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Abstract 

 
We describe a physics-based learning model for predicting the immunogenicity of Cytotoxic T 
Lymphocyte (CTL) epitopes derived from diverse pathogens, given a Human Leukocyte Antigen 
(HLA) genotype. The model was trained and tested on experimental data on the relative 
immunodominance of CTL epitopes in Human Immunodeficiency Virus infection. The method is 
more accurate than publicly available models. Our model predicts that only a fraction of SARS-
CoV-2 epitopes that have been predicted to bind to HLA molecules is immunogenic. The 
immunogenic CTL epitopes across all SARS-CoV-2 proteins are predicted to provide broad 
population coverage, but the immunogenic epitopes in the SARS-CoV-2 spike protein alone are 
unlikely to do so. Our model predicts that several immunogenic SARS-CoV-2 CTL epitopes are 
identical to those contained in low-pathogenicity coronaviruses circulating in the population. 
Thus, we suggest that some level of CTL immunity against COVID-19 may be present in some 
individuals prior to SARS-CoV-2 infection.  
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Introduction 

Pandemics caused by infectious pathogens (e.g., viruses, bacteria) have plagued humanity since 

antiquity. The latest example is the Coronavirus Disease 2019 (COVID-19) caused by the SARS-

CoV-2 virus, which has already exacted a heavy global toll on human health and the economy. 

One key tool in fighting infectious diseases are vaccines. Vaccination has led to the eradication 

of smallpox from the planet, the near-eradication of polio, and contributed greatly to the 

reduction in childhood mortality. Indeed, vaccination has saved more lives than any other 

medical procedure. Bringing the COVID-19 pandemic under control will likely require an effective 

vaccine. Thus, several urgent efforts to develop vaccines that may protect against infection by 

SARS-CoV-2 have been launched (Akst, 2020). For example, Moderna has announced clinical trials 

of a messenger RNA-based vaccine that codes for the spike protein of SARS-CoV-2 (Dunn, 2020). 

Other ongoing efforts involve the use of non-replicating Adenovirus vectors containing the gene 

that encodes the spike protein of SARS-CoV-2 (Mak, 2020). Both these approaches aim to elicit 

protective antibody responses. Whether these, and other vaccines in development will elicit 

protective immune responses, and how durable the protection will be, are not known.  

 

SARS-CoV-2 is a coronavirus of the same family as the viruses that caused Severe Acute 

Respiratory Syndrome (SARS) in 2003 and Middle East Respiratory Syndrome (MERS) in 2012. 

Phylogenetic analyses based on available sequences of SARS-CoV-2 suggest that the new virus is 

most similar to SARS-CoV (Lu et al., 2020; Zhou et al., 2020). A recent report shows that the 

nucleocapsid (N), membrane (M), and envelope (E) proteins of SARS-CoV-2 are over 90 % 

conserved compared to SARS-CoV, and the spike (S) protein is 76 % similar (Ahmed, Quadeer and 

McKay, 2020). Most effective prophylactic vaccines elicit a potent antibody response directed 

against the spike proteins of viruses. But, a number of studies show that the antibody response 

elicited in patients infected with SARS-CoV was protective but relatively short-lived (Liu et al., 

2006; Mo et al., 2006; Tang et al., 2011), while T cell responses were durable (Fan et al., 2009; 

Tang et al., 2011; Channappanavar et al., 2014). For example, Fan et al (Fan et al., 2009) showed 

that most patients who recovered from SARS-CoV have memory T cell responses directed against 

the virus 4 years after recovery. Tang et al (Tang et al., 2011) showed that 6 years after recovery 

SARS-CoV patients did not have significant amounts of virus-specific circulating antibodies, but 

had significant memory T cell responses compared to healthy controls. Furthermore, a critical 

role for virus-specific memory T-cells in broad and long-term protection against SARS-CoV 

infection has been elucidated in animal models (Zhao, Zhao and Perlman, 2010; Channappanavar 

et al., 2014). Therefore, given the similarities between SARS-CoV-2 and SARS-CoV, it is worth 

exploring the development of vaccines that may elicit protective T cell responses. 

 

T cells target pathogenic peptides (epitopes) bound to Human Leukocyte Antigen (HLA) 

molecules. There is a great diversity of HLA genes in the human population, with each individual 
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possessing 6-12 types of alleles (Bui et al., 2006). Multiple recent studies have been focusing on 

discovering potential epitopes of SARS-CoV-2 that can elicit T cell responses. Ahmed et al (Ahmed, 

Quadeer and McKay, 2020) and Grifoni et al (Grifoni et al., 2020) have tried to identify peptides 

of SARS-CoV-2 that have high sequence identity with SARS-CoV epitopes. However, only a small 

number of SARS-CoV peptides that are experimentally known to elicit T cell responses in humans 

are shared by SARS-CoV-2. Moreover, these shared peptides are associated with a limited set of 

HLA molecules, thus providing poor coverage of the global population. Ahmed et al (Ahmed, 

Quadeer and McKay, 2020) and Prachar et al (Prachar et al., 2020), among other groups 

(Campbell et al., 2020; Nerli and Sgourakis, 2020; Prachar et al., 2020), also identified SARS-CoV-

2 peptides that are capable of binding to HLA molecules, either based on MHC binding assay 

results or bioinformatic methods. By doing this, they identified a large pool of SARS-CoV-2 

peptides that are associated with diverse HLA molecules, which cover a broad cross-section of 

the global population. But, binding to HLA molecules does not imply that the peptide epitope will 

elicit an immunogenic T cell response in humans (Yewdell, 2006).  

 

A number of efforts have aimed to develop bioinformatic tools to characterize the sequences of 

TCRs in human repertoires, and to follow how particular clones evolve in response to viral 

infections (e.g. Murugan et al., 2012; Minervina et al., 2020). By analyzing sequences of TCRs that 

bind to a panel of epitopes, Glanville et al and Dash et al (Dash et al., 2017; Glanville et al., 2017) 

discovered that TCRs that bind to the same epitope often share conserved sequence motifs. They 

then constructed a sequence-similarity-based clustering algorithm that, with high probability, 

clusters TCRs with the same epitope specificity together. Our goal here was different. 

 

We aimed to determine the relative immunogenicity of SARS-CoV-2 T cell epitopes in people with 

diverse HLA alleles by developing a physics-based learning algorithm. To train and test our 

method we first studied another viral infection, Human Immune Deficiency Virus (HIV), for which 

well defined data on the relative immunodominance of T cell epitopes is available. The results 

suggest that our method is more accurate than the immunogenicity prediction tool publicly 

available on IEDB (Calis et al., 2013; Vita et al., 2019). Furthermore, the nature of our model 

suggests that the algorithm should be able to predict relative immunogenicity of peptide 

epitopes derived from a variety of pathogens.  

 

Therefore, we applied our algorithm to identify immunogenic SARS-CoV-2 peptide epitopes. Our 

results show that only a fraction of peptide epitopes that are known to bind different HLA 

molecules is likely to be immunogenic. However, the set of immunogenic peptides still provides 

broad coverage of the global population. Given the low mutability of the SARS-CoV-2 virus so far, 

these results suggest that a whole proteome immunogen may be able to elicit potent T cell 

responses in diverse individuals. We also predict that the immunogenic CTL epitopes contained 
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in the spike protein of SARS-CoV-2 (immunogen in most current vaccine formulations) is unlikely 

to provide broad population coverage, since these spike epitopes are associated with limited 

number of HLA alleles. In addition, several predicted immunogenic peptide epitopes derived from 

the SARS-CoV-2 proteome are identical to those contained in the four human coronaviruses of 

low pathogenicity (HCoV) that regularly circulate in the human population. This result leads us to 

suggest that HCoV-specific memory CTL responses that can also target SARS-CoV-2 epitopes in 

immunogenic fashion may be present in some fraction of the human population even prior to 

SARS-CoV-2 infection.   

 

Our results for SARS-CoV-2 have not been tested experimentally, but we hope that they will 

provide a useful guide to prioritize  peptides that other investigators may wish to test. We note 

also that, upon further testing, validation and elaboration, our approach for predicting 

immunogenicity of T cell epitopes may be useful for future infectious pathogens that will 

undoubtedly emerge. 

 

Results 

 

Model Development and training against clinical data 

Li et al (Li et al., 2008) carried out a detailed study identifying T cell epitopes targeted by 226 

SARS-CoV-infected patients, of which 98 were in an acute state of infection. They found that, 

both in terms of frequency and magnitude, the CTL response was dominant compared to CD4 T 

cell responses. Therefore, here we will focus on CTLs and the relative immunogenicity of peptide 

epitopes that they may target in humans. 

 

CTLs bind to short peptides, about 9 – 11 amino acids in length, displayed in complex with HLA 

class I molecules. Such short motifs do not contain any long-range information about the genome 

of the organism from which they are derived (Kosmrlj et al., 2008; Butler, Kardar and Chakraborty, 

2013). Therefore, the ability to predict relative immunogenicity of peptide epitopes derived from 

the genome of one virus in persons with a given HLA allele is likely to allow prediction of 

immunogenicity of epitopes derived from another virus’ proteome.  

 

Our model for immunogenicity of CTL peptide epitopes is inspired by studies aimed to predict 

immunogenicity of cancer neo-antigens for immunotherapy (Luksza et al., 2017). We wish to 

predict the peptide immunodominance hierarchy in people with different HLA genes. For that 

purpose, we define a “CTL response metric” 𝐴(𝑠, 𝑀), where 𝑠 is the sequence of the peptide 

whose relative immunogenicity we wish to predict for a person with the HLA allele, 𝑀. This metric 

is the product of three terms, and is written as follows: 

𝐴(𝑠, 𝑀) =
1

𝑏𝑖𝑛𝑑𝑖𝑛𝑔(𝑠,𝑀)
 ×  𝑅(𝑠, pathogen)  ×  𝑅(𝑠, self)    (1) 
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Each of the terms above reflects a different physical phenomenon. The binding term, 
1

𝑏𝑖𝑛𝑑𝑖𝑛𝑔(𝑠,𝑀)
  

is a measure of the probability that the peptide 𝑠 can be processed, bound to, and displayed by 

HLA molecule 𝑀. Machine learning approaches have been trained on many measurements of 

peptide presentation by different HLA molecules, and a resulting method, netMHCpan4.0 

(Vanessa and Nielsen, 2017), can make reasonable estimates of 𝑏𝑖𝑛𝑑𝑖𝑛𝑔(𝑠, 𝑀) for many alleles 

as the percentile rank of the elution-ligand score. We next posit that whether or not a peptide is 

targeted by human CTLs should correlate with how similar its sequence is to peptides derived 

from diverse pathogens that are known to elicit a CTL response in humans (listed in the IEDB 

database (Vita et al., 2019); Methods). The term, 𝑅(𝑠, foreign) in Eq. 1 is the sequence similarity 

of peptide 𝑠 to these pathogen-derived peptides. We define 𝑅(𝑠, foreign) mathematically as the 

number of foreign peptides whose alignment score with 𝑠  is larger than a threshold value, 

𝑎𝑝𝑎𝑡ℎ𝑜𝑔𝑒𝑛 : 

 

𝑅(𝑠, foreign) = ∑ 𝜃(|𝑒, 𝑠| − 𝑎𝑝𝑎𝑡ℎ𝑜𝑔𝑒𝑛)𝑒∈𝑓𝑜𝑟𝑒𝑖𝑔𝑛    (2) 

 

Here, 𝑒 is a pathogenic peptide in the database, |𝑒, 𝑠| is the alignment score of 𝑒 and 𝑠, which is 

determined by the BLOSUM62 based Smith-Waterman alignment method (as used by Luksza et 

al (Luksza et al., 2017)), and 𝜃 is the step function. A higher alignment score means that the 

biochemical properties of the two peptides are more similar to each other. 

 

T cells develop in the thymus, where they are exposed to HLA-bound peptides derived from the 

host’s proteome. For a thymocyte to mature into a peripheral T cell, it must bind to at least one 

of these peptides with an affinity that exceeds a threshold value, and not bind to any of them 

with an affinity that exceeds a higher threshold value (Daniels et al., 2006). In past studies 

(Kosmrlj et al., 2008, 2009; Košmrlj et al., 2010; Butler, Kardar and Chakraborty, 2013), we 

developed a mechanistic understanding of how thymic development shapes the pathogen 

reactivity of the T cell repertoire in an organism. Extending these studies leads us to the 

seemingly counter-intuitive conclusion that T cells that bind to human peptides more strongly 

will also be likely to bind more strongly to pathogen-derived peptides. One simple way to 

understand this is by examining data in mice, which show that more self-reactive T cells are 

statistically enriched in more hydrophobic amino acids at residues that contact the HLA-bound 

peptides (Stadinski et al., 2016). This is because TCR binding to HLA-bound peptides creates an 

interface from which water must be partially expelled. So, hydrophobic amino acids are more 

likely to favor formation of such an interface.  But, this argument applies to both self and 

pathogen-derived peptides. Therefore, statistically, TCRs that bind more avidly to self-peptides 

should also bind more avidly to pathogen-derived peptides.  There is some experimental 

evidence supporting this prediction (Mandl et al., 2013). Based on these considerations, we 
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include the term, 𝑅(𝑠, self), in Eq 1, which is the biochemical sequence similarity of peptide 𝑠 to 

peptides derived from the human proteome. These peptides are also gathered from IEDB 

database (Vita et al., 2019) (Methods). Similar to Eq. 2, 𝑅(𝑠, self) is defined as the number of self 

peptides whose alignment score with 𝑠 is larger than a threshold value, 𝑎𝑠𝑒𝑙𝑓: 

 

𝑅(𝑠, self) = ∑ 𝜃(|𝑒, 𝑠| − 𝑎𝑠𝑒𝑙𝑓)𝑒∈𝑠𝑒𝑙𝑓    (3) 

 

Now, 𝑒 denotes a self-peptide.  

 

We will use Eqs 1 -3 to train a predictor of the immunodominance hierarchy of peptides targeted 

by CTLs in humans with different HLA alleles. The two parameters in our model are 𝑎𝑠𝑒𝑙𝑓  and 

𝑎𝑝𝑎𝑡ℎ𝑜𝑔𝑒𝑛 , which will be determined by fitting the model to the training data (Methods). Given 

experimental measurements on the immunodominance hierarchy of peptides derived from 

pathogens in humans with different HLA alleles, we can constructed a binary classifier based on 

𝐴(𝑠, 𝑀). A peptide with 𝐴(𝑠, 𝑀) larger than a threshold is classified as dominant and the others 

as nondominant. We trained and tested our model for 𝐴(𝑠, 𝑀)  as a predictor of 

immunodominance using experimental data on HIV peptides targeted by humans with different 

HLA alleles (Methods). 

 

We systematically assembled data on HIV-1 specific CD8 T-cell responses, as determined by 

gamma interferon (IFN-) enzyme-linked immunospot (ELISPOT) assay, against a panel of up to 

457 peptides including previously described optimal HIV-1 epitopes as defined in the Los Alamos 

National Laboratory HIV epitope database (www.hiv.lanl.gov) and epitope variants (Methods). 

Data was available from multiple cohorts of HIV-1 infected individuals at different stages of the 

infection and subsets of the data have been reported previously (Streeck et al., 2009; Pereyra et 

al., 2014). In total, optimal epitope specific CD8 T-cell data was available from 1102 individuals, 

including 619 individuals during acute and early infection, and 483 individuals during chronic 

infection of which 321 were considered spontaneous HIV controllers with median plasma HIV 

RNA levels < 2,000 copies/ml. For the majority of individuals, the peptides used for T-cell 

response assessment were selected based on the individual’s HLA class I genotype. However, 314 

Individuals with chronic infection had been tested against 267 optimal epitopes, irrespective of 

the individual’s HLA class I alleles. An average of 7 (range, 0-42) epitope specific CD8 T-cell 

responses were detected in the primary-infection cohort, while HIV-1-specific CD8 T-cell 

responses against an average of 20 epitopes (range, 0 to 95) were detected in chronically infected 

individuals. For our analysis, HLA class I restricted CD8 T-cell responses were considered only if 

the respective HLA allele was shared by at least 20 individuals in the data set. Table S1 in the 

supplemental material summarizes the frequencies of recognition for tested HIV-1-specific CD8 

T-cell epitopes in the respective cohorts.  

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 15, 2020. ; https://doi.org/10.1101/2020.05.14.095885doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.14.095885
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

We used the percentage of patients with a given HLA allele responding to a given HIV peptide 𝑠, 

denoted as 𝑝(𝑠, 𝑀), as the metric of immunodominance. The peptides which elicit response in 

more than 25% of tested patients with a given HLA allele were labelled as dominant and the 

others as non-dominant. Repeated 10-fold Cross-Validation was performed to train and test the 

model (Methods).  

 

The performance of the 𝐴(𝑠, 𝑀)-based classifier on the test sets is summarized as Receiver 

Operator Characteristic (ROC) curves (Fig 1). For the HIV acute infection group, the classifier has 

an Area Under the Curve (AUC) score of approximately 0.71 for the ROC curve. For the chronic 

infection group, the classifier has an AUC score of approximately 0.66. The superior performance 

in the acute infection dataset can be explained by the fact that, as HIV infection progresses, the 

virus mutates to escape CTL response, and as a result less immunodominant peptides are 

targeted by CTLs in the chronic phase (Streeck et al., 2009). The performance of the current 

model is compared to a T cell epitope immunogenicity prediction model developed by Calis et al 

(Calis et al., 2013), which is publicly available in IEDB. Our model shows superior performance as 

measured by the AUC (0.71 vs 0.57 for the acute group, 0.66 vs 0.34 for the chronic group; Fig 1).  

We also evaluated the importance of each of the three terms of 𝐴(𝑠, 𝑀), the binding term, the 

term representing similarity to pathogenic peptides, and that representing similarity to human 

peptides by constructing partial models with one or two terms removed from 𝐴(𝑠, 𝑀). The same 

training and testing procedures were repeated for these partial models. For both the acute and 

the chronic groups the partial models show less predictive power compared to the full model 

(Supplementary Fig. S1 and S2). 

 

Only a fraction of SARS-CoV-2 peptides that bind to HLA molecules are immunogenic 

 

Many research groups have identified peptides derived from  SARS-CoV-2 that can bind with HLA 

molecules (Ahmed, Quadeer and McKay, 2020; Campbell et al., 2020; Grifoni et al., 2020; Nerli 

and Sgourakis, 2020; Prachar et al., 2020). Two different approaches were employed. In one 

approach, peptides  that bind to different HLA molecules were identified based on experimental 

assays (Ahmed, Quadeer and McKay, 2020; Prachar et al., 2020). In the other approach, 

bioinformatic tools were used to identify peptides that bind to HLA molecules (Campbell et al., 

2020; Grifoni et al., 2020; Nerli and Sgourakis, 2020). We used our trained classifier to predict 

the immunogenicity of peptides that were determined to bind to different HLA molecules 

experimentally, as reported by Ahmed et al (Ahmed, Quadeer and McKay, 2020) and Prachar et 

al (Prachar et al., 2020).  Our classifier can be easily applied to the peptides reported by other 

groups too.  
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Ahmed et al (Ahmed, Quadeer and McKay, 2020) identified 187 SARS-CoV peptides that were 

suggested by HLA binding assays to bind to diverse HLA Class I molecules, and were identical in 

SARS-CoV-2. We further screened these peptides using our classifier (Methods), and found that 

only 74 of them are predicted to be immunogenic (Table 1 and Supplementary Table S2). These 

predicted peptides are associated with 33 different HLA alleles. Standard methods predict that 

this would enable coverage of 98.8% of the global population (i.e., 98.8% of the global population 

has at least one of these alleles), and 99.2% of US population (Methods).  

 

The same analysis was performed for the 152 SARS-CoV-2 peptides identified by Prachar et al 

(Prachar et al., 2020), which are also verified by HLA binding assays to be strong binders to diverse 

HLA Class I molecules. Our classifier predicted that 98 of them are immunogenic (Table 1 and 

Supplementary Table S2). They are associated with 10 different HLA alleles, which cover 94% of 

the global population and 93.2% of US population. These two sets of predicted immunogenic 

peptides can be combined together, which gives a total of 162 immunogenic peptides associated 

with 37 different HLA alleles (Supplementary Table S2). These HLA alleles can cover 99.6% of the 

global population and 99.7% of US population. On average each HLA allele is associated with 7.3 

immunogenic peptides. Recall that the immunogenic peptides predicted by our model are 

defined as those that elicit a response in more than 25% of population with the associated HLA 

allele. With more than 7 immunogenic peptides associated with each HLA allele, it is likely that 

immunogenic CTL responses will be present in most people with the corresponding allele. 

 

CTL epitopes contained in the spike protein may not elicit sufficiently broad T-cell responses  

 

Currently most SARS-CoV-2 vaccines only contain the spike protein of the virus as the immunogen 

(Akst, 2020). Thus, we wanted to test whether the immunogenic peptides from the spike protein 

alone can elicit CTL responses in a large portion of the population. Among the combined set of 

162 predicted immunogenic peptides that we identified, 22 belong to the spike protein of the 

virus, and they are associated with 16 HLA alleles (Supplementary Table S2). These 16 HLA alleles 

cover 92.3% of the global population and 93.5% of the US population. However, on average each 

HLA allele is only associated with 1.8 immunogenic peptides. This relatively low number indicates 

that it is likely that most people with a particular allele will not mount immunogenic CTL 

responses. Therefore, including various viral proteins in the vaccine immunogen may be 

necessary in order to achieve broad coverage of CTL responses in a given population. 

 

There is significant overlap between immunogenic CTL epitopes in SARS-CoV-2 and common less 

pathogenic human coronaviruses 
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Unlike SARS-CoV-2 that causes severe respiratory disease, other less pathogenic coronaviruses 

circulating in the human population usually only cause mild diseases (like the common cold). Four 

common human coronavirus (HCoV), HCoV-229E(NC_002645.1), NL63(NC_005831.2), 

OC43(NC_006213.1) and HKU1(NC_006577.2) are responsible for 10-30% of upper respiratory 

tract infections in adults (Paules, Marston and Fauci, 2020). Given that memory T cell responses 

are likely induced in at least a fraction of the human population infected by these  coronaviruses, 

we wanted to explore whether such memory responses could theoretically be induced/expanded 

following infection with SARS-CoV-2. Thus, we employed our classifier to identify common 

immunogenic peptide epitopes between HCoV and SARS-CoV-2. We first gathered a set of 38 HLA 

class I alleles that represent more than 99% of the world. We then applied our classifier to all 

possible overlapping 8-11mers in the proteome of SARS-CoV-2 and determined that there are 

2311 immunogenic CTL epitopes associated with those 38 HLA alleles. We then further 

determined the unique set of immunogenic peptides that were common between SARS-CoV-2 

and the four common HCoV. We found 46 shared immunogenic peptides, which are associated 

with 31 HLA alleles (Supplementary Table S3). These HLA alleles cover 98.6% of the global 

population and 99.0% of US population. On average each of these alleles are associated with 5.6 

immunogenic peptides. Given this level of overlap between immunogenic epitopes between 

HCoVs and SARS-CoV-2, one can hypothesize that CTL memory responses elicited by past 

infection with common coronaviruses could respond to SARS-CoV-2 infection. We also accounted 

for the fact that each individual may have been infected by only a subset of the four less 

pathogenic coronaviruses. So, to determine a lower bound, we determined the immunogenic 

epitopes that are shared between SARS-CoV-2 and each of the four less pathogenic HCoV. The 

results are presented in Table 2. On average, 19 epitopes are common with any one of the less 

pathogenic human coronaviruses. The results shown in Table 2 lead us to suggest that some 

fraction of the human population has memory T cell responses that may target immunogenic 

SARS-CoV-2 CTL epitopes. 

 

Discussion 

 

In this work we developed a physics-based learning algorithm that predicts the CTL 

immunogenicity of peptides in humans with particular HLA alleles. This model was trained against 

a large experimental data set of clinical samples from HIV-infected individuals. When tested 

against experimental data for HIV epitopes, the model shows significantly improved performance 

compared to publicly available models (Calis et al., 2013). 

 

Many groups have identified SARS-CoV-2 peptides that are able to bind with HLA molecules 

(Ahmed, Quadeer and McKay, 2020; Campbell et al., 2020; Grifoni et al., 2020; Nerli and 

Sgourakis, 2020; Prachar et al., 2020), either using experimental assays or bioinformatic tools. 
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We screened these peptides for immunogenicity using our algorithm. Specifically, we studied the 

peptides suggested by Ahmed et al (Ahmed, Quadeer and McKay, 2020) and Prachar et al 

(Prachar et al., 2020), but our model can be applied to filter peptides suggested by other groups. 

Our results suggest that only a fraction of the peptides that bind to HLA molecules are likely to 

be immunogenic. But, the combined set of SARS-CoV-2 peptides that we predict to be 

immunogenic among known HLA binders provides broad coverage of the global population. 

These predictions need to be further experimentally validated, but we hope that our results can 

guide the choice of peptide – HLA combinations that need to be tested experimentally for 

determining the CTL immunogenicity of SARS-CoV-2 peptides in humans.  

 

We note that mutations in SARS-CoV-2 thus far are uncommon (Ahmed, Quadeer and McKay, 

2020), and our results suggest that the immunogenic peptide epitopes in the virus’ proteome 

may be sufficient to provide broad coverage of the population. Therefore, determination of 

mutational vulnerabilities of the virus to focus CTL responses to special epitopes, as has been 

done for HIV (Létourneau et al., 2007; Dahirel et al., 2011; Shekhar et al., 2013; Ferguson et al., 

2013; Hayton et al., 2014; Mann et al., 2014; Abdul-Jawad et al., 2016; Barton et al., 2016; Louie 

et al., 2018; Ahmed et al., 2019; Gaiha et al., 2019), is likely not necessary. Whole proteome 

immunogens should suffice in a vaccine that aims to elicit potent CTL responses that provides 

broad population coverage. 

 

Since most SARS-CoV-2 vaccines in development use only the spike protein as immunogen, we 

also analyzed whether peptides from the spike alone can yield broad CTL coverage over the global 

population. Based on our analysis, the immunogenic spike peptides alone are unlikely to provide 

such broad coverage from the standpoint of CTL responses. Therefore, to get broad CTL coverage, 

an immunogen consisting of other SARS-CoV-2 proteins might be necessary. This is potentially 

significant if antibody responses to SARS-CoV-2 prove not to be durable, as reported for SARS-

CoV.   

 

With regards to common human coronaviruses which have likely infected substantially more 

individuals than SARS-CoV-2 despite the current pandemic, we predict that there is overlap 

between the immunogenic CTL epitopes among these viruses. This suggests that memory T cells 

directed against less pathogenic coronaviruses could target immunogenic SARS-CoV-2 epitopes 

upon infection or following vaccination with a SARS-CoV-2 immunogen. Clinical outcomes and 

the course of disease during SARS-CoV-2 infection are extremely heterogeneous ranging from 

asymptomatic disease to death (Fu et al., 2020). Whether pre-exisiting HCoV specific memory T-

cells actually play a disease modifying or even protective role needs to be determined. The 

common immunogenic epitopes that we have identified could serve as a first target that might 

be examined.  
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Although validated by HIV CTL response data, this model is not yet experimentally tested in the 

case of SARS-CoV-2 or other viral infections. It is important to further validate, and potentially 

elaborate, the model by testing against experimental data for diverse viruses. More data will also 

help improve the model. Currently the model contains two parameters 𝑎𝑠𝑒𝑙𝑓  and 𝑎𝑝𝑎𝑡ℎ𝑜𝑔𝑒𝑛 , 

which are the cutoff thresholds for similarity to self and pathogenic peptides, respectively. These 

two parameters are used for all HLA alleles. However, it is known that peptides bound to different 

alleles can use different peptide residues to make primary contacts with the TCR. So, a model 

with allele-specific similarity cutoff thresholds might improve the performance. This will require 

training our model against more extensive datasets. Since short peptides derived from the 

proteome do not carry long-range information about the pathogen, if our model is further 

validated and elaborated, it may be a useful and simple tool for rapid identification of 

immunogenic CTL epitopes contained in diverse new endemic-causing pathogens that will 

undoubtedly emerge in the future.  

 

Methods  

 

Training of the model 

The model is trained and tested by repeated 10-fold cross-validation. For the 10-fold cross-

validation, the dataset is evenly divided into 10 subsets. One subset is taken as the test set and 

the remaining 9 subsets as the training set. The two parameters of the model, 𝑎𝑠𝑒𝑙𝑓  and 

𝑎𝑝𝑎𝑡ℎ𝑜𝑔𝑒𝑛 , are determined by maximizing the Spearman correlation coefficient between the CTL 

response metric 𝐴(𝑠, 𝑀) and the response percent 𝑝(𝑠, 𝑀)  for the training set. Then the trained 

𝐴(𝑠, 𝑀) is evaluated on the test set. We repeated the 10-fold cross validation procedure 20 times, 

and the dataset is reshuffled before each repetition. The Spearman correlation coefficient 

between 𝐴(𝑠, 𝑀) and 𝑝(𝑠, 𝑀) on the test sets are summarized in Supplementary Fig. S1.  

 

The binary classifier based on 𝐴(𝑠, 𝑀) is constructed in the following way: the peptide with 

𝐴(𝑠, 𝑀) larger than a threshold is classified as dominant and the others as nondominant. When 

the classifier is used to predict immunodominant SARS-Cov-2 peptides, the threshold is chosen 

to be 7024. At this threshold the True Positive Rate and the True Negative Rate of the classifier 

are equal for the acute HIV infection patient data. 

 

Self and Foreign peptides 

The foreign peptides are retrieved from the Immune Epitope Database (IEDB) (Vita et al., 2019) 

using the following search criteria: “Epitope: Linear; Assay: T Positive; MHC Restriction: MHC I; 

Disease: Infectious disease; Host: Human”. To avoid bias in training and testing the model, we 

excluded HIV peptides from the retrieved foreign peptides. The self peptides are retrieved from 
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the IEDB database using the following search criteria: “Epitope: Linear; Assay: MHC Ligand Assay 

Positive; Organism: Homo Sapiens”. 

 

Population coverage 

The population coverage of the HLA alleles is estimated using the publicly available tool on IEDB 

(Bui et al., 2006) (http://tools.iedb.org/population/). 

 

Experimental methods 

Data of HIV-specific CD8 T-cell responses from a total of 1102 HIV-1-infected individuals were 

included in this analysis, consisting of previously published and unpublished data (Streeck et al., 

2009; Pereyra et al., 2014) . 619 Individuals from primary-infection cohorts in North America, 

Germany, and Australia were included. 483 Individuals with chronic HIV infection recruited from 

outpatient clinics at local Boston hospitals and referred from providers throughout the United 

States were included. 321 of the chronic infection cohort were classified as spontaneous HIV 

controllers as their median plasma HIV RNA levels were <2,000 copies/ml. The study was 

approved by the respective institutional review boards and was conducted in accordance with 

the human experimentation guidelines of Massachusetts General Hospital. 

 

HLA typing 

High-resolution class I HLA typing for HLA-A, -B, and -C was performed at the National Cancer 

Institute, National Institutes of Health, Frederick, MD, using sequence-based typing protocols 

developed by the 13th International Histocompatibility Workshop (Hansen, 2005) on DNA that 

was extracted from whole blood.  

 

Assessment of HIV-specific CD8+ T-cell responses 

HIV-1-specific CD8 T-cell responses were quantified by gamma interferon (IFN-) enzyme-linked 

immunospot (ELISPOT) assay on previously cryopreserved peripheral blood mononuclear cells 

(PBMC), using a panel of up to 457 peptides including previously described optimal HIV-1 

epitopes (www.hiv.lanl.gov) and epitope variants, as previously described (Streeck et al., 2009; 

Pereyra et al., 2014). Medium alone served as a negative control and phytohemagglutinin (PHA) 

as a positive control. The numbers of specific IFN--secreting T cells were enumerated using an 

automated ELISPOT reader (Cellular Technology Ltd., Shaker Heights, OH) and expressed as spot-

forming cells (SFCs)/106 PBMC. A response was considered positive only if there were > 55 

SFCs/106 PBMC and SFC/106 PBMC was at least three times greater than mean background of the 

SFC/106 PBMC in the negative wells. 
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Figures 

 

 

 

 
Fig. 1. The ROC curve of the binary classifier based on our model (red), compared with the model 

developed by Calis et al (Calis et al., 2013) (green). (A) shows the ROC curves for the acute HIV 

infection group. The AUC of the red curve is 0.71. The AUC of the green curve is 0.57. (B) shows 

the ROC curves for the chronic HIV infection group. The AUC of the red curve is 0.66. The AUC of 

the green curve is 0.34. 
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HLA Peptide

HLA-A*02:01

FLWLLWPVTL; SMWSFNPET; WLLWPVTLA; LLLDRLNQL; FLLNKEMYL; FLLPSLATV; FLNRFTTTL; 

FLPRVFSAV; ILGTVSWNL; ALWEIQQVV; KLWAQCVQL; FVDGVPFVV; KLNVGDYFV; LLDDFVEII; 

LLLDDFVEI; LVLSVNPYV; NLWNTFTRL; TLVPQEHYV; TMADLVYAL; VLWAHGFEL; YLDAYNMMI; 

YLNTLTLAV; HLVDFQVTI; RLDKVEAEV; VLNDILSRL

HLA-B*44:03 LEQWNLVIGF; YEQYIKWPWY

HLA-A*23:01 LWLLWPVTL; SFNPETNIL; GYQPYRVVVL

HLA-A*24:02 LWLLWPVTL; SFNPETNIL; KQFDTYNLW; GYQPYRVVVL

HLA-A*30:02 ATSRTLSYY; GTTLPKGFY; LSPRWYFYY; VTPSGTWLTY; ISDYDYYRY; RVDFCGKGY

HLA-A*11:01
ATSRTLSYYK; KTFPPTEPK; KTFPPTEPKK; AVLQSGFRK; GVAMPNLYK; RLYYDSMSY; VVYRGTTTY; 

SVLNDILSR

HLA-B*07:02 FPRGQGVPI; SPRWYFYYL; MPASWVMRI; FPPTSFGPL; IPRRNVATL; HPLADNKFAL

HLA-B*54:01 FPRGQGVPI; SPRWYFYYL; FPPTSFGPL; APHGVVFLHV

HLA-B*08:01 FPRGQGVPI

HLA-B*35:01 FPRGQGVPI; MPASWVMRI; VVYRGTTTY; HPLADNKFAL; FPNITNLCPF

HLA-B*51:01 FPRGQGVPI; FPPTSFGPL

HLA-B*53:01 FPRGQGVPI; HPLADNKFAL; FPNITNLCPF

HLA-B*40:01 MEVTPSGTWL; YEGNSPFHPL

HLA-A*29:02 GTTLPKGFY; LSPRWYFYY; TPSGTWLTY; VTPSGTWLTY; ISDYDYYRY

HLA-A*03:01 KTFPPTEPK; KTFPPTEPKK; AVLQSGFRK; GVAMPNLYK; KLFAAETLK; RLYYDSMSY; VVYRGTTTY

HLA-A*31:01 KTFPPTEPK; KTFPPTEPKK; SVSPKLFIR

HLA-A*68:01 KTFPPTEPK; KTFPPTEPKK

HLA-A*01:01 LSPRWYFYY; VTPSGTWLTY; ISDYDYYRY; VVDKYFDCY; LIDLQELGKY; RVDFCGKGY

HLA-A*26:01 VTPSGTWLTY

HLA-B*45:01 AEGSRGGSQA

HLA-A*02:02

FLGRYMSAL; FLLNKEMYL; FLLPSLATV; FLNRFTTTL; FLPRVFSAV; ALWEIQQVV; FVDGVPFVV; 

KLNVGDYFV; KLSYGIATV; LLDDFVEII; LLLDDFVEI; TMADLVYAL; VLWAHGFEL; YLDAYNMMI; 

YLNTLTLAV; HLVDFQVTI

HLA-A*02:03

FLGRYMSAL; FLLNKEMYL; FLLPSLATV; FLNGSCGSV; FLNRFTTTL; FLPRVFSAV; ALWEIQQVV; 

FVDGVPFVV; KLSYGIATV; LLLDDFVEI; TLIGDCATV; TMADLVYAL; VLWAHGFEL; YLDAYNMMI; 

YLNTLTLAV; HLVDFQVTI

HLA-A*02:06

FLLNKEMYL; FLLPSLATV; FLPRVFSAV; GVYDYLVST; IQPGQTFSV; ALWEIQQVV; FVDGVPFVV; 

LLDDFVEII; LLLDDFVEI; LVLSVNPYV; TMADLVYAL; VLWAHGFEL; YLDAYNMMI; YTMADLVYA; 

HLVDFQVTI

HLA-C*06:02 FRYMNSQGL

HLA-A*68:02 FVDGVPFVV; MVMCGGSLYV; YTMADLVYA

HLA-B*15:01 KQFDTYNLW; RLYYDSMSY; TTLPVNVAF; VVYRGTTTY; YQKVGMQKY

HLA-B*58:01 KQFDTYNLW; TTLPVNVAF; VVYRGTTTY

HLA-A*69:01 TLVPQEHYV; VLWAHGFEL

HLA-B*40:02 YEGNSPFHPL

HLA-B*27:05 GRLQSLQTY; VRFPNITNL

HLA-C*14:02 VRFPNITNL

HLA-B*44:02 YEQYIKWPWY

HLA-B*18:01 YEQYIKWPWY

A 
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Table. 1. The top most immunogenic SARS-CoV-2 peptides predicted by our model. (A) shows 
the immunogenic peptides that are filtered from the peptide pool reported by Ahmed et al 
(Ahmed, Quadeer and McKay, 2020). (B) shows the immunogenic peptides that are filtered 
from those reported by Prachar et al (Prachar et al., 2020).  

 

 

 

HLA Peptide

HLA-A*01:01
CTDDNALAY; LTNDNTSRY; PTDNYITTY; ISDYDYYRY; DTDFVNEFY; LTDEMIAQY; FTSDYYQLY; 

GTDLEGNFY; FSAVGNICY; VVDKYFDCY; FLTENLLLY; VTDVTQLYL; LTGHMLDMY

HLA-A*02:01
YLQPRTFLL; FLNRFTTTL; FLLNKEMYL; YLDAYNMMI; YLNSTNVTI; FLLPSLATV; FLAHIQWMV; 

NLIDSYFVV; YLYALVYFL; ALSKGVHFV

HLA-A*03:01

GVYFASTEK; AVAKHDFFK; TTIKPVTYK; VTNNTFTLK; RLFRKSNLK; GVAMPNLYK; ALAYYNTTK; 

KLFAAETLK; TLKSFTVEK; KSAGFPFNK; ASMPTTIAK; VLSGHNLAK; KTFPPTEPK; TSFGPLVRK; 

HLYLQYIRK; STFNVPMEK; TLKGGAPTK; QIYKTPPIK; RIAGHHLGR; IINNTVYTK; RQFHQKLLK; 

VTYVPAQEK; KLFDRYFKY

HLA-A*11:01

GVYFASTEK; AVAKHDFFK; TTIKPVTYK; VTNNTFTLK; GVAMPNLYK; ALAYYNTTK; KSAGFPFNK; 

ASMPTTIAK; ITPVHVMSK; KTFPPTEPK; TSFGPLVRK; STFNVPMEK; IINNTVYTK; VTYVPAQEK; 

QTFFKLVNK; AGFSLWVYK; AIDAYPLTK; HVVGPNVNK; GVYYHKNNK; AVLQSGFRK; HLMGWDYPK; 

KTIQPRVEK

HLA-A*24:02

TYACWHHSI; VYMPASWVM; YYKKDNSYF; NYMPYFFTL; VYSTGSNVF; VYFLQSINF; YYQLYSTQL; 

YYTSNPTTF; NYNYLYRLF; FYLTNDVSF; FYGGWHNML; YFIASFRLF; RYKLEGYAF; IYNDKVAGF; 

SYATHSDKF; AYANSVFNI; TYKPNTWCI; FFASFYYVW; YYHTTDPSF

HLA-C*07:01 VYMPASWVM; KRVDWTIEY; HANEYRLYL

HLA-B*40:01

AELAKNVSL; GEVITFDNL; REVLSDREL; GETLPTEVL; AEWFLAYIL; FELEDFIPM; GEYSHVVAF; 

QEYADVFHL; AEYHNESGL; HEETIYNLL; SEFDRDAAM; FEYVSQPFL; QELYSPIFL; TEVVGDIIL; 

SEVGPEHSL; RELHLSWEV; YELQTPFEI; HEGKTFYVL; TEHSWNADL; REQIDGYVM

HLA-C*04:01 GFDYVYNPF

HLA-C*07:02 KRVDWTIEY

HLA-C*01:02 FAPSASAFF

B 
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Table 2. Shared immunogenic peptides between SARS-CoV-2 and four common low 

pathogenicity human coronaviruses. The first column shows the number of shared immunogenic 

peptides between SARS-CoV-2 and each of the four viruses. The second column shows the 

number of HLA alleles associated with those peptides. The third and fourth column show the 

population coverage of those HLAs for the US and World, respectively. The fifth column shows 

the average number of immunogenic peptides associated with each HLA. The last row of the table 

shows the average of all these quantities.   
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