism7 or results of a clinical trial8,9. While some of these leads are promising, no successes have 

been reported to date.   

As databases of drug information grow, informatics-based approaches to drug repurposing have 

emerged. Tools such as PREDICT10, Rephetio11, Connectivity Map12, and other methods13,14 seek to 

establish large-scale associations between perturbations induced by drugs and by disease processes, 

which can be mined for novel repurposing opportunities. For simplicity, we use the term drug in this 

work to broadly refer to both the FDA-approved chemical entities as well as clinically tested compounds 

and drug-like pre-clinical molecules (often referred to as “chemical probes”). One drawback of existing 

repurposing databases is that they are rarely disease specific and include data on drug mechanisms and 

disease pathways (typically transcriptional or proteomic signatures) obtained from diverse biological 

settings. This is potentially problematic in the case of a disease such as AD that is poorly understood and 

characterized by phenotypic15 and pathological heterogeneity16. We therefore sought to develop a 

repurposing approach that makes use of omic datasets on drug mechanisms and on disease, as obtained 

from individuals suffering from different stages of AD; such databases have been collected by the 

Accelerating Medicines Partnership - Alzheimer's Disease (AMP-AD) effort17.  

In this manuscript we describe DRIAD (Drug Repurposing In Alzheimer’s Disease), a novel 

machine learning framework that quantifies the association between the stage of AD (early, mid or late) 

as defined by Braak staging18 and any biological process or response that can be characterized by a list of 

gene names. Data characterizing AD were obtained from AMP-AD datasets and comprised mRNA 

expression profiles of postmortem brain specimens. Lists of gene names were obtained by using RNAseq 

to measure the responses of human neuronal cells to small molecule drugs and then identify 

differentially expressed genes (to generate drug-associated gene lists; DGLs). In the current work, we 

focus on kinase inhibitors because they are associated with strong transcriptional signatures and have 

relatively well annotated target spectra19. DRIAD uses a specific DGL for feature selection and then trains 

and evaluates a predictor of AD pathological stage from AMP-AD gene expression data. In this way, the 

relevance of a drug-induced perturbation of neurons (which is a reflection of drug mechanism of action) 

to the pathological processes underlying AD can be evaluated. Drugs whose DGLs resulted in the most 
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accurate predictors were found to target proteins in signaling networks regulating innate immunity, 

autophagy, and microtubule dynamics; these represent novel pathways for a potential Alzheimer’s 

therapeutic20. The direction of this effect is not specified a priori and DRIAD will identify both disease-

enhancing and disease-reducing drugs, a topic addressed in the discussion. We also show that DRIAD is 

agnostic to the type of disease, the length of the input gene list and its source, which can be a drug-

induced perturbation, as in this work, the results of a previous study or manual annotation of biological 

mechanisms.  

Results 

Machine learning framework for identifying potential associations between gene lists and 
disease 

When used for AD repurposing, DRIAD requires two types of inputs: (i) mRNA expression profiles from 

human brains at various stages of AD progression and (ii) a dataset comprising DGLs – lists of genes 

differentially expressed when neurons are exposed to a test panel of drugs. Human brain gene 

expression levels were taken from AMP-AD datasets17 provided by The Religious Orders Study and 

Memory and Aging Project (ROSMAP), The Mayo Clinic Brain Bank (MAYO) and The Mount Sinai/JJ 

Peters VA Medical Center Brain Bank (MSBB), each encompassing measurements from one or more 

regions of the brain (Fig. 1b). Braak staging scores18, assigned through neuropathological assessment, 

were used to group samples into three categories of disease progression: early (A; stages 1-2), 

intermediate (B; stages 3-4) and late (C; stages 5-6). This grouping recapitulates the spatio-temporal 

progression of neurofibrillary tangles from the entorhinal region to the hippocampus area and, 

subsequently, to neocortical association areas21.  

DRIAD trains and then evaluates a predictor that can recognize the A, B or C disease category from 

mRNA expression levels, restricting the predictor to those genes in the DGL (Fig. 1a) (See Methods). We 

consider it highly likely that the molecular processes involved in the initiation and progression of AD are 

obscured in end-stage RNAseq profiles as a result of the actions of myriad signaling pathways and 

feedback loops, leading to widespread transcriptional changes only indirectly associated with disease 

mechanism22–25. This is reflected in the fact that any randomly-selected list of genes in human brain gene 

expression profiles is weakly predictive of disease stage (Supplementary Fig. 1). We therefore sought 

lists of genes that outperformed random lists in predicting AD stage at a pre-specified level of 

significance. Statistical significance was assessed by repeatedly sampling the space of all gene names to 

create a background distribution of random gene lists (of the same length) against which to evaluate a 
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DGL (Fig. 1a). An empirical p value was provided by the fraction of random gene lists that outperformed 

the DGL in the prediction task. 

Validation of DRIAD using gene lists associated with AD pathophysiology 

To validate the DRIAD framework, lists of gene names previously reported in the literature to be 

associated with an aspect of AD progression24,26–33 were substitute for DGLs.  Each input gene list was 

used to train DRIAD to distinguish between early (A) and late (C) stage disease based on mRNA levels in 

AMP-AD data. We found that most of the published lists of AD-associated genes outperformed 

randomly-selected lists of equal length (Fig. 1c). Thus, DRIAD effectively recapitulates previous attempts 

to identify genes and co-expression modules associated with disease severity. Similar results were 

obtained with human gene sets and mouse homologues previously reported to be associated with AD. 

For example, McKenzie, et al., used AMP-AD data to establish that Ugt8 is a key regulator of 

oligodendrocyte function and reported a list of genes that are differentially expressed in the frontal 

cortex of a Ugt8 knock-out mouse model32. DRIAD shows that these differentially expressed genes have 

a significant association with disease severity in AMP-AD data (Fig. 1c), providing further evidence that 

Ugt8 may play a role in neurodegeneration in humans. 

Similarly, Mostafavi, et al., identified a co-expression module of 390 genes that has a strong association 

with cognitive decline26. DRIAD confirms that a predictor trained to recognize pathological stage based 

on these 390 genes performs better than equivalent predictors trained on any arbitrary set of 390 genes 

chosen at random (Fig. 1c). In contrast, when we examined gene lists associated with Progressive 

Supranuclear Palsy (PSP) Tau Neuropathology and Angiogenesis, DRIAD found that they correlated with 

Braak staging no better random. This suggests that models trained using DRIAD can distinguish 

molecular features of  tauopathies and pathologic processes not known to be relevant to AD.  

Consistency in performance was observed across datasets and brain regions, with one exception: 

whenever a predictor was trained on late-stage samples in the MAYO dataset, it substantially 

outperformed similar predictors evaluated on all other datasets (Fig. 2b, Supplementary Fig. 1). This 

suggests the presence of a strong batch effect in the late-stage MAYO samples that the predictors pick 

up in lieu of learning disease severity. Because the nature of this batch effect is unknown, we chose to 

exclude MAYO data in the current study. However, future studies may consider adjusting for batch 

effects of unknown origin using established methods from the literature34–36. 
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3’ Digital Gene Expression profiles drug-induced perturbation of mRNA expression 

Drug responses were generated using the RenCell VM human neural progenitor cell line. Upon growth 

factor withdrawal, RenCell VM cells differentiate into a mixed culture of neurons, glia and 

oligodendrocytes over a period of  ~7 days37. Differentiated RenCells were exposed to one of 80 drugs at 

two doses in triplicate, or to a vehicle-only (DMSO) control, for 24h and mRNA levels were then 

measured using the high-throughput, intermediate read density RNAseq method 3’ Digital Gene 

Expression (3’ DGE)38 (Fig. 2a); the advantage of DGE in this setting is that it provides high quality gene 

expression data at relatively low cost, allowing data to be collected from multiple repeats, doses and 

drugs. The drug panel was designed to include FDA-approved compounds, which could potentially be 

repurposed, compounds that have been tested in human clinical trials, and for which toxicity data are 

available, that could be further developed for AD and pre-clinical compounds designed to extend the 

range of targets and test therapeutic concepts not explorable with clinical grade compounds (Table 1). 

The 80 compounds were profiled across two separate 3’ DGE experiments and, to establish 

reproducibility, five of the 80 compounds were included in both experiments. The experiments are 

indexed separately (Table 1), and the compounds in common provide a measure of biological and 

technical variation.  High concordance of the measurements between the two experiments was 

observed (Supplementary Fig. 2) suggesting that batch effects are not strong. Overall the drug-response 

data comprised 767 DGE gene expression profiles. 

For each drug, we defined the DGL to be the set of significantly perturbed genes, as identified through 

differential gene expression analysis39 comparing 3’ DGE profiles of drug-treated and control cells (see 

Methods). For most drugs, we identified between 10 and 300 significantly perturbed genes. DRIAD 

evaluated each DGL by constructing a predictor of pathological stage based on mRNA expression of 

these genes in AMP-AD datasets. The accuracy of the predictor assessed over multiple brain regions 

measures the association between a drug’s “mechanism” (encapsulated in the DGL) and AD severity. We 

focused specifically on the binary classification task of distinguishing early vs. late disease stages (A-vs-

C), because it contrasts groups of maximally distinct samples and yields higher signal to noise ratio than 

attempting to predict all three disease stages. This in turn leads to higher predictive power of random 

gene lists and a higher performance bar that DGLs will need to surpass to be considered significant. 

Systematic assessment of drug signatures derived from 3’ DGE leads to a ranked list of 
repurposing candidates 
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Each DGL is evaluated against randomly-selected gene lists of the same length (Fig. 1a). The empirical p 

value, computed as the fraction of random lists that outperform a DGL, constitutes a natural starting 

point for comparing predictor performance across drugs, because it is effectively normalized by the 

number of genes in the DGL. An example of drugs whose DGL consistently outperform random lists 

include the pre-clinical compound TAE684 and the approved drug ruxolitinib, whose primary targets are 

ALK and JAK1/2 kinases respectively (Fig. 2b). Next, we combined the empirical p values from various 

datasets and brain regions to create a harmonic mean p-value (HMP) for each drug. The HMP facilitates 

the detection of significant hypothesis groups in a multiple hypothesis setting, while being less 

restrictive and providing greater statistical power than similar multiple hypothesis testing procedures40. 

Using HMP as a prioritization scheme, we identified the top 15 FDA-approved and top 15 pre-clinical 

drugs (Fig. 3) in the full ranking of all 80 drugs that were profiled in neuronal cultures (Table 1).  

Some of top-performing drugs were associated with drugs that are known to be cytotoxic (e.g. 

TAE68441) and were discovered as antineoplastics. To assess the magnitude of this cytotoxicity, we 

quantified viable differentiated RenCells following 48 h of exposure to a high drug dose (10 uM) using 

fixed cell microscopy (see Methods and Supplementary Fig. 3); drugs that significantly reduced viable 

cell number were annotated cytotoxic (Fig. 3). A general consensus was observed between viable cell 

number and the total RNA yield (Wilcoxon Rank Sum test, p < 4 x 10-9), suggesting that compound 

toxicity can also be inferred directly from a reduction in mRNA abundance in post-perturbational gene 

expression profiles (Supplementary Fig. 3). Since DGLs of cytotoxic drugs consistently outperform 

random lists across multiple AMP-AD dataset (Fig. 2b, 3), the mechanisms of cell death induced by these 

drugs may share some similarity with mechanisms of cell death in AD. Screening for drugs that rescue 

death induced by TAE684 (or other cytotoxic compounds) might therefore identify compounds with the 

ability to prevent cell death of human neural cells but such a screen is outside of the scope of the 

current work. 

Elucidating target affinity spectrum properties associated with the observed drug ranking 

Do high-scoring drugs have features in common? With respect to primary targets, we observed that 

many drugs, including ruxolitinib, inhibit one or more of members of Janus Kinase family, which 

comprises JAK1, JAK2, JAK3 and TYK2 (Fig. 3). However, these compounds are known to have additional 

off-targets that might also contribute to activity19,42. To investigate the potential role of these secondary 

targets we used the Target Affinity Spectrum (TAS), a vector computed from experimental data that 

quantifies the potency of a drug against a range of targets19. TAS vectors were constructed by 
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aggregating information about targets and non-targets from published dose-response measurements, 

experimental profiling data, and manual annotations in the literature. Confirmed drug-target bindings 

were given a TAS score of 1,2, or 3 (with lower values indicating higher binding affinity), while confirmed 

non-binders were annotated with a TAS score of 10 (Fig. 4a). The full set of TAS scores, which includes 

the 80 compounds considered in this study, is publicly available at http://smallmoleculesuite.org. 

We evaluated whether the strength of a binding interaction (i.e., binding affinity) between a compound 

and its target or a set of biologically related targets contributes to the ranking of a compound by DRIAD. 

Significant positive correlations between the drug ranking and the binding affinity suggest that the 

target or a class of targets are likely to be pertinent to one or more of the disease mechanisms. To 

illustrate this effect, we constructed empirical cumulative distribution functions (ECDFs) for the binding 

of drugs to members of the JAK family. The list of 80 drugs was traversed in the order of increasing 

harmonic p-value, while keeping track of the cumulative count of drugs with a particular TAS value (Fig. 

4b). This results in three different ECDFs, representing all drugs that bind to the corresponding target 

with a TAS score of 1, 2, or 3. Area under individual ECDF curves (AUC) can be interpreted as a summary 

statistic capturing the position of JAK binders with a particular affinity in the ranking; larger values of the 

AUC correspond to a higher saturation of the corresponding drug set near the top of the ranking. 

We observed that compounds having higher affinity for members of the JAK family (i.e., lower TAS 

values) tend to appear earlier in the ranking (Fig. 4b), with a significant correlation (p = 0.001; Kendall’s 

Tau test) between binding affinity and the drug ranking as defined by DRIAD. This suggests that 

downstream transcriptional changes induced by JAK inhibitors correlate with Braak AD stage severity in 

an affinity-dependent manner. Direct inspection of the experimental 3’ DGE data confirms that binding 

affinity directly correlates with the level of expression in several interferon-stimulated genes, with drugs 

that have a higher affinity to JAK family members resulting in stronger inhibition of interferon gene 

expression (Supplementary Fig. 4). These observations build on previous studies43 suggesting that 

inhibition of the JAK-STAT and interferon signaling pathways might be beneficial in the context of AD. 

We repeated the binding affinity correlation analysis for all targets that had confirmed binding 

interactions with at least three drugs used in this study (Fig. 4c). The results showed that most of the 

affinity-dependent effects were contributed by “off-targets”, i.e., established targets for a drug that are 

different from the target for which the drugs is marketed (the ‘nominal target’). For example, we 

observed strong associations between drug ranking and binding affinity for Unc-51-Like Kinases 1 and 2 

(ULK1, ULK2) and their downstream substrate Death-Associated Protein Kinase 3 (DAPK3), all of which 

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 16, 2020. ; https://doi.org/10.1101/2020.05.15.098749doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.15.098749
http://creativecommons.org/licenses/by-nd/4.0/


   
 

 9 

are associated with autophagy44–46. Autophagy plays an important role in cellular homeostasis and its 

dysregulation is emerging as a contributing factor to neurodegenerative diseases, including AD47,48. 

Previous studies suggest that inhibition of autophagy may impair clearance of neurotoxic aggregates, 

and future effective therapy might require that the level of autophagy is maintained, or even increased, 

as part of upstream perturbations49,50. The Salt Inducible Kinase 1 (SIK1) also appears to have a strong 

association with the position of compounds in the ranking. This association is driven primarily by 

TAE684, fedratinib, and GSK1070916, all of which are strong binders of SIK1 (TAS = 1) and appear near 

the top of ranking established by DRIAD. However, none of these drugs are FDA approved or have been 

studied in the context of SIK1 inhibition.  

Polypharmacology analysis reveals additional mechanisms that may correlate with AD 
severity 

We also considered downstream effects of concerted off target binding (polypharmacology) in which 

genes with a closer association to disease severity are altered more significantly by coordinated activity 

on two or more targets relative to drugs that selectively bind to only one of the off-targets. To evaluate 

the impact of polypharmacology on drug-disease associations, we divided the 80 compounds in our 

dataset into three categories: those with confirmed binding to Target A and Target B and those that bind 

either Target A or Target B alone (see Methods). The three categories were then compared to determine 

whether compounds binding both targets appear significantly closer to the top of the ranking (Fig. 5a) as 

defined by the harmonic mean p-value computed by DRIAD (Table 1). We systematically evaluated all 

pairs of targets that had a least six compounds with confirmed binding interactions associated with TAS 

values of 1, 2, or 3, and then identified the top pairs in the ranking (Fig. 5b). A pair was deemed to be a 

positive interaction if compounds binding both targets (A and B) appeared significantly closer to the top 

of the ranking than compounds binding only one of the targets (A or B, but not both); the pair was 

deemed to be a negative interaction if the opposite held true. 

To determine whether one or more targets consistently participate in positive or negative interactions 

with other targets we aggregated individual p values from the evaluation of pairs that contained the 

target of interest, using the Brown’s method and Jaccard similarity as the metric of independence 

between individual tests (see Methods). The list of targets was subsequently sorted by the aggregated p 

value (Table 2 and Supplementary Table 1). We found that several gene families emerged as candidate 

for top scoring compounds in which poly-pharmacology was predicted to be essential. For example, the 

top-scoring compounds TAE684, dovitinib, ruxolitinib and fedratinib are observed to bind RPS6KA1 (Fig. 
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5a, Table 2), a component of a microglial signature51 with a potential role in AD as identified by previous 

epigenetic studies52, and RPS6KA2, a gene involved in Neurotrophin signaling53 with previous reports of 

association with Parkinson’s Disease in GWAS studies54. Similarly, NIMA-related Kinases NEK3, NEK6 and 

NEK9 consistently appear in positive interaction with other drug targets among top-scoring compounds 

(Table 2). All three genes have known relationships to microtubule function and Tau phosphorylation. 

NEK3 has been reported to influence neuronal morphogenesis through microtubule acetylation, and its 

phospho-defective mutant is hypothesized to play a role in axonal degeneration55. NEK6 phosphorylates 

p70-S656, a key player in hyperphosphorylation of Tau57,58 that leads to microtubule disruption and 

deposition of Tau tangles. It was found to be relevant to the progression of AD and proposed as an early 

diagnostic biomarker59,60 NEK9 was found to be differentially expressed in a tauopathy mouse model61. 

Taken together, these results suggest that the NEK family may be an important set of co-targets, and a 

successful future therapeutic might require polypharmacology with respect to these kinases. 

Discussion 
In this paper we described the development of DRIAD, a machine learning framework for evaluating 

potential relationships between a disease and any biological process than can be described by a list of 

genes. We used DRIAD to look for associations between the pathological stage of AD and genes that are 

differentially expressed in neurons exposed to potential therapeutic drugs. DRIAD is distinct from the 

traditional approaches in which a model is constructed over the entire gene space and subsequently 

interrogated for feature importance scores and the enrichment of predefined gene sets, which then 

serve as a candidate list for further functional studies62. The traditional approach is well-suited for 

predictors that exhibit high accuracy, because they establish a strong association between input 

features and the predicted phenotype. As predictor accuracy decreases however, it becomes difficult to 

distinguish whether a high enrichment score is a true association between the corresponding 

mechanism and disease, or an artifact in a model that doesn’t accurately predict the phenotype of 

interest (here, disease stage as defined by Braak score). DRIAD effectively decouples gene set 

enrichment and predictor performance by pre-filtering the transcriptomic space to genes associated 

with drugs prior to model training and predictor evaluation. Pre-filtering to a limited set of features also 

addresses the issue of overfitting that often arises when constructing computational models from 

disease databases where the number of cases is much less than the number of ‘omic features. Thus, 

DRIAD enables a direct, unbiased quantification of the association between drugs and AD. 
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The eighty compounds that we profiled in vitro were predominantly kinase inhibitors with anti-cancer 

activity since this is the largest class of targeted drugs currently available, both as approved and pre-

clinical compounds19, with extensive target information. In addition, there is an inverse relationship 

between incidence of cancer and incidence of Alzheimer’s disease63,64. Of the 80 compounds tested, 35 

were FDA-approved (Table 1) and can potentially be used for repurposing. The remaining set consisted 

of 35 pre-clinical and 15 investigational compounds, which allowed us to explore a wider spectrum of 

mechanisms. Targets of pre-clinical and investigational compounds that were scored highly by DRIAD 

could potentially be used for selection of FDA-approved compounds in future screens or for the 

development of NMEs.  

We ranked all compounds by how well their mechanism of actions (as represented by a list of gene 

names) were able to predict disease severity based on gene expression in AMP-AD datasets. We found 

several drugs whose primary targets are JAK kinases to be among the top performers. We also explored 

connections between drug and their primary and secondary targets. This revealed that top-rankings 

drugs modulate pathways related to interferon signaling, autophagy and microtubule formation and 

function. Kinases from JAK, ULK and NEK families were found to be among the most consistent targets of 

top-scoring drugs. Future investigation will include experimental validation of these targets in cell-based 

and animal models using CRISPRa and/or CRISPRi, or other gene editing techniques, to evaluate whether 

a drug “hit” from DRIAD has an impact on AD-associated pathophysiology. 

DRIAD has the potential to identify drugs that both mimic (or accelerate) disease and those that inhibit 

it.  From the perspective of actual drug repurposing only the later compounds are useful. In other 

studies, gene expression changes have demonstrated increased interferon signaling in AD65 and in ALS66 

brains. Recently, we have found that cytoplasmic dsRNA, a known activator of Type I interferon, is 

present in ALS brains with TDP-43 pathology. Similarly, cytoplasmic dsRNA, which has been linked to 

increased Type I interferon signaling, was found to accumulate in glia in AD brains67. Activation of 

interferon signaling in this context promotes neuronal cell death. Thus, it seems probable that the 

inhibitors of JAK-STAT signaling identified in this study will potentially be useful in blocking 

neuroinflammation and cell death in the context of AD.  Further studies to investigate the role of JAK-

STAT signaling in aging and in AD brains are therefore warranted. 

DRIAD allows for unbiased assessment of biological processes or drug candidates even when disease 

mechanisms are not explicitly known. This is valuable from a neuropathological perspective because it is 

increasingly clear that in addition to the classical AD hallmarks of amyloid plaques, neurofibrillary 
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tangles, and neuronal loss, most patients with a clinical diagnosis of AD dementia have distinct patterns 

of co-occurring pathologies including TDP43 inclusions, Lewy bodies, vascular changes, astrocyte and 

microglial activation, and probably other unrecognized alterations22,68–71. By working directly with the 

mRNA expression data from postmortem brain specimens and a priori knowledge of which genes 

encapsulate a proposed mechanism or co-expression module, or which genes are perturbed by a set of 

drugs, DRIAD can score mechanisms, co-expression modules or drugs without explicit knowledge of co-

existing pathologies, e.g. presence of Lewy Bodies or TDP-43 inclusions, in individual patients. Thus, 

DRIAD is capable of evaluating diverse hypotheses, including those associated with repurposing, without 

a high level of prior knowledge. 

In the datasets used for this study, gene expression profiles from autopsied brains are associated with 

Braak pathologic stage, making it possible to compare patients with no or mild AD symptoms at the time 

of death to patients who were demented. However, this anchoring on Braak staging also includes some 

cases where symptoms did not correlate with pathological stage. A follow-on computational approach 

to deconvolve the correlative signals observed between top-performing drug signatures and AD 

expression profiles would help inform subsequent mechanistic studies. One direction for follow up is to 

rerun the DRIAD pipeline on patient subgroups as defined by more detailed clinical or pathologic 

phenotypes, motivated by the notion of personalized treatment: different molecular pathways of AD 

will likely require different interventions to rescue neuronal death. 

This study has identified associations of gene perturbations by FDA-approved drugs and investigational 

compounds in human neural cells with gene perturbations in AD brain regions. Our results require 

validation in relevant model systems or through emulated clinical trials in electronic health records72. 

Parallel mechanistic studies to discover relevant CNS-specific pharmacodynamic biomarker(s) for a drug 

action, in the cerebrospinal fluid, for instance, would enable formal evaluation of each drug’s efficacy 

and safety in randomized clinical trials.  

Methods 

High-Throughput profiling using 3’ Digital Gene Expression 

A multiwell cell dispenser (catalog# 5840300, Thermo Scientific,Waltham, MA) with standard tubing 

(catalog# 24072670, Thermo Scientific,Waltham, MA) was used to plate 2500 neural stem cells (ReNcell 

VM, catalog# SCC008, Millipore, Billerica, MA) into each well of a 384-well cell culture plate (Perkin 

Elmer, Waltham, MA). Neural stem cells where differentiated into mature neural cells for one week and 
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then treated with compounds (Table 1) or DMSO using a D300 Digital Dispenser (Hewlett-Packard, Palo 

Alto, CA). D300 software was used to randomize dispensation of compounds. After 24 hours, the cells 

were washed once with PBS using an EL405x plate washer (BioTek, Winooski, VT) leaving 5-10 ul of PBS 

behind in each well. 10 ul of 1X TCL lysis buffer (catalog# 1070498, Qiagen, Hilden, Germany) with 1% 

(v/v) ß-mercaptoethanol was added per well, and the plates were stored at -80°C until the RNA 

extraction was performed.  

For RNA extraction, the cell lysate plate was thawed and centrifuged for 1 min at 1000 rpm. Using a 

BRAVO (Agilent, Santa Clara, CA) liquid handler, the lysate was mixed thoroughly before transferring 10 

ul to a 384 well PCR plate. 28 ul of home-made Serapure SPRI beads (GE Healthcare Life Sciences, 

Marlborough, MA) were added directly to the lysate, mixed and incubated for 5 min. The plate was 

transferred to a magnetic rack and incubated for 5 min prior to removing the liquid to aggregate the 

beads. The beads were washed with 80% ethanol twice, allowed to dry for 1 min, 20 ul of nuclease free 

water was added per well, the plate was removed from the magnetic rack and the beads were 

thoroughly resuspended. Following a 5 min incubation, the plate was returned to the magnetic rack and 

incubated an additional 5 min before transferring the supernatant to a fresh PCR plate. 5 ul of the RNA 

was transferred to a separate plate containing RT master mix and 3’ and 5’ adapters for reverse 

transcription and template switching (Soumillon et al., 2014), and incubated for 90 min at 42°C. The 

cDNA was pooled and purified with a QIAquick PCR purification kit according to the manufacturer’s 

directions with the final elution in 21 ul of nuclease free water. This was followed by exonuclease I 

treatment for 30 min at 37°C that was stopped with a 20 min incubation at 80°C. The cDNA was then 

amplified using the Advantage 2 PCR Enzyme System (Takara, Fremont, CA) for 6 cycles, and purified 

using AMPure XP magnetic beads (Beckman Coulter Genomics, Chaska, MN). Library preparation was 

performed using a Nextera XT DNA kit (Illumina, San Diego, CA) on 5 reactions per sample following the 

manufacturer’s instructions, amplified 12 cycles, and purified with AMPure XP magnetic beads 

(Beckman Coulter Genomics, Chaska, MN). The sample was then quantified by qPCR and sequenced on a 

single Illumina NextSeq run with 75bp paired end reads at the Harvard University Bauer Core Facility. 

Raw RNA reads were aligned against a reference genome and quantified using the bcbio-nextgen single 

cell/DGE RNA-seq analysis pipeline (https://bcbio-nextgen.readthedocs.io/). The pipeline consists of the 

following steps: 1) well barcodes and unique molecular identifiers (UMIs) were extracted from every 

RNA read; 2) all reads not within the edit distance of a single nucleotide from a predefined well barcode 

were discarded; 3) each extant read was quasialigned to the human transcriptome (version GRCh38) 
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using RapMap73; 4) reads per well were counted according to UMIs74, discarding reads with duplicate 

UMIs, weighting multi-mapped reads by the number of transcripts they aligned to and collapsing 

transcript counts to gene level by summing across all transcripts of a gene. 

Differential gene expression analysis was performed with the R package edgeR 3.18.1. Compound-

associated gene lists were composed from genes with a significant (FDR < 0.05) post-perturbation 

change in expression level compared to DMSO controls. List length was capped at 300 genes to ensure 

that <2% of the transcriptional space is captured by any one compound-associated list, thus maintaining 

a wide diversity among randomly-selected lists of matching lengths. 

Prediction of disease stage 

Gene expression profiles of postmortem brain specimens along with the corresponding clinical 

annotations were downloaded from the Synapse portal at www.synapse.org/AMPAD. The entire 

transcriptional feature space was filtered down to ~20k protein-coding genes to ensure fairness of 

comparison between transcriptional changes induced by the profiled compounds (which were all kinase 

inhibitors in this study) and the randomly-sampled background lists. Every specimen was assigned a 

label of disease severity based on the following mapping to the Braak annotations18: A - early (Braak 0-

2), B - intermediate (Braak 3-4), and C - late (Braak 5-6). The labels were used to establish three binary 

classification tasks, contrasting A vs. B, B vs. C, and A vs. C, with the expression of a prespecified list of 

genes playing the role of the input features. 

Data for any given binary classification task were used to train a logistic regression classifier, which 

models log-odds ratio between the two classes as a linear combination of the input features. Logistic 

regression was chosen due to its popular use with gene expression data and because it guarantees that 

every preselected input feature participates in the assignment of predicted labels to new data points. 

(This is in contrast to methods such as random forests, where one or more features may not get 

selected to be included in at least one decision tree.) To address overfitting, a ridge regularization term 

that penalizes the L2-norm of feature weights was included in the model. No LASSO regularization was 

used, as it induces sparsity and excludes features that were specifically preselected to be included in the 

model. 

Note that the proposed machine learning methodology is fairly general and, ultimately, the choice of a 

classification method does not matter, as long as the same predictor type is applied to random lists and 

the feature lists of interest. The desired properties are 1) that every feature in the list of interest is 
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included in the model, and 2) significantly better than random predictor performance is obtainable with 

a relatively small number of features, thus allowing for an effective comparison of feature lists. 

Model performance was evaluated through leave-pair-out cross-validation. For a given binary 

classification task, each example in the dataset was associated with the example from the opposite class 

that was the closest match in age. If there were multiple candidates for the age match, the pairing was 

selected uniformly at random. The resulting set of age-matched pairs was evaluated in a standard cross-

validation setting, by asking whether the later-stage example in each withheld pair was correctly 

assigned a higher score by the corresponding predictor. The fraction of correctly-ranked pairs 

constitutes an estimate of the area under the ROC curve75. 

Assessing gene list significance 

For a given gene list of interest, 1,000 random gene lists of matching cardinalities were sampled from a 

uniform distribution over the protein-coding space. Additional analysis did not reveal any significant 

association of predictor performance to the pairwise correlations among selected genes, nor to the 

proximity of selected genes on a gene-gene interaction network. Based on these observations, we saw 

no reason to bias random gene selection towards more (or less) internal connectivity. 

Gene lists produced by the random sampling constitute a background for comparison with a particular 

gene list of interest. After evaluating all lists through cross-validation, an empirical p value was 

computed as the fraction of background lists that yield higher predictor performance than the gene list 

of interest. P values calculated for the same gene list across multiple datasets were combined to 

produce the Harmonic Mean P (HMP) value40. Gene lists associated with post-perturbational 

transcriptional changes were sorted by HMP to produce the final ranking of the corresponding 

compounds. 

Assessing toxicity 

A multiwell cell dispenser (catalog# 5840300, Thermo Scientific,Waltham, MA) with standard tubing 

(catalog# 24072670, ThermoFisher Scientific,Waltham, MA) was used to plate 10,000 cells per well of a 

96-well cell culture plate (catalog# 3603, Corning, Corning NY). Cells were treated with compounds 

(Table 1) or DMSO using a D300 Digital Dispenser (Hewlett-Packard, Palo Alto, CA). D300 software was 

used to randomize dispensation of compounds. After 48 hours, 60µl of a solution containing 10% 

Optiprep (catalog# D1556, Millipore Sigma, St. Louis MO) diluted with PBS (catalog# 21-040-CV, Corning, 

Corning NY), and a 1:5000 dilution of Hoechst 33342 (catalog# H3570, ThermoFisher Scientific, 
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Waltham, MA) was gently added to the side of each well using a multichannel pipette (catalog# 1060-

0850, VistaLab Technologies, Brewster, NY) on the lowest speed setting of 1. After 30 minutes, 80µl of a 

solution containing 3.7% formaldehyde (catalog# 15711, Electron Microsopy Sciences, Hatfield, PA), 20% 

Optiprep in PBS was added.  After a 30-minute incubation a multichannel pipette (catalog# 1060-0850, 

VistaLab Technologies, Brewster, NY) was used to remove all but 15µl from each well. 100µl of 1xPBS 

was added to each well and the plate was covered with a foil seal (catalog# MSF-1001, Bio-Rad, 

Hercules, CA). Images were taken on an InCell 6000(GE Healthcare Bio-Sciences, Pittsburgh, PA). 

Columbus Image Data Storage and Analysis System (Perkin Elmer, Waltham MA) was used to count the 

number of Hoechst stained nuclei as a readout of cell number. 

Target affinity spectrum, top targets and polypharmacology analysis 

Systematic classification of compound-target affinities using Target Affinity Spectrum (TAS) 

TAS scores were calculated as described in the original paper19. Briefly, drug affinity data from ChEMBL 

v2576 and in-house data comprising drug affinity curves, single-dose binding data from the DiscoverX 

platform and manual binding assertions curated from literature were compiled into a single consistent 

measure of binding affinity. Multiple measurements for the same drug-target combination were 

aggregated by calculating the first quartile. For each drug-target pair, we only considered the highest 

quality source of data. If full dose-response affinity measurements were available, they took precedence 

over single-dose binding measurements, which took precedence over binding assertions mined from the 

literature. 

Dose-response affinity data were converted to TAS scores based on empirically derived concentration 

cutoffs (<100nM: TAS=1; 100-999nM: TAS=2; 1-10µM: TAS=3 and >10µM: TAS=10). For single-dose drug 

binding data, we used concentration-specific thresholds derived from the empirical correlation between 

dissociation constant and percent inhibition (100nM <25%: TAS=2, ≥75%: TAS=10; 1µM <1%: TAS=2, 

≥90%: TAS=10; 10µM <0.1%: TAS=2, ≥75%: TAS=10). Drug-target pairs were assigned TAS=2 or TAS=10 if 

they were mentioned in confirming (e.g. “drug X was equipotent for Y”) or negative (e.g. ‘‘drug X was 

found to not inhibit Y’’) statements in the literature. 

All TAS values used in this study are publicly available through https://smallmoleculesuite.org. 
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Identification of important target genes using TAS profiles 

Drugs were ranked based on their HMP scores, as computed above. If a drug was profiled in more than 

one 3’-DGE experiment, the corresponding HMP scores were averaged with a geometric mean. For a 

given target of interest, empirical cumulative distribution functions (ECDFs) were computed for each TAS 

value separately, using the HMP-based ranking as input. Area under individual ECDFs provides a 

summary statistic for the overall placement in the ranking of drugs with the corresponding TAS value. 

The importance of a particular drug target was assessed through Kendall’s Tau test, which compares 

whether pairs of drugs are ordered the same way in two different rankings. In our case, a pair of drugs is 

considered to be concordant if the drug with the higher binding affinity (lower TAS value) appears closer 

to the front of the ranking, and discordant otherwise. The Kendall’s Tau coefficient is then defined as the 

fraction of concordant pairs among those that can be ordered (i.e., pairs of drugs with non-identical TAS 

values). The associated p-value of the Tau coefficient is approximated through standard permutation 

testing. Targets with fewer than three confirmed binders (TAS = 1,2,3) were not evaluated. 

Polypharmacology analysis of target gene combinations 

We first compiled a list of pairwise gene combinations for which we had TAS scores for both targets 

from at least six compounds. For each combination of targets, we split the compounds into three 

categories based on their TAS scores: compounds that bind both targets (category “A AND B”) and 

compounds that bind one of the targets but not the other (categories “A AND NOT B” and “B AND NOT 

A”). A union of the latter two was defined to be an “A XOR B” set. Wilcoxon rank sum tests were 

performed separately for “A AND NOT B”, “B AND NOT A”, and “A XOR B”. In all cases, the comparison 

was made relative to “A AND B”. 

For each target pair, p-values from individual Wilcoxon rank sum tests were averaged using the 

harmonic mean40. The resulting p values were further aggregated using the Brown’s method (an 

extension of the Fisher’s method) with the test dependence metric being defined as the Jaccard 

similarity of the corresponding compound sets. For example, DCLK3 participated in 250 pair evaluations. 

Two of those evaluations included positive interactions “DCLK3 AND DYRK1B” and “DCLK3 AND DAPK3” 

pairings, with the corresponding harmonic mean p values 0.00099 and 0.0015, respectively (Figure 5B). 

There are ten compounds binding DCLK3 and DYRK1B, and the same ten compounds also bind to DCLK3 

and DAPK3, yielding a Jaccard similarity of 1.0 for the two pairings. The two p values are thus considered 
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to be coming from entirely non-independent tests by the Brown’s method, which aggregates all 250 p 

values into a single metric of importance for DCLK3 (Figure 5C). 

Data and code availability 

Raw post-perturbational gene expression data for the 80 compounds profiled in this study, the 

associated gene lists, drug toxicity data and all relevant metadata have been uploaded to Synapse at 

http://synapse.org/DRIAD. The machine learning framework for evaluating the capacity of gene lists to 

predict disease severity is publicly available on GitHub at https://github.com/labsyspharm/DRIAD. Upon 

accepting the appropriate AMP-AD data usage agreements, users can evaluate their own gene lists on 

the different datasets, brain regions and binary classification tasks. Scripts to fully reproduce the tables 

and figures presented in this manuscript are also provided on GitHub at 

https://github.com/labsyspharm/DRIADrc. The reproducibility was made possible in part by the R 

packages grImport277 and gridSVG78. 
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Fig. 1: a, Overview of the machine learning framework used to establish potential associations between gene lists and Alzheimers Disease. (i) The framework accepts
as input gene lists derived from experimental data or extracted from database resources or literature. (ii) Given a gene expression matrix, the framework subsamples
it to a particular gene list of interest, and (iii) subsequently trains and evaluates through cross-validation a predictor of Braak stage of disease. (iv) The process is
repeated for randomly-selected gene lists of equal lengths to determine whether predictor performance associated with the gene list of interest is significantly higher
than whats expected by chance. b, AMP-AD datasets used by the machine learning framework. The three datasets used to evaluate the predictive power of gene
lists are provided by The Religious Orders Study and Memory and Aging Project (ROSMAP), The Mayo Clinic Brain Bank (MAYO) and The Mount Sinai/JJ
Peters VA Medical Center Brain Bank (MSBB). The schematic highlights regions of the brain that are represented in each dataset. The MSBB dataset spans four
distinct regions, which are designated using Brodmann (BM) area codes. c, Performance of predictors trained on gene lists reported in previous studies of AMP-AD
datasets. The predictors are evaluated for their ability to distinguish early-vs-late disease stages with performance reported as area under the ROC curve (AUC). The
vertical line on each row denotes predictor performance associated with a gene list reported in the literature, while the background distribution is constructed over
randomly-selected lists of matching lengths. Each row is annotated with the pubmed ID of the study, the supplemental resource that contained the gene list, and a
short keyphrase providing functional context.
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Fig. 2: a, Overview of the 3’ DGE experimental protocol used to derive drug-associated gene expression signatures. ReNcell
VM human neural progenitor cells were plated and differentiated for 10 days, resulting in a mixed cell population of neurons,
glia and oligodendrocytes. The mixed culture was subsequently treated with a panel of drugs (Table 1) at 10 µM for 24 h and
frozen in a lysis buffer until library preparation. RNA was extracted and reverse transcribed into cDNA in each well of the
plate, followed by pooling and preparation of mRNA libraries. After sequencing, mRNA reads were demultiplexed according
to well barcodes, and the resulting gene expression profiles were processed by a standard differential expression method to
derive drug-associated gene lists. b, A highlight of two compounds whose gene lists consistently yield improved performance
over the randomly-selected lists of equal length. Shown is performance associated with predicting early-vs-late disease stages
in several AMP-AD datasets. Each row corresponds to an evaluation of gene lists in a single dataset; MSBB evaluation is
subdivided into four brain regions, specified as Brodmann Area. The vertical line denotes performance of the drug-associated
list, while the background distribution shows performance of gene lists randomly selected from the same dataset. The drugs
are annotated with their nominal targets.
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Fig. 3: Top 15 FDA-approved (left) and experimental/investigational (right) drugs, sorted by harmonic mean p-value. Each heatmap shows
p-values associated with a drugs predictive performance across two AMP-AD datasets, ROSMAP and MSBB. The MSBB analysis is further subdivided by the brain
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Fig. 4: a, Overview of Target Affinity Spectrum (TAS) score computation from raw drug binding data. Three types of
drug binding data were sourced from ChEMBL and from the internal Laboratory Systems of Pharmacology dataset that
have not yet been incorporated into ChEMBL. Empirically derived thresholds for the different data types where used to
assign TAS scores to each drug-target pair. Multiple measurements for the same drug-target combination were aggregated
along the first quartile to define the final TAS value. b, Binding affinity of compounds in the ranked list to every member
of the Janus Kinase family. The compounds are sorted in increasing order by the harmonic mean p-value (as defined in
Figure 3) along the x-axis. The top heatmap shows the binding affinity of each compound to the selected targets, explicitly
naming the FDA-approved drugs. Colored and gray tiles denote confirmed binders and non-binders, respectively; missing
entries correspond to unknown affinity values. The combined affinity is defined as the strongest binding (lowest TAS score)
among all four JAK targets. The bottom plot shows the breakdown of the combined affinity values by TAS-specific empirical
cumulative distribution functions (ecdfs). Each line shows ecdfs for all drugs that bind the corresponding target with a TAS
score of 1 (dark orange), 2 (orange) or 3 (light orange). c, Top targets whose binding affinity correlates most strongly with
the compound ranking. The ecdfs of confirmed non-binders (TAS = 10) are shown as gray dashed lines for reference. Area
under ecdf can be interpreted as a summary statistic that captures the position of drugs binding to that target with the
corresponding affinity in the ranked list. Correlation between the drug ranking and TAS values was computed using Kendalls
Tau test, with the associated p value displayed in the bottom right corner of each plot.
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Fig. 5: a, An example polypharmacology test with a focus on RPS6KA1 and TYK2. The drugs are ranked by the harmonic
mean p-value (as in Figures 3 and 4), and the distributions of drugs bindings to both RPS6KA1 and TYK2 (left), those
binding to RPS6KA1 but not TYK2 (middle) and, conversely, TYK2 but not RPS6KA1 (right) are shown along this ranking.
Individual drugs that bind those targets are annotated by vertical tick marks directly below the corresponding distribution.
b, Top 10 synergistic and top 10 antagonistic relationships between pairs of targets. The distributions in each plot are
compared using Wilcoxon Rank Sum test, with the resulting p value presented in the bottom right corner. If compounds
that bind both targets appear significantly closer to the top of the ranked list (left side of the x axis), we define the target
pair to be synergistic. Conversely, a pair of targets with an explicit non-binding interaction observed among the top-ranking
compounds is defined to be antagonistic. A set of five neutral target pairs (i.e., no significant synergistic or antagonistic
effect) is included for reference.
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Tables 
 

Table 1: Eighty compounds profiled in differentiated neuroprogenitor cell cultures. Each compound is 
annotated with its LINCS identifier, nominal target, approval status, toxicity, and strength of association 
with disease severity in ROSMAP and MSBB datasets (presented as HMP, harmonic mean p-value). Five 
of the compounds were profiled in two separate Digital Gene Expression (DGE) experiments. 

Plate LINCSID Drug Target Approval IsToxic HMP 

DGE1 HMSL10024 nvp-tae684 ALK experimental 1 0.0015 

DGE1 HMSL10045 a443654 AKT1 experimental 1 0.0023 

DGE1 HMSL10177 brivanib VGFR1 investigational 0 0.0025 

DGE1 HMSL10138 ruxolitinib JAK1 approved 0 0.0041 

DGE2 HMSL10282 vorinostat HDAC1 approved 0 0.0047 

DGE2 HMSL10127 dovitinib FLT3 investigational 0 0.0050 

DGE2 HMSL10225 regorafenib c-Kit approved 0 0.0097 

DGE1 HMSL10141 fedratinib JAK2 investigational 1 0.0115 

DGE1 HMSL10226 tofacitinib JAK3 approved 0 0.0130 

DGE1 HMSL10079 torin1 mTOR experimental 0 0.0170 

DGE2 HMSL10159 pelitinib EGFR investigational 0 0.0186 

DGE2 HMSL10099 nilotinib ABL1 approved 0 0.0249 

DGE2 HMSL10051 lapatinib EGFR approved 0 0.0266 

DGE2 HMSL10071 palbociclib CDK4 approved 0 0.0287 

DGE2 HMSL10138 ruxolitinib JAK1 approved 0 0.0300 

DGE2 HMSL10141 fedratinib JAK2 investigational 1 0.0304 

DGE2 HMSL10411 h89 PKA experimental 0 0.0308 

DGE2 HMSL10454 staurosporine aglycone NA experimental 0 0.0311 

DGE1 HMSL10172 gsk1059615 PIK3CA experimental 1 0.0341 

DGE2 HMSL10092 jwe-035 AURKA experimental 1 0.0373 

DGE1 HMSL10194 cabozantinib VGFR2 approved 0 0.0399 

DGE2 HMSL10213 kin001-111 SRC experimental 0 0.0440 

DGE1 HMSL10192 kw2449 FLT3 experimental 0 0.0479 

DGE1 HMSL10062 gsk1070916 AURKB experimental 0 0.0489 

DGE2 HMSL10354 baricitinib JAK1/2 approved 0 0.0501 
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DGE2 HMSL10151 nintedanib VGFR1 approved 1 0.0594 

DGE2 HMSL10226 tofacitinib JAK3 approved 0 0.0629 

DGE2 HMSL10098 gefitinib EGFR approved 0 0.0650 

DGE1 HMSL10055 bx-912 PDK1 experimental 0 0.0659 

DGE1 HMSL10107 mg-132 PSB5 experimental 1 0.0665 

DGE1 HMSL10582 fccp NA experimental 0 0.0730 

DGE2 HMSL10139 azd-1480 JAK2 investigational 0 0.0740 

DGE1 HMSL10311 entinostat HDAC1 investigational 0 0.0807 

DGE2 HMSL10393 at9283 AURKA/B-JAK2 investigational 1 0.0837 

DGE2 HMSL10318 resveratrol PGH1 approved 0 0.0864 

DGE2 HMSL10020 dasatinib ABL1 approved 0 0.0867 

DGE2 HMSL10310 belinostat HDAC1 approved 0 0.0899 

DGE2 HMSL10228 ikk16 IKKA experimental 1 0.0964 

DGE1 HMSL10241 bortezomib PSB5 approved 0 0.0978 

DGE1 HMSL10096 zm-447439 AURKA experimental 0 0.0998 

DGE2 HMSL10192 kw2449 FLT3 experimental 0 0.1148 

DGE2 HMSL10069 enzastaurin KPCB investigational 0 0.1149 

DGE1 HMSL10115 ldn-193189 ACVR1 experimental 1 0.1193 

DGE1 HMSL10340 hg-9-91-01 SIK1 experimental 0 0.1199 

DGE2 HMSL10394 ceritinib ALK approved 1 0.1218 

DGE2 HMSL10091 xmd16-144 AURKA experimental 0 0.1282 

DGE2 HMSL10150 ponatinib ABL1 approved 1 0.1283 

DGE1 HMSL10328 (+)-jq1 BRD2 experimental 0 0.1361 

DGE2 HMSL10232 dactolisib mTOR investigational 0 0.1448 

DGE2 HMSL10050 az-628 BRAF experimental 0 0.1511 

DGE2 HMSL10378 ly2090314 GSK3 experimental 0 0.1578 

DGE2 HMSL10434 bix 02565 RSK experimental 0 0.1598 

DGE1 HMSL10426 barasertib AURKB investigational 0 0.1704 

DGE2 HMSL10440 vx-702 p38 MAPK investigational 0 0.1717 

DGE2 HMSL10120 canertinib EGFR investigational 0 0.1864 

DGE2 HMSL10080 torin2 mTOR experimental 1 0.2027 

DGE2 HMSL10097 erlotinib EGFR approved 0 0.2216 

DGE1 HMSL10049 plx-4720 BRAF experimental 0 0.2383 
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DGE2 HMSL10443 axitinib VEGFR approved 0 0.2397 

DGE1 HMSL10441 sb202190 p38 MAPK experimental 0 0.2403 

DGE2 HMSL10008 sorafenib BRAF approved 0 0.2480 

DGE2 HMSL10027 crizotinib c-Met approved 1 0.2491 

DGE2 HMSL10129 ibrutinib BTK approved 0 0.2549 

DGE2 HMSL10364 mrt67307 TBK1 experimental 0 0.2571 

DGE2 HMSL10018 neratinib ERBB2 approved 0 0.2669 

DGE1 HMSL10165 pf04217903 c-Met experimental 0 0.2767 

DGE1 HMSL10391 alisertib AURKA investigational 0 0.2900 

DGE2 HMSL10117 celastrol PSB5 experimental 1 0.2940 

DGE2 HMSL10133 afatinib ERBB2 approved 0 0.2987 

DGE1 HMSL10470 r 59949 DGK experimental 0 0.2993 

DGE2 HMSL10049 plx-4720 BRAF experimental 0 0.3213 

DGE1 HMSL10125 pha-665752 c-Met experimental 0 0.3352 

DGE2 HMSL10175 sunitinib VGFR1 approved 0 0.3557 

DGE2 HMSL10284 dabrafenib BRAF approved 0 0.3693 

DGE2 HMSL10189 bosutinib Src approved 1 0.4205 

DGE2 HMSL10023 imatinib ABL1 approved 0 0.4262 

DGE1 HMSL10114 pazopanib VGFR1 approved 0 0.4851 

DGE1 HMSL10475 r 59-022 DGK experimental 0 0.4899 

DGE2 HMSL10388 xl019 NA investigational 0 0.5485 

DGE2 HMSL10198 vandetanib VGFR2 approved 0 0.6025 

DGE2 HMSL10304 rucaparib PARP1 approved 0 0.6338 

DGE2 HMSL10383 pf-06463922 ROS1 experimental 0 0.6371 

DGE1 HMSL10586 rotenone NA vet_approved 0 0.6690 

DGE2 HMSL10176 y-27632 ROCK1 experimental 0 0.7245 

DGE1 HMSL10622 metformin NA approved 0 0.8090 
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Table 2: Top 10 targets that consistently appear in the top positive or negative interactions. The table 
lists targets, the number of pairs they appear in, whether those pairs are primarily positive or negative 
interactions, and the overall p-value computed by aggregating p-values from individual Wilcoxon Rank 
Sum tests (Fig. 5b) using the Brown’s method. 

symbol direction n p padj 

NEK6 positive 257 8.25E-129 1.32E-06 

NEK3 positive 237 5.45E-71 2.52E-04 

RPS6KA2 positive 246 7.62E-68 4.80E-04 

LATS2 positive 280 3.82E-60 9.53E-04 

ABL2 negative 204 2.88E-51 9.94E-04 

DCLK3 positive 250 1.23E-56 0.00124436 

MARK1 positive 271 4.12E-52 0.00191891 

STK17B positive 264 1.22E-49 0.00221427 

NEK9 positive 295 5.14E-50 0.00266415 

STK17A positive 202 8.57E-37 0.0032299 
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Supplementary Fig. 1: Performance of predictors trained on randomly-selected sets of genes plotted as a
function of the set size. Performance was evaluated through leave-pair-out cross-validation and displayed as area under
the ROC curve (AUC). The three panels correspond to binary classification tasks comparing early (A), intermediate (B)
and late (C) disease stages. The color scheme, as introduced in Fig. 1b, denotes the dataset and brain region (specified as
Brodmann Area) of samples used in each analysis.
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Supplementary Fig. 2: Concordance of treatment replicates across the two 3-DGE experiments. Shown are
log-fold change values for all genes that were significantly (FDR ≤ 0.05) perturbed in both 3-DGE experiments. Spearman
correlation between the two experiments is displayed in the bottom right corner of each panel.
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Supplementary Fig. 3: Assessment of compound toxicity. Nuclei counts estimated from microscopy images (x-axis)
are plotted against mRNA abundance (y-axis). The mRNA abundance was computed as the total number of transcripts
in the post-perturbational gene expression profile of the corresponding compound. Marginal distributions presented on the
top and the right-hand side exhibit bi-modality, suggesting natural thresholds for determining compound neurotoxicity. A
vertical dashed line is used to classify compounds into Toxic and Non-Toxic categories for Fig. 3.
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Supplementary Fig. 4: Raw expression values of selected interferon-stimulated genes. Each panel shows
normalized transcript counts for a single interferon-stimulated gene (ISG). Individual points correspond to compounds that
have a strong (TAS=1) or weak (TAS=2,3) binding to TYK2. Direct comparison of expression distributions (Wilcoxon Rank
Sum test) between strong and weak binders was observed to be statistically significant (p ≤ 1e-4) for all four genes.
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