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Abstract— Growing populations of bacteria control their
growth and division reaching narrow distributions of cell-
sizes. In this paper we explored how different combinations
of growth regimes and division mechanisms lead to differ-
ent cell-size statistics in these populations. Deterministic and
stochastic modeling were used to describe the size distribution
of a population of cells that is observed from two different
perspectives: as single cell lineages, i.e. random paths in the
lineage tree, or as snapshots, at given times, of a population in
which all descendants of a single ancestor cell are observed.
Our time-dependent approaches allowed us to obtain both
the transient dynamics and the steady state values for the
main statistical moments of the cell-size distribution. Also, we
established mathematical relationships among the statistics in
the two considered perspectives, thus improving our knowledge
of how cells control their growth and proliferation.

I. INTRODUCTION

Bacteria are able to regulate growth and division in
order to maintain their size within a defined range, a state
defined as homeostasis[1], [2]. Traditionally, experimental
studies on cell division observe a cell population from two
main alternative perspectives[3]. Either they (i) track single
lineages as observed in the mother machine[4], either (ii)
they take population snapshots of descendant cells of a
common ancestor, like in flow cytometry[5] experiments.
Understanding the differences between these experimental
viewpoints [6] has become an expanding area of research[7],
[8], [9], [10].

In the present work deterministic and stochastic compu-
tational modeling approaches were used to represent these
two perspectives and to analyze how the heterogeneity of a
cell population with respect to cell size evolves as a result of
growth and symmetric division. To observe single lineages, at
each cell division the model keeps track of only one newborn
cell. Consequently, the total cell number of the considered
sub-population remains constant over the simulated time. To
observe population snapshots, instead, the model tracks all
progenies and thus the evolution of the whole population
over time. In our analysis we considered some scenarios
of experimental relevance characterized by different growth
regimes and division mechanisms, we estimated the dynamics
of the main statistical properties of the size distribution and
compared the obtained results.
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In Section II, we introduce the two modeling frameworks
we used to describe size dynamics: the Population Balance
Equation (PBE), a population-based deterministic approach,
and Monte Carlo simulations, using a modified stochastic
simulation algorithm. Furthermore, we present how these
were exploited to represent the considered scenarios of growth
and division. Details of the analytical derivations as well as
of the numerical solutions are provided. In Section III we
present how four biologically relevant scenarios characterize
the components of the models. The comparison of the results
obtained with the different modeling approaches is portrayed
with figures and further discussed.

II. METHODS

A. Modeling frameworks

a) Population-based deterministic modeling: the popu-
lation balance equation (PBE): In general, the framework
of PBEs describes the evolution of particulate systems with
respect to an extensive property, like size, mass or molecule
counts [11]. Here, PBEs allow us to represent the distribution
of cell sizes s in the population as a number density function
n(t, s) (or NDF) and to study how it changes over time as a
result of the processes of cell growth and cell division.

The dynamics of n(t, s) is given by the following integro-
partial differential equation nnnnnnnn:

∂n

∂t
(t, s) + div(f(s)n(t, s)) =

= −δ(s)n(t, s) +

∫ ∞
0

νδ(ζ)Φ(s, ζ)n(t, ζ)dζ (1)

The second term on the left-hand side, the divergence term,
describes how the NDF moves through the cell state space.
Here, f(s) = ṡ describes the single-cell growth rate, ν
denotes the number of offsprings generated from each cell
division, δ(s) is the division rate function (in PBE literature,
this is often referred to as the breakage rate) and Φ(s, ζ) is
the kernel function, which defines the probability that the
division of a mother cell of size ζ generates a daughter cell
of size s. Φ(s, ζ) satisfies the property

∫
Φ(s, ζ)ds = 1.

In our analysis, these functions are defined as follows:

• ν. We set ν = 1 when, at each division, one single
descendant is tracked. We set ν = 2 otherwise.

• f(s). The single-cell growth rate is modeled as f(s) =
gsa, a ≥ 0. A linear growth regime is obtained by setting
a = 0, while, for a = 1, cells grow exponentially. A
general a > 0 can be used to explore other division
mechanisms[12].
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• δ(s). The division rate is modeled as δ(s) = ksb, b ≥ 0.
In this paper, we limit our analysis to b ∈ N. The division
rate is thus constant for b = 0, size-dependent otherwise.

• Φ(s, ζ). The Dirac-delta function is used here to model
an equal repartitioning of volume after cell division, so
that Φ(s, ζ) = 2δ(2s− ζ).

In this way (1) becomes:

∂n

∂t
(t, s) +

∂(f(s)n(t, s))

∂s
=

− δ(s)n(t, s) + 2νδ(2s)n(t, 2s). (2)

In our analysis, the evolution of the cell size distribution
is described through the changes in its raw moments.
Starting from the PBE in (1), we provide here an analytical
derivation of the moment dynamics. The ith raw and
central moments are denoted as mi =

∫∞
0
sin(t, s)ds and

cmi =
∫∞
0

(s−m1)in(t, s)ds respectively. In the following
derivations, we assume that all raw moments remain finite at
finite times, which implies lims→+∞ sin(t, s) = 0. While
moments mi(t) are always considered as time-dependent
variables, we will make use of mi instead, so that notations
are simplified.

The total number of cells at a given time is equivalent to
the zeroth moment m0 of the NDF:

N(t) =

∫ ∞
0

n(t, s)ds. (3)

Introducing the normalized NDF

n̄(t, s) =
n(t, s)

N(t)
(4)

the dynamics of N(t) can be written as

Ṅ = ρ(t)N, (5)

with ρ(t), the average specific proliferation rate, defined as

ρ(t) =

∫ ∞
0

−∂(f(s)n̄(t, s))

∂s︸ ︷︷ ︸
Gρ

−δ(s)n̄(t, s)︸ ︷︷ ︸
Dρ

+

+2νδ(2s)n̄(t, 2s)︸ ︷︷ ︸
Bρ

ds. (6)

It is important to notice that that ρ differs from the average
specific growth rate µ, normally used to compute the
dynamics Ẋ = Xµ(t) , where X =

∫∞
0
xn(t, s) is an

extensive property, like size, integrated over the whole
population. It should be noted that ρ and µ coincide only
when ṡ = 0 is assumed.

The first term in (6), nullifies. This can be shown by using
the product rule on the derivative and integration by parts.

Gρ = −
∫ ∞
0

gasa−1n̄(t, s)ds

−
(
gsan̄(t, s)

∣∣∞
0
−
∫ ∞
0

gasa−1n̄(t, s)ds
)

= 0

(7)

We see that the first and last term in (7) cancel out. We
notice that the second term is the integrand function of the
ath raw moment. This goes to zero at +∞, for our previous
assumption, and lims→0 s

an̄(t, s) = 0, as n̄(t, s) is finite ∀s.
Using the substitution 2s = z in the Bρ term, and noticing
that this does not affect the limits of integration, the Bρ and
Dρ terms can be summed up leaving

ρ(t) = (ν − 1)

∫ ∞
0

δ(s)n̄(t, s)ds = (ν − 1)kmb. (8)

We can already see here that if we choose to model the
dynamics of a single lineage, for which ν = 1, a value of
ρ(t) = 0 is obtained, as expected.

If we rewrite (1) by replacing n(t, s) = n̄(t, s)N(t) and
introduce the expression for the kernel function, we obtain

∂(n̄(t, s)N(t))

∂t
= N(t)

∂n̄

∂t
(t, s) +N(t)ρ(t)n̄(t, s)

= −N(t)
∂(f(s)n̄(t, s))

∂s
− δ(s)N(t)n̄(t, s)

+ 2νδ(2s)N(t)n̄(t, 2s), (9)

If we cancel N(t) from both sides, the normalized PBE can
be obtained as

∂n̄

∂t
(t, s) = −ρ(t)n̄(t, s)− ∂(f(s)n̄(t, s))

∂s
−

− δ(s)n̄(t, s) + 2νδ(2s)n̄(t, 2s). (10)

Taking the ith moment mi, for i ≥ 1, of the normalized PBE
(10) results in

ṁi(t) = −ρ(t)mi−
∫ ∞
0

si
∂(f(s)n̄(t, s))

∂s
ds︸ ︷︷ ︸

Gmi

−
∫ ∞
0

siδ(s)n̄(t, s)ds︸ ︷︷ ︸
Dmi

+

∫ ∞
0

si2νδ(2s)n̄(t, 2s)ds︸ ︷︷ ︸
Bmi

.

(11)

Applying the product rule followed by integration by parts,
and exploiting our assumptions, as we did in (7), the term
Gmi resolves in

Gmi = −
∫ ∞
0

gas(i+a−1)n̄(t, s)ds−
∫ ∞
0

gs(i+a)
∂n̄(t, s)

∂s
ds

= −gam(i+a−1) − g
(
si+an̄

∣∣∞
0
− (i+ a)m(i+a−1)

)
= igm(i+a−1).

(12)

After the substitution 2s = z in Bmi , the terms Dmi and
Bmi can be summed up, leaving us with

Dmi +Bmi =
( ν

2i
− 1
)∫ ∞

0

siδ(s)n̄(t, s)ds (13)

=
( ν

2i
− 1
)
kmi+b. (14)

From equations (12) and (14) we notice that, for a > 1 or
b > 0, the moment dynamics are not closed. This dependency
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is overcome through the moment closure method [13], for
which all central moments higher than cmi are approximated
to zero. Introducing p = max((a− 1), b) we write:

cmi+α =

∫ ∞
0

(s−m1)
i+a

n̄(t, s)ds ≈ 0, for α = 1, ..., p.

(15)
This approximation offers us algebraic expressions to

compute higher moments, and thus the term in (12) and
(14). As an example, the approximated expressions for mi+α

when i = 2, 3 and p = 1, are provided here below:

if (i = 2, p = 1), m3 ≈ 3m2m1 − 2m3
1

if (i = 3, p = 1), m4 ≈ 4m3m1 − 6m2m
2
1 + 3m4

1

(16)

Putting all together, (11) becomes:

ṁi = −ρ(t)mi + igm(i+a−1) +
( ν

2i
− 1
)
kmi+b. (17)

b) Stochastic Simulation Algorithm (SSA): The Stochas-
tic Simulation Algorithm is a numerical approach for gen-
erating sample paths of a continuous-time Markov process
whose probability distribution evolves through transition rates
between its states. For each cell i in the population, the
algorithm first computes Pi(t), the probability that cell i
divides at time t, by integrating the division rate δ over time
(see explanation in Supplementary Information)[12]. Then,
these Pi(t) are compared to uniformly generated random
numbers ri, and the next division is implemented only for
cell j, with Pj > rj . The algorithm is detailed as follows:

Result: [s1(t), · · · , sN (t)]
Define ν; generate r1 ∼ U(0, 1);
t = 0, N = 1, s1 = s(0), P1 = 0;
while t < tf do

while Pi(t+ t′) < ri, ∀i ∈ {1, 2, ..., N}, t′ > 0 do
Solve:

dsi
dt′

= f(si(t+ t′)),

dPi
dt′

= δ(si(t+ t′))(1− Pi(t+ t′))

end
t = t+ t′;
if ν = 1 then

s1(t) = s1(t)/2;
P1(t) = 0;

else
N = N + 1,
Identify j : Pj(t) > rj , sN (t) = sj(t)/2
sj(t) = sj(t)/2;
Pi(t) = 0,∀i ∈ {1, 2, ..., N};

end
Generate new ri ∼ U(0, 1), ∀i ∈ {1, 2, ..., N};

end
Algorithm 1: Stochastic Simulation Algorithm.

Giving us the sizes [s1 · · · sN ] of the cells at the time
t ∈ (0, tf ) for each replica. The single-cell growth rate f(s),
the division rate δ(s) and ν, the number of cells tracked after

division, are used consistently with their definition in the
PBE (see (1)). Let L be the number of replicas, Nl(t) the
number of cells in replica l at time t, sli the size of cell i in
replica l. The mean population number N(t), the statistical
mean 〈s〉 = m1 and variance var(s) = m2 −m2

1 of the cell
size distribution are computed as follows:

N(t) =
1

L

L∑
l=1

Nl(t); 〈s(t)〉 ≈
∑L
l=1

∑Nl(t)
i=1 sli(t)∑L

l=1Nl(t)
;

var(s; t) ≈
∑L
l=1

∑Nl(t)
i=1 (sli(t)− 〈s(t)〉)2∑L

l=1Nl(t)
;

C2
V (s; t) =

var(s; t)

〈s(t)〉2
(18)

In this work we make use of the squared coefficient of
variation C2

V (s), a dimensionless quantity that allows us
to estimate the degree of heterogeneity in the distribution.
For ease of notation, in the rest of the paper the C2

V (s) of
the distribution of sizes s is replaced by C2

V .

III. RESULTS AND DISCUSSION
A. Biological scenarios

For our analysis we define four biologically relevant
scenarios, that differ for the cell growth regime and division
mechanisms assumed. The single-cell growth rate f is thus
defined as either f(s) = g (linear growth), or f(s) =
gs (exponential growth). Similarly, the division rate d is
considered either constant, δ(s) = k, or linear, δ(s) = ks,
with respect to size.

For each scenario, the parameter values for g and k shown
in table I were chosen so that the mean doubling time τ
satisfies τ = 1, and sb, defined the mean size at birth, satisfies
sb = 1. This sb, introduced in previous studies[12] (see
Supplementary Information), corresponds to the size that is
perfectly doubled when division occurs. Importantly, specific
values for both τ and sb can be determined experimentally,
so that experimental data, once normalized to these values,
can be compared to model predictions.

TABLE I
DESCRIPTION OF THE SCENARIOS DEFINED BY THEIR GROWTH REGIME f

AND DIVISION MECHANISM d.

Sc. p a f(s) δ(s) ρ

I 0 0 g = 1 k = 1 ν − 1

II 1 0 gs = ln(2)s k = 2 ln(2) ν − 1

III 0 1 g = 1 ks = 0.562s (ν − 1)0.562m1

IV 1 1 gs = ln(2)s ks = ln(2)s (ν − 1) ln(2)m1

B. Computational results

Here, we compare the results of the two approaches
presented in II, with respect to the dynamics of the mean
size 〈s〉 and of the coefficient of variation C2

V . The initial
size distribution was defined as a Dirac-Delta with either
m1(0) = 0.5sb or m1(0) = 4sb. These two initial values can
be considered as the extremes of a range of biologically
realistic cell sizes. All the higher moments have initial

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted May 16, 2020. ; https://doi.org/10.1101/2020.05.15.094698doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.15.094698


conditions mi(0) = (m1(0))i. The initial number of cells in
the population is set to N(0) = 1.

a) Population Balance Equation: The analytical expres-
sions derived from the general PBE, presented in Section
II, are used to compute the dynamics for m1 and m2, and
either ν = 1 or ν = 2, and reported in table II. For b = 1,
the moment closure approximation is used and cm3 ≈ 0.

The PBE is here solved also numerically, and the moment
dynamics are calculated from the dynamics of the full
distribution. This offers us a comparison to the results
obtained through the analytical derivations. In the literature,
different numerical schemes have been proposed to solve
PBEs. We exploited the cell average technique, a spatial
discretization method that, following the implementation in
[14], preserves the first two moments m0 and m1 of the
distribution.

b) Stochastic Simulation Algorithm (SSA): To study
the behavior of single lineages (ν = 1), the dynamics of
20K replicas are simulated. To study the population snapshot
perspective (ν = 2), 1K replicas are run, all starting from one
cell with the same initial size (s(0)). Growth and division
rates are defined according to the specific scenarios and the
values of g and k. At the predefined time points the mean
size 〈s〉 and the coefficient of variation C2

V are computed
considering the sizes of all cells across all replicas using
expressions (18). To integrate the differential equations in
Algorithm 1, we use Euler integration.

Figures 1-4 show the resulting dynamics of mean size 〈s〉,
in units of sb, and the variability in terms of C2

V . In figure 5
we report the comparison of the dynamics of the total number
of cells in the simulation.
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Fig. 1. Size dynamics for cells growing and dividing in the scenario I (f =
g = 1, b = k = 1). Analytical, Numerical and stochastic simulation (SSA)
are compared. (a) Mean size 〈s〉 dynamics (b) Size variability dynamics
(C2

V ). Single lineage is considered (ν = 1) for both (a) and (b). (c) Mean
size dynamics (d) Size variability. Population snapshot is considered (ν = 2)
or both (c) and (d). Width of the line of SSA represents the 95% confidence
interval for 20K cell for ν = 1 and 1K population replicas for ν = 2. Two
different initial conditions (m1(0) = 4 and m1(0) = 0.5) was considered
in all cases.
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II (f = gs = ln(2)s, b = k = 2 ln(2)). Analytical, Numerical and
stochastic simulation (SSA) are compared. (a) Mean size 〈s〉 dynamics (b)
Size variability dynamics (C2

V ). Single lineage is considered (ν = 1) for
both (a) and (b). (c) Mean size dynamics (d) Size variability. Population
snapshot is considered (ν = 2) or both (c) and (d). Width of the line of
SSA represents the 95% confidence interval for 20K cell for ν = 1 and 1K
population replicas for ν = 2. Two different initial conditions (m1(0) = 4
and m1(0) = 0.5) was considered in all cases.
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(f = g = 1, b = ks = 0.562s). Analytical, Numerical and stochastic
simulation (SSA) are compared. (a) Mean size 〈s〉 dynamics (b) Size
variability dynamics (C2

V ). Single lineage is considered (ν = 1) for both
(a) and (b). (c) Mean size dynamics (d) Size variability. Population snapshot
is considered (ν = 2) or both (c) and (d). Width of the line of SSA
represents the 95% confidence interval for 20K cell for ν = 1 and 1K
population replicas for ν = 2. Two different initial conditions (m1(0) = 4
and m1(0) = 0.5) was considered in all cases.
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TABLE II
DYNAMICS OF THE FIRST AND SECOND RAW MOMENTS USING THE MOMENT CLOSURE APPROXIMATION AT THE THIRD MOMENT.

ν = 1 ν = 2

Sc Moment dynamics Equilibrium points [m̃1, m̃2] Moment dynamics Equilibrium points [m̃1, m̃2]

I ṁ1 = g − 1
2
km1

[
2g
k
, 16g

2

3k2

]
, ṁ1 = g − km1

[
g
k
, 4g

2

3k2

]
, stable ∀g, k > 0

ṁ2 = 2gm1 − 3
4
km2 stable ∀g, k > 0 ṁ2 = 2gm1 − 3

2
km2

II ṁ1 = gm1 − 1
2
km1

[
0, 0

]
, stable if g < 3k

8
ṁ1 = (g − k)m1

[
0, 0

]
, stable if g < 3k

4

ṁ2 = (2g − 3
4
k)m2 ṁ2 = (2g − 3

2
k)m2

III ṁ1 = g − 1
2
km2

[√
5g
3k
, 2g

k

]
, ṁ1 = g − km2

1

[√
g
k
, 6g
5k

]
,

ṁ2 = 2gm1 + 3
2
km3

1 −
9
4
km1m2 stable ∀g, k > 0 ṁ2 = 2gm1 + km3

1 −
5
2
km1m2 stable ∀g, k > 0[

0, 2g
k

]
, unstable ∀g, k > 0

IV ṁ1 = gm1 − 1
2
km2

[
0, 0

]
, unstable ∀g, k > 0 ṁ1 = gm1 − km2

1

[
g
k
, 2g

2

k2

]
, stable ∀g, k > 0

ṁ2 = 2gm2 + 3
2
km3

1 −
9
4
km1m2 ṁ2 = 2gm2 + km3

1 −
5
2
km1m2

[
0, 0

]
, unstable ∀g, k > 0
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Fig. 4. Size dynamics for cells growing and dividing in the scenario
IV (f = gs = ln(2)s, b = ks = ln(2)s). Analytical, Numerical and
stochastic simulation (SSA) are compared. ((a) Mean size 〈s〉 dynamics (b)
Size variability dynamics (C2

V ). Single lineage is considered (ν = 1) for
both (a) and (b). Different levels (nm) of ODE truncation using moment
closure are shown in (a) and (b). (c) Mean size dynamics (d) Size variability.
Population snapshot is considered (ν = 2) or both (c) and (d). Width of the
line of SSA represents the 95% confidence interval for 20K cell for ν = 1
and 1K population replicas for ν = 2. Two different initial conditions
(m1(0) = 4 and m1(0) = 0.5) was considered in all cases.

C. Discussion

Cell size heterogeneity can be quantified across single
lineages or taking snapshots of the whole population. This
crucial difference is represented, in the equations shown so
far, by the value of ν. Depending on the organism and the
availability of extracellular nutrients, cells can adopt different
growth regimes and division strategies. Considering these,
we defined the four scenarios presented in table I.

Figures 1 - 4 show that the four scenarios result in clearly
distinct dynamics for 〈s〉 and C2

V . Taking into consideration
all three trajectories, we see that in scenarios I, III and IV, a
stable steady state is reached. In scenario II, instead, no stable
steady state is reached, confirming the analytical results in
table II and findings reported in other studies [15]. It is fair
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Fig. 5. Total number of particles in the population. Scenarios 1-4 are
labeled respectively. Width of the line of SSA represents the 95% confidence
interval for 1K population replicas.

to consider that this scenario is not realistic, as cells with
excessively different sizes are generated.

Transient dynamics reveal that, for all scenarios and ν
values, the steady state values ˜〈s〉 and C̃2

V do not depend on
the initial conditions.

The comparison between single lineages (ν = 1) and
population snapshots (ν = 2), shows us that the computed
steady-state values 〈s̃〉 are consistently higher for single
lineages and lower for population snapshots. As reported
in similar studies [6], this is expected, because, independently
of the division mechanism, cells that proliferate faster are on
average smaller and over-represented in the whole population.
Moving one step further this observation, we argue that our
computational framework and our results can be used to
connect the moment dynamics in the two perspectives we
examined. More clearly, if, for instance, one of the scenarios
in table I can be considered an accurate representation of an
experiment on cell lineages, then, exploiting our framework,
the data collected from cell lineages could be used to infer
the dynamics of population snapshot. Vice versa, data from

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted May 16, 2020. ; https://doi.org/10.1101/2020.05.15.094698doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.15.094698


population snapshots could be used to infer the dynamics
in single lineages. For scenarios I, II and III, the analytical
formulas in table II would make the inference straightforward.
For scenario IV, where the analytical dynamics are inaccurate,
one would need to first use the numerical approach or the
SSA to infer g and k parameters and then, after changing
the value of ν, use these to simulate the unknown dynamics.

Despite the clear differences in 〈s̃〉, it is important to notice
that the steady-state values C̃2

V , when finite, do not show
appreciable differences when different νs are considered.
Overall, we can conclude that experimentally, different
average sizes, but not significantly different variabilities
should be expected for single lineages versus population
snapshots.

The use of different modeling approaches and solution
schemes offers us an indication on the accuracy of the results:
if two trajectories out of three superimpose, their accuracy
is reinforced. In scenarios I and II, no moment closure
approximation is introduced, thus the analytical solutions
are considered as the correct dynamics. As the stochastic
simulations lie in close proximity to the analytical curves,
we consider that the SSA is accurate. A similar closeness is
found again in scenario III, where, however, the analytical
moment dynamics are not closed. We can thus conclude that
the moment closure approximation [13] is here accurate. In
scenario IV, instead, the approximation is unreliable. From
Figures 4 (a) and 4 (b) we see that, even if we increase
significantly the order of the moment (nm) where the moment-
closure approximation is applied, the accuracy of the analytic
trajectory is preserved only for a limited time. In this case,
SSA predictions are corroborated by the numerical solution.
Implementing the cell average technique as in [14], the
accuracy of numerical results is only guaranteed for 〈s̃〉
dynamics. This approach looses precision, however, when the
C2
V rapidly diverges, like in scenario II, as the discretization

grid can no more cover the higher cell sizes in the population.
Despite these limitations, the numerical solution of the PBE
offers a useful comparison at a much lower computational
cost than the stochastic approach.

Figure 5 shows that, for constant division rates, the exponen-
tial increase in N , the total number of cells in the population,
is unaffected by the initial condition. For size-dependent
division rates, instead, if 〈s〉|t=0 > ˜〈s〉 the population starts
expanding rapidly, while, if 〈s〉|t=0 < ˜〈s〉, the expansion
displays a small lag. In both cases an exponential regime is
reached after a few doubling times.

IV. CONCLUSIONS

Cell size heterogeneity in growing populations is tightly
controlled and generally low, a phenomenon defined as size
homeostasis. In this work, we used multiple mathematical
modeling approaches to provide a further understanding
on how studies on size homeostasis are influenced by
changes in different model components. On one side, we
considered different combinations of growth regimes and
division strategies, which lead us to define four different
biologically relevant scenarios. On the other, we studies the

variability of cell sizes in a population observed from two
perspectives: single lineages and population snapshots.

We used a deterministic population-based framework, the
population balance equation (PBE), which models growth
and division process trough continuous rates. This approach
allowed us to derive analytically a system of ordinary
differential equations (ODE) that describes the dynamics
of the raw moments of the cell size distribution. For some of
the considered scenarios, the moment closure approximation
was used to truncate the system and avoid dependencies
on higher-order moments. The solution of this ODE system
was compared with a numerical solution of the PBE and
with stochastic simulations. Our comparison showed that the
analytical derivations offer a good approximation in three out
of four scenarios.

Secondly, the mean cell-size for single lineages is con-
sistently higher than for population snapshots, while their
variability (C2

V ) is not significantly different. In some of
the scenarios, we show that the ODEs allow us to establish
mathematical relationships among the two considered per-
spectives. With this, we propose that the steady state values
for population snapshots can be inferred from results or data
on single lineages, and vice versa.
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