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Abstract
Identification of biologically relevant motifs in proteins is a long-standing problem in

bioinformatics, especially when considering distantly related proteins where sequence
analysis alone becomes increasingly difficult. Here we present a novel approach to
identify such motifs in protein three-dimensional structures without depending on se-
quence alignment by representing structures as graphs in the form of residue interaction
networks and employing a modified frequent subgraph mining algorithm. These net-
works represent residues as vertices while contacts between residues are denoted by
edges labeled with Euclidean distances. We use frequent subgraph mining to deter-
mine all subgraphs that are subgraph isomorphic to, i.e. are contained in, at least a
given number of such networks generated from structures in the same protein family.
For this we introduce two extensions of the classical frequent subgraph mining: approx-
imate matching of distance-based labels to account for small variations between protein
structures and scoring as well as score-based filtering of subgraphs in order to identify
structurally conserved motifs and to counteract the expanding size of the search space.
This approach was then validated by demonstrating that it can rediscover previously
characterized functionally important structural motifs in selected protein families. For
further validation we show that it is also able to identify motifs that correspond to
patterns in the PROSITE database. We then applied our approach to all superfami-
lies in the SCOP database and found an enrichment of residues in the ligand binding
site in the discovered motifs evidencing their functional importance. Finally we use
the approach to discover a novel structural motif in jelly-roll capsid proteins found
in members of the picornavirus-like superfamily. This is presented together with an
efficient open source implementation of the algorithm called RINminer.

Author summary
As the evolutionary distance between proteins increases, their sequence identity

drops rapidly, whereas functionally important sequence motifs and three-dimensional
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(3D) structural scaffold, in which they are embedded, are more conserved. We devel-
oped an approach that automatically identifies such motifs by converting protein 3D
structures into a set of graphs and then employing the frequent subgraph mining frame-
work. In these graphs, residues are represented as vertices, and if two residues interact
in the corresponding protein 3D structure, they are connected by an edge labeled with
the Euclidean distance between the residues. In the classical setting of frequent sub-
graph mining, all subgraphs from a database of graphs are enumerated and the ones
that are exactly found, i.e. are subgraph isomorphic, in more than a certain number of
graphs are listed as supported. Our approach introduces two new concepts: approxi-
mately isomorphic subgraphs and an efficient scoring scheme that allows to retain only
biologically relevant subgraph in the enumeration step. Approximate isomorphism al-
lows edge labels not to match exactly, and thus account for natural deviations between
3D structures of related proteins. With our approach, we were able to automatically
rediscover known motifs from PROSITE, as well as in three well-studied extremely
diverse protein families. We predicted functionally important residues in SCOP su-
perfamilies and demonstrated that they tend to lie in structurally meaningful regions:
ligand-binding sites and protein core. Additionally, we present a previously unreported
structural motif in jelly-roll viral capsids.

1 Introduction
The three-dimensional (3D) structure of distantly related proteins is often more

conserved than their amino acid sequence [1]. Such proteins may belong to the same
family, e.g. kinases, but from distantly related organisms. Also in rapidly evolving
organisms, such as viruses, very diverse protein groups can be found that are dif-
ficult to approach with sequence analysis tools. Discovering functionally important
motifs in sequences or structures of these protein families is a challenging task that
often requires manual intervention and expert knowledge. One example of such motifs
conserved in a family of proteins with very low sequence similarity is found in viral
RNA-dependent RNA polymerases (RdRPs) [2]. Several RdRP sequence motifs, in-
cluding those common to RdRPs from positive and negative single-strand RNA viruses
as well as retroviruses, were identified before the availability of any 3D structures [3].
Later resolved 3D structures of these proteins confirmed that these sequence motifs
that lie at variable distances in the RdRP sequences from different species all cluster
together near or directly in the active site of the protein [2]. With 3D structures at
hand, it now is more reasonable to consider this as a single structural motif rather than
a set of sequence motifs with variable spacing between them.

In this study, we present a novel algorithm for the detection of such structural motifs
based on 3D structures and validate it using large data sets of related proteins from
the PROSITE [4] and SCOP [5] databases. Our method is based on a solid graph-
theoretical and data-mining foundation, and has been implemented as an efficient tool
in C called RINminer, available at https://github.com/kalininalab/rinminer. We
demonstrate a good agreement of motifs identified with RINminer with functional
patterns in PROSITE. For SCOP superfamilies, we show a significant enrichment of
residues from the identified motifs in functionally or structurally important protein
regions, such as ligand interaction interfaces or protein core. Additionally, we apply
RINminer to several large and diverse protein families – eukaryotic proteases, extended
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AAA-ATPase domain, as well as viral RdRPs and jelly-roll capsids – and discover
known as well as novel structural motifs.

1.1 Motif discovery approaches

In the past two decades, a variety of approaches have been developed to tackle the
problem of structural motif discovery that are summarized below. First, we focus on
methods that operate on structural information in a more direct fashion, and later we
outline methods that, like our approach, use a graph-based abstraction of 3D structures.

One of the first methods to include structural information was SPratt [6, 7]. It
combines the sequence motif discovery tool Pratt [8] with checks for structural con-
servation. Motifs here are represented as structurally conserved residues in sequence
order. This introduces the limitation that motifs have to follow the same sequence
order in different structures. Trilogy [9] starts with enumerating all spatially conserved
patterns of three residues and then combines these three-residue patterns into larger
patterns until a certain significance threshold is reached. This approach however intro-
duces the requirement that each residue included in the motif must have a conserved
distance to at least two other residues in the motif. In PINTS [10], common residue
patterns are enumerated by step-wise inclusion of the residues lying closer than a dis-
tance threshold so that the superimposed patterns do not exceed a root mean square
deviation (RMSD) significance cutoff. TerMo [11] approaches the problem by first
defining groups of residues that are all in contact with each other and then identifying
regular spatial motifs built by such groups.

Other approaches concentrate on the identification of very small structurally con-
served motifs. Johansson et al. [12] for example only consider 4-6 non-contiguous
amino acid residues, that can be found with simple enumeration. In DRESPAT [13]
the authors define structural patterns as groups of 3 to 6 residues all within a certain
distance from each other (a 12Å cutoff is used) and compare them based on pairwise
C↵-C↵ and C�-C� distances as well as the distances between functional atoms. Wang
and Scott [14] define a structural pattern as small as one amino acid residue and its
spatial surrounding within a certain distance and build a kernel that allows for protein
function classification. There are also approaches that use very specific definitions of
motifs. Rahat et al., for example, define a motif as six nodes representing residues
connected by covalent bonds or backbone hydrogen bonds [15]. Such motif definitions
however suffer from the lack of generality outside their intended purpose.

Some approaches define motifs based on itemsets (groups of items, in this case of
amino acid types) that occur within a small region of the structure, without considering
sequence order. In these types of motifs only the presence or absence of a type of amino
acid is considered, not the number or order of occurrences. An example of this are
spatially cohesive itemsets [16] which are itemsets of three amino acid types that are
found within a sphere of a certain size in at least a given number of structures.

Another group of methods look for conserved arrangements of larger structural mo-
tifs, so-called super-secondary structures, that consist of several consecutive secondary
structure elements. Chiang et al. [17], for example, explore mutual arrangement of
�-strands in �-sandwich proteins and create a hierarchical classification of their struc-
tures on this basis. Fernandez-Fuentez et al. [18] define a minimal super-secondary
structure consisting of two consecutive secondary structures elements and then use
binned distances and angle between them to classify these motifs and look them up in
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3D structures of other proteins.
Some methods use statistical learning to identify structural motifs that can discrim-

inate well between protein functional families. For example, GASPS [19] uses a genetic
algorithm that learns the best such discriminating motifs defined in terms of their C↵

coordinates and coordinates of centers of masses of the residues. Finally, some tools
include information not only about protein sequence and 3D structure, but also about
protein modeled dynamics such as the method presented by Chen and Bahar which
classifies serine and cysteine proteases into subfamilies [20].

1.2 Graph-based representations of protein three-dimensional

structures

Approaches that, like our approach, use graph representations of the protein 3D
structures are a subset of the methods for finding structural motifs. Using graphs in-
stead of considering all pairwise relations between residues to represent protein struc-
ture provides a way of reducing the residue-to-residue distances or contacts one has to
consider. It also allows for more flexibility of the structures. There are multiple ways
of obtaining such graph representations. Typically vertices are used to represent the
individual residues of the protein, which are labeled with the type of amino acid. Some
methods however rely on a representation at the level of individual atoms [21] or entire
secondary structure elements [22] instead.

Edges between two vertices indicate the structural relationships between the corre-
sponding residues and can have a label detailing this relationship. In its simplest form
this relationship can be based on proximity in the 3D structure with a fixed distance
cutoff and discretized distances as labels. The drawback of this definition is creat-
ing many spurious edges that connect residues not really contacting each other in the
corresponding protein 3D structure due to steric occlusion by other residues.

A more sophisticated approach using almost-Delaunay tessellations was introduced
by Huan et al. [23]. This approach reduces the number of edges compared to the
proximity approach by only considering edges based on Delaunay tessellation [24]. Here
the C↵ atoms of the residues are taken as points and an edge between them is added
if there exists a sphere such that the two points lie on its surface and no other point
is inside the sphere. An almost-Delaunay tessellation also allows for small deviations
from this classical Delaunay tessellation by tolerating shifts of all involved points by
a certain small margin in order to fulfill the Delaunay tessellation criteria. Allowing
these deviations helps to account for small structural variations in the data set.

Another approach of defining edges are so-called residue interaction networks (RINs).
In these networks, edges are constructed based on physical interactions between atoms
of the individual residues. Doncheva et al. [25] made use of the established probe [26]
and reduce [27] tools to determine such interactions and generate RINs. This is the
representation we have chosen for this work, because it faithfully represents physical
and chemical foundations of protein 3D structures. For this reason we have also chosen
to use exact distance values as edge labels which allows us to more accurately deter-
mine the structural conservation of a motif. This however also requires the algorithm
to allow approximate matching of edges.
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1.3 Graph mining-based approaches

There exist a variety of approaches to identify biologically important motifs from
such graph-based structure representations. Here we will focus on methods, that like
our approach, are based on frequent subgraph mining (FSM) and related approaches.
FSM, which will be explained in more details in Methods and Materials, is the enumer-
ation of all subgraphs that occur in at least a certain number of graphs in a collection
of graphs. In the case of structural motifs such a collection would correspond to a
family of proteins, for example.

These methods often include modifications of the core frequent subgraph mining
idea by introducing additional criteria to help better identify subgraphs representing
potentially biologically relevant substructures. One previously mentioned study used
discretized Euclidean distance labels on edges from almost Delaunay tesselation to
include additional structural information in the graphs [23]. The idea behind such
an approach is that functionally important motifs correspond to more strongly con-
served geometric patterns, since their three-dimensional arrangement is essential for
the protein function. Hence, if the corresponding edges in the graphs are labeled with
Euclidean distances, subgraphs related to the protein function are expected to corre-
spond to more similar edge labels across different structure graphs than non-relevant
frequent subgraphs. Therefore requiring similar distance labels for the edges increases
the specificity towards biologically meaningful subgraphs. Later this method was fur-
ther improved by using multiple edge labels from overlapping discretization bins with
edges being considered matching if there is an overlap of labels to account for similar
distances on different sides of a discretization border [28]. This approach is similar in
spirit to the method presented in this paper, but with the downside of not differentiat-
ing between bigger and smaller distance differences, if the distances fall into the same
bin. Other studies have attempted to account for missense mutations, i.e. differences
on the vertex labels, either by using post-processing, such as combining topologically
identical subgraphs with differing vertex labels based on substitution matrices [29] or
by including substitution probabilities in the frequent subgraph mining algorithm itself
[30].

Finally, there is also a group of approaches that uses statistical properties of the
subgraphs and is less specific to protein structures. Coherent subgraph mining [31] for
example introduces the use of the mutual information between a subgraph and its sub-
graphs to identify meaningful subgraphs. Another approach is to mine for significant
subgraphs [32], that is to only consider subgraphs that are significantly discriminative
as a binary classifier based on the presence or absence of a subgraph. It can be refor-
mulated as a problem of structural motif discovery by selecting the two classes to be
within and outside a protein family. The idea has also been extended to select the set
of subgraphs that in combination provide the best classification [33].

2 Methods and Materials

2.1 Graph terminology definitions

In this work we use a graph-based algorithm to detect conserved patterns in protein
3D structures. This algorithm is based on the concept of subgraph isomorphism. We
define a graph S as a subgraph of graph G if V (S) ✓ V (G) and E(S) ✓ E(G). A graph
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H is isomorphic to a graph G if |V (H)| = |V (G)|, |E(H)| = |E(G)| and there exists
a bijective function � : VH ! VG such that �(v) = �(�(v)) for every vertex v in V (H)
and both (�(v1),�(v2)) 2 E(G) and �(v1, v2) = �(�(v1),�(v2)) for every edge (v1, v2)
in E(H) hold true given the labels �. Following this a graph S is considered subgraph
isomorphic to graph G if there exists a subgraph H of G that S is isomorphic to. We
call a graph connected if there exists a path from every vertex to every other vertex. A
spanning tree of a graph G is an acyclic and connected subgraph that covers the entire
vertex set of G. We only consider connected undirected graphs without self-loops or
multi-edges.

2.2 Residue interaction networks

Residue interaction networks are a way of describing protein structures as graphs
of residues interacting or in contact with each other. The RINs we use in this project
are constructed by representing each residue of the structure as a vertex labeled with
its amino acid type. Edges are added between vertices that correspond to residues
consecutive in sequence and are labeled as sequence-based interactions. After this,
edges labeled as contact-based interactions are added for interactions determined by
RINerator [25] if there is not already a sequence interaction between these residues.
RINerator identifies interactions based on van der Waals surface contacts calculated
by probe [26]. Further, all edges are labeled with the distance between the C↵ of the
corresponding residues in the structure. This means each edge has a two-dimensional
label with the first element (�type) representing the interaction type and the second
(�dist) the distance between the interacting residues.

2.3 Frequent subgraph mining

Frequent subgraph mining describes the process of determining frequently occurring
subgraphs in a set of input graphs that are also referred to as the graph database.
A subgraph is considered frequent or supported if its support value, i.e. the number
of database graphs it is subgraph isomorphic to, is above a user-defined threshold.
There exist multiple established algorithms to perform this task, such as gSpan [34],
Gaston [35] and FFSM [36]. We base our approach on gSpan, which we extended with
a number of new features in a custom implementation called RINminer.

The gSpan algorithm makes use of the concept of depth first search (DFS) codes to
represent subgraphs. In the DFS code of a subgraph there is an entry for each edge of
the graph with the two connected vertex IDs, followed by the two corresponding vertex
labels and the edge label. The IDs of the vertices correspond to the traversal order of
a spanning tree of the graph in DFS order. Edges that are part of the spanning tree
are referred to as forward edges and go from a lower to a higher vertex ID. Similarly,
edges that are not part of the spanning tree are referred to as backward edges and go
from a higher vertex ID to a lower one. These backward edges occur when there are
cycles in the graph.

gSpan also defines a total order on the entries in the DFS code based on whether
the compared edges are forward or backward edges, the vertex IDs and the labels. This
total order is then used to define a total order on the different DFS code representations
which correspond to different spanning trees and traversal orders of a graph. For this
only the first differing entries between two DFS codes are compared. The DFS code
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representation which is considered the smallest possible is the canonical DFS code for
a given graph. By considering only subgraphs with canonical DFS codes, gSpan avoids
duplicates. An example graph together with its canonical DFS code representation is
shown in Fig 1.

Figure 1: Example graph together with its canonicals DFS code representa-

tion. Shown is an example graph next to its canonical DFS code representation with
backward edges highlighted in orange and vertex IDs shown next to each vertex. Edge
labels are omitted.

After initialization, gSpan uses a supported single edge graph as starting point
and proceeds with step-wise extension by either attaching a single edge-vertex pair
(forward edges) or by connecting existing vertices in the graph (backward edges). All
possible extensions considered in this step are determined by mapping the subgraph
back into each database graph and detecting missing edges to vertices adjacent to
vertices on the rightmost path in the DFS traversal. This extension process is repeated
until the support of the extended subgraph falls below the specified threshold or its
DFS code stops being canonical, at which point the algorithm backtracks to the last
supported subgraph for which not all extensions have been explored. Once all supported
extensions of the initial single edge graph have been explored, gSpan repeats this for the
remaining supported single edge graphs. To determine whether a generated subgraph
representation is canonical, the DFS code is compared to the smallest possible DFS
code of this subgraph. The smallest possible DFS code of a subgraph is generated by
starting with an empty graph and choosing the smallest possible extension leading to
this subgraph at every step.

In RINminer, we parallelized this traversal of the search space with a level-wise
partitioning scheme using subgraph pools. A pool contains all supported subgraphs of
a certain edge-size. All subgraphs of edge-size n+1 can be generated from the pool of
subgraphs with edge-size n in parallel. The initial pool of subgraphs is generated by
determining all single edge subgraphs from all database graphs. This parallelization
scheme is possible because of the approach taken by the gSpan algorithm to detect and
avoid duplicate subgraphs. It defines a canonical representation of subgraphs which
depends on the order of construction of the subgraph. Only subgraphs constructed in
the canonical order are considered, so the algorithm does not require comparison with
other generated subgraphs. An example iteration in this parallelization scheme with
our additions to gSpan is shown in Fig 2. Buehrer and Parthasarathy [37] suggest that
adaptive partitioning is superior at balancing the processor load, however the level-
wise approach introduced here proved to be beneficial for our score comparison scheme

7

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 14, 2020. ; https://doi.org/10.1101/2020.05.14.095695doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.14.095695
http://creativecommons.org/licenses/by/4.0/


which we will describe later.

Figure 2: Outline of an example RINminer iteration. Shown is an example of
the second iteration of RINminer which uses the pool of subgraphs generated during
the first iteration to generate a new pool of subgraphs. First all possible extensions are
determined followed by the different checks applied by RINminer assuming a support
threshold of 15/20 and a minimum score increase of 0.9. Vertex IDs are shown to the
bottom left of each vertex. Edge labels and subgraph variants that only differ in their
edge labels are omitted for legibility. Extension a results in a valid subgraph which
is added to the pool for the next iteration. Extension b is discarded due to a non-
canonical representation. The canonical representation of the same subgraph is found
in c. Extension c is discarded due to the score difference to its first parent subgraph.
This subgraph’s parent subgraphs are marked with an orange background in the pool.
Extension d shows a subgraph discarded due to low support.

To improve the performance of calculating the support of a generated subgraph in
the extension phase we employ a hash table by calculating a hash of the DFS code
representation of the extension. When determining all allowed extensions for a given
subgraph and a given database graph this allows fast lookups of previous occurrences
of the same extension found in other database graphs. This method can however only
be used for exactly matching labels.

As an additional performance improvement over the original gSpan implementation,
we store subgraph mappings as embedding lists similar to the approaches outlined by
FFSM [36] and Gaston [35]. Embedding lists provide a space-efficient way to use
subgraph mappings determined for a subgraphs of size n � 1 as starting points for
mappings of a subgraphs of size n and share the memory for common parts.

New features of the algorithm added in RINminer include support for multidi-
mensional edge labels, which allows us to consider both the residue distances as well
as the interaction types in our RINs. Importantly, we allow for small deviations of
the distance-based edge labels by introducing a tolerance when mapping subgraphs to
database graphs. In addition to that, we introduce a scoring function based on these de-
viations to find the subgraphs corresponding to the structurally most conserved residue
interactions. This scoring function is also used to limit the search space. We will now
describe the two additions in more detail.
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2.4 Approximate matching of distance labels

Instead of using discretized distance labels like many of the previously mentioned
approaches, we propose to use exact values and employ a certain tolerance when match-
ing. Without such a tolerance, labels would rarely match exactly due to natural fluc-
tuations of protein 3D folds even in conserved substructures resulting in an artificially
reduced support of the corresponding subgraph. The advantage of our approach is that
it prevents accidentally missing matches between two close values that fall into differ-
ent bins of an arbitrarily chosen discretization intervals. Another solution [28] to this
problem that has previously been proposed is to consider multiple discretized distance
labels per edge and require only one label to match for edges to be considered match-
ing. This however can lead to the opposite problem of edges being matched despite
having a distance difference that is larger than the distance between two discretiza-
tion boundaries, which translates to only weak structural conservation. We propose a
conceptually different approach that avoid this shortcoming as well. In our approach
we consider the edges (x, y) 2 E(G1) and (�(x),�(y)) 2 E(G2) matching with regard
to subgraph isomorphism if �type(x, y) = �type(�(x),�(y)) and d(x, y,�,�)  ✓ with d

being the distance difference:

d(x, y,�,�) =
2 · |�dist(x, y)� �dist(�(x),�(y))|
�dist(x, y) + �dist(�(x),�(y))

. (1)

This definition is based on a related definition for distance similarity used by DALI [38]
in its elastic similarity score to allow for higher variance in larger distances. Following
DALI, we set the threshold ✓ to 0.2.

We apply this threshold only when determining the support of a subgraph, but
not in the extension step of gSpan. The latter still requires exact label matches. In
the following we will distinguish these two different types of matches by referring to
them as approximate or exact, respectively. By only considering exact matches for the
extension step, we ensure that we will only ever generate subgraphs that are exact
subgraphs of at least one of the database graphs rather than combining edges from
different database graphs. This still increases the total number of generated subgraphs
by a factor proportional to the number of graphs in the database compared to a binning
approach, but it avoids a potentially exponential growth that would occur when using
approximate matching for the extension step. The impact of this is limited as the
number of database graphs tends to be small (typically between 5 and 50) and also
because we reduce the number of generated subgraphs with our scoring approach.

2.5 Subgraph scoring

The large number of subgraphs generated by FSM requires additional processing to
determine the most interesting ones. Using the previously-described deviations in the
distance labels we define a scoring function to determine the largest subgraphs that
correspond to structurally strongly conserved residues. The score of a subgraph S for
a database graph G given the sets of mappings �G and the labels � is defined as:

score(S,G) = max
�2�G

X

x,y2E(S)

1� d(x, y,�,�). (2)

We then select the scores from the t database graphs with the highest scoring mappings,
i.e. the t database graphs with the smallest total distance deviation for this subgraph
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and calculate the average as final score of the subgraph, where t is the gSpan support
threshold. This limitation to t database graphs ensures comparability between sub-
graphs with different support values. Without it subgraphs that mostly have matches
with high distance deviations would artificially improve their score if these database
graphs were no longer matched after an extension. This property is important for our
following use of the score which requires the ability to compare scores between two
subgraphs with potentially different support values.

We make use of these scores to reduce the number of subgraphs generated by gSpan.
In addition to the support requirement from the original gSpan algorithm, we also re-
quire the score to increase by a specified amount compared to all of its parent subgraphs.
We used a value of 0.9 which was chosen such that it reduces the size of the search
space while retaining the most relevant motif in the later discussed RdRP data set.
As parent subgraphs we define all connected subgraphs of the subgraph that can be
obtained by the removal of a single edge or a single edge-vertex pair, i.e. all subgraphs
that could be extended to the subgraph in question ignoring DFS canonicality. Fig 2
shows the parent subgraphs of the example subgraph c indicated by an orange back-
ground. Using parent subgraphs makes this comparison independent from the order of
construction, because all possible ways to construct this subgraph in a step-wise fashion
without including disconnected graphs are considered. Further, we require all parent
subgraphs to fulfill this requirement recursively. The subgraph pools introduced for
parallelization allow us to look up these scores instead of recalculating them for every
parent subgraph. It also allows for simple detection of parents not fulfilling the require-
ment, as such subgraphs would be missing from the pool. Using such an approach we
only ever need to retain two such subgraph pools in memory at a time.

The parent subgraph lookup is implemented by determining removable edges or
edge-vertex pairs according to the parent subgraph definition. Here we make use of
multiple properties of DFS codes to implement this in an efficient manner. For this
we first must relate our definition of edges removable due to cycles to the DFS code
representation of a graph. This is given by the following theorem which is proven in
S1 Proof:

Theorem 1. In a graph with a given canonical DFS code representation the set of all

edges cycles is the union of the sets of all backward edges together with the forward

edges on the path connecting the end and starting vertices of each backward edge in the

direction from the leaves to the root.

Using this theorem and the property of the canonical DFS code representation of a
graph that all edges, backward or forward, originating from a vertex are sorted after the
forward edge to that vertex, we can define an algorithm (Algorithm 1) to identify all
removable edges in a graph a linear time. By iterating over the DFS code backwards
we can count the number of cycles opened at a vertex by counting the number of
backward edges originating from it. Similarly, we can count the number of cycles that
will be closed once a vertex has been reached by the algorithm. In addition to the open
cycles from backward edges originating from a vertex, open cycles are also inherited
from child vertices in the spanning tree, i.e. forward edges originating from the vertex.
We consider a vertex to be reached, once we hit the DFS code entry representing the
forward edge pointing towards it. Using the number of open and closed cycles we can
now for each forward edge determine whether there is currently an open cycle involving
this edge. Backward edges are always considered removable, because they are known
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to be part of a cycle.

Algorithm 1 Determine all removable edges from a given graph and its canonical DFS
code representation

function IdentifyRemovableEdges(G, DFS)
for v  0, |V (G)|� 1 do

ecount[v] 0
open[v] 0
closed[v] 0

end for

for e |E(G)|� 1, 0 do

from, to DFS[e]
removable[e] false

ecount[from] ecount[from] + 1
ecount[to] ecount[to] + 1
if from < to then . forward edge

open[to] open[to]� closed[to]
open[from] open[from] + open[to]
if open[to] > 0 or ecount[to] > 1 then

removable(e) true

end if

else . backward edge
open[from] open[from] + 1
closed[to] closed[to] + 1
removable[e] true

end if

end for

if ecount[0] = 1 then

removable[1] true

end if

return removable

end function

In addition to edges in a cycle, we also need to consider edges ending in terminal
vertices. Here for both forward and backward edges, we just count the number of times
outgoing and incoming vertices are encountered in the DFS code. For each forward
edge we check if this count for the incoming vertex is 1, meaning that it is a terminal
vertex and should be included as a removable edge-vertex pair. This works because
in reverse canonical DFS code order the forward edge pointing towards a vertex is the
last occurrence of that vertex with the exception of the root vertex. So as a special
case in the first DFS entry (non-reverse order) the same is also done for the outgoing
vertex, i.e. the root vertex.

With the list of removable DFS code entries corresponding to either edges or edge-
vertex pairs, we now generate the parent graphs and determine their canonical DFS
code representations. This is done analogously to the method used by gSpan to de-
termine the canonicality of a DFS code representation by iteratively building the DFS
code and choosing the edge resulting in the smallest DFS code entry. This DFS code
representation can then be used for a hash-based lookup of the parent graphs in the
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subgraph pool.

2.6 PROSITE pattern data set and validation

We performed a validation of our approach based on protein families corresponding
to patterns in the PROSITE database [4]. For this we determined the overlap be-
tween the residues matched by a pattern and the residues corresponding to subgraphs
generated by RINminer for the same set of structures.

For each PROSITE pattern we selected all corresponding protein 3D structures
marked as true positives and pruned the set of matching structures using PISCES [39].
We required the structures to be determined by X-ray crystallography at a resolution of
at most 3.0Å and we excluded structures that only contain C↵ atoms to have reliable
residue interaction information. The data set was then pruned to structure chains that
share at most 50% sequence identity. This identity threshold is higher than the distant
relations our approach is intended for ( 30%), which is due to the fact that PROSITE
patterns represent sequence motifs found in more similar proteins. By using this less
restrictive threshold we can avoid unnecessary further pruning of the already reduced
data set and can later still filter out cases where the high sequence identity causes run
time or memory issues due to too many subgraphs to explore. In a final step we prune
data sets with less than three structures.

For each pattern we then ran RINminer with a support threshold ranging from
min(3, bn2 c) to n, where n is the number of structures remaining for each pattern after
pruning. We then selected the 15 subgraphs with the highest subgraph score for each
threshold. For each subgraph, only the highest scoring subgraph variant was used. A
variant here refers to a subgraph with the same topology and vertex labels, but differing
edge labels. We also excluded subgraphs and subgraph variants that were a part of
already selected subgraphs with higher scores.

PROSITE patterns do not always specify exact sequences, but can also allow or
disallow sets of amino acids for individual residues. Allowed amino acids in a pattern are
encompassed by square brackets whereas disallowed are encompassed by curly brackets.
Patterns can also contain wildcards, indicated by a lowercase x, which match every
amino acid. To assess the overlap between a pattern and the subgraphs generated by
RINminer, we use two different scoring functions considering the fact that subgraphs
generated by RINminer cannot contain residues with multiple amino acid types. The
first scoring function, which we refer to as the exact scoring function, only considers
exact residue matches and ignores residues with multiple possible amino acid types.
The second scoring function, on the other hand, includes residue matches against groups
of amino acids and is in the following referred to as the non-exact scoring function. For
both scoring functions the pattern is mapped onto the sequence given by the resolved
residues of a structure. This may result in no mapping for structures with unresolved
residues in which case these structures are ignored by the scoring function. It is also
possible for a pattern to have multiple mappings. Next, the non-exact scoring function
assigns a value of (20 � a)/19 to each matched residue in a mapping where a is the
number of allowed amino acid types at a particular position of the pattern. In this way
we include wildcard and amino acid group matches into the scoring function, but give
them a lower contribution to the final score. For the exact scoring function, matched
residues are assigned a value of 1 if a = 1, and 0 otherwise. The maximum score of a
pattern mapping in both scoring functions is defined as the sum of the values for all
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residues of the pattern. The score of a subgraph mapping is defined as the sum of the
values of all residues mapped into the pattern normalized by the maximum score of the
pattern mapping. In case of multiple subgraph or pattern mappings for a structure,
the best score is used. The final score of a subgraph is the average of the best subgraph
mapping scores for each structure.

For example the PROSITE pattern [IV]-{K}-[TACI]-Y-[RKH]-{E}-[LM]-L-[DE] (PS00226)
has a maximum mapping score of 2 in the exact case and a score of 18+1+16+19+17+1+18+19+18

19 '
6.684 in the non-exact case. A subgraph mapping that only maps to the last two
residues would have an exact score of 1 and a non-exact score of 1.947. The final scores
for this subgraph assuming a single structure database would then be 0.5 and 0.291,
respectively.

2.7 SCOP superfamily data set

Finally, we applied our approach to structures found in SCOP 1.75 [5] by generating
a database for each superfamily. The pruning step and RINminer parameter calculation
was done in the same way as for PROSITE but with a lower sequence identity threshold
of 30% when pruning to reflect the greater evolutionary distance found in superfamilies.

For this data set we also determined the significance of a subgraph using its clas-
sification power similar to Huan et al. [23]. Each subgraph was used to classify all
structures from our pruned SCOP database. If a subgraph is approximately subgraph
isomorphic to a database graph, this database graph and thus the corresponding pro-
tein structure was classified into the same superfamily as the originating database
graph of the subgraph. The p-value of each subgraph was calculated using a one-
sided Fisher’s exact test on these classifications to determine the likelihood of a better
classifier. When determining the significance of these p-values, we applied Bonferroni
correction to account for multiple testing using a base threshold of 0.0001, following
Huan et al. [23], and the number of data and parameter sets (3296) and the number of
subgraphs evaluated for each of these sets (15), resulting in a significance threshold of
2.0 · 10�9.

2.8 Selected protein families data set

We also assembled a data set of three well researched protein families with known
motifs and one family without any currently known structural motifs to evaluate the
found motifs of our approach in more detail for these specific cases. The chosen families
are AAA-ATPases, eukaryotic proteases, viral RdRPs and viral capsids. For the first
two we again used SCOP but this time instead of taking entire superfamilies, we only
focused on families (c.37.1.20 and b.47.1.2, respectively), but again a low sequence
identity of at most 30%. The last two data sets were adapted from data sets used by
Caprari et al. [40] in their study of similar proteins in distantly related viruses. A list
of chosen PDB structures can be found in Supplementary Table S2.

Implementation

RINminer was implemented in C. Scripts for generation of the data and analysis of
the results were written in Python using Biopython [54] and SciPy [55]. The code is
available at https://github.com/kalininalab/rinminer.
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3 Results and Discussion

3.1 PROSITE Patterns

We generated 254 data sets consisting of between 3 and 7 RINs, where each data set
corresponds to a single PROSITE pattern. After applying our method to these data
sets, we excluded 126 data sets for which the enumeration of supported subgraphs had
not terminated after 1 hour of runtime or run out of memory. The longer runtimes
in comparison to most of our other experiments are caused by the higher similarity
(50% identity cutoff) between the sequences, which then in turn leads to more similar
RINs with a higher number of common subgraphs. For the remaining 128 data sets,
we applied our scoring approach to evaluate the overlap between the known PROSITE
patterns and the subgraphs identified by our approach. In each case we selected the
largest frequent subgraph with the highest subgraph score (Equation 2).

When considering the 15 top-ranking subgraph across various support ranges (be-
tween half the size of the graph database and the size of the graph database), we ob-
served that the ones with the highest subgraph score when comparing to the PROSITE
patterns overlap with 48.7% (718 of 1475) of strictly conserved pattern residues, and
the ones with the highest exact score cover 55.3% (815 of 1475) of them. For indi-
vidual subgraphs with the highest subgraph score, their PROSITE exact scores have a
bimodal distribution with 39.3% (48 of 122 patterns with at least one strictly conserved
residue) with a value of 1, i.e. all strictly conserved residues included in the subgraph
and 32.0% (39 of 122) with a value of 0, i.e. none of the strictly conserved residues
included, and non-exact PROSITE scores have a median value of 0.39 (Fig 3A). Of the
subgraphs with the highest PROSITE scores for each pattern across different support
threshold values, 45.9% (56 of 122) have an exact score of 1 and 19.6% (24 of 122) of 0,
and the median of non-exact scores is 0.49 (Fig 3B), indicating a high degree of overlap
between the identified structural motifs and PROSITE patterns.

Figure 3: PROSITE score distributions for the best ranking subgraphs of

each PROSITE pattern. (A) Subgraphs ranked by their subgraph score. (B) Sub-
graphs ranked by the exact/non-exact PROSITE score.

An example of a successful prediction is the Zinc finger RanBP2-type signature
pattern ZF_RANBP2_1, where the top-ranking subgraph coincides with the pattern,
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which, in turn, contains only conserved positions (Fig 4A). Structurally, they also per-
fectly align, despite a relatively low average sequence identity within this family (only
the residues of the PROSITE pattern are conserved in the corresponding domain,
which corresponds to 6 out of 30 residues). An example of a more flexible pattern is
the uroporphyrin-III C-methyltransferase signature SUMT_1, which contains strictly
conserved, as well as variable positions (Fig 4B). Here our top-ranking subgraph in-
cludes three of four strictly conserved and three of eight variable pattern residues.
Additionally, the subgraph includes four residues from a different pattern SUMT_2,
which occurs in the same proteins, but is distant in sequence from SUMT_1. Here we
demonstrate that two disjoint in sequence functional patterns come close to each other
in space and can be included in a single structural motif.

Figure 4: Examples of identified subgraphs for PROSITE pattern and

their mapping into representative 3D structures. (A) PROSITE pattern
ZF_RANPB_2 representing zinc finger RANBP2-type motif and its mapping into
the structure of RanGDP-Nup153ZnF2 complex from human (PDB id 3GJ3). The
overlapping residues between the motif and the subgraph are shown in dark blue. The
Zn atom is shown as a gray sphere. (B) PROSITE pattern SUMT_1 representing the
uroporphyrin-III C-methyltransferase signature 1 and its mapping into the structure of
Precorrin-4 C11-methyltransferase from Rhodobacter capsulatus (PDB id 3NDC). The
overlapping residues between the motif and the subgraph are shown in teal.

3.2 SCOP superfamilies

We applied our approach to 537 SCOP superfamilies, where we could find at least
three representative structures of proteins with pairwise sequence identity up to 30%
and a length of at least 50 residues using a filtering approach based on the PISCES
algorithm [39]. With the chosen ranges of support thresholds this resulted in 3296
parameter sets, of which 120 did not complete within a specified time frame of 20
minutes or exceeded a memory usage of 1TB. To evaluate the found subgraphs we first
determined how well the identified subgraphs can differentiate between structures of
proteins belonging to the same and to different superfamilies. For that we implemented
a classifier in a manner similar to Huan et al. [23] (see Methods and Materials for more
details). Of the up to 15 top-ranked subgraphs in all 3296 parameter sets, 37.8%
(9854/26068) are significantly classifying, i.e. the classification p-value is lower than
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the Bonferroni corrected significance threshold of 2.0 · 10�9. If we consider only the
subgraphs with the highest score for each support threshold and each family, 41.9%
are significantly classifying. Considering only the subgraph with the lowest p-value for
each superfamily this yields 77.5% (396/511) significantly classifying subgraphs. These
results indicate that our approach can identify subgraphs bearing some specific features
that distinguish SCOP superfamilies from one another.

For SCOP, we do not have systematic description of the true functional motifs,
although SCOP superfamilies were constructed in such a way that proteins in them
share same functional mechanism and presumably common evolutionary origin [5].
We estimated the functional importance of the residues in identified subgraphs using
a recently introduced structural annotation tool StructMAn [41]. Briefly, StructMAn
explores structural environment of a given amino acid residue in a given protein, taking
into account not only its own 3D structure, but also 3D structures of homologous
proteins. Then it classifies residues into lying in the protein core, on the surface or on an
interaction interface with another protein, low molecular weight ligand, DNA, or RNA.
Residues in all these structural classes, except surface, are deemed to be functionally
or structurally important. It has been previously shown that such a classification,
despite its apparent simplicity, agrees well both with clinical annotations of mutations
at individual protein positions and other computational tools for the prediction of
functional consequences of mutations [41, 42].

We analyzed the distribution of the structural classification of all residues corre-
sponding to significantly classifying top scoring subgraphs for different support thresh-
olds (Table 3.2A). In order to be able to combine the results from superfamilies of
different size, we consider the support threshold as a percentage of the numbers of
structures in a superfamily. In these subgraphs, we observe a significant enrichment
with residues classified as core, which may indicate their potential structural impor-
tance, and as interacting with ligands indicating their functional importance, whereas
residues classified as surface residues are depleted (data not shown) across all support
thresholds. A significant depletion can be observed in protein-protein interaction in-
terfaces, which is a counter-intuitive result. Previously, it had already been observed
that protein-protein interaction interfaces are not enriched in disease-associated mu-
tation [42], and hypothesized that due to their large size, protein-protein interaction
interfaces must possess a more complex functional landscape than being uniformly
comprised of important residues. The percentage (0.6%-1.1%) of residues classified as
DNA or RNA interacting rarely show a significant difference from the corresponding
background percentage (1.2%) in the data set.
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sup ligand interaction DNA/RNA interaction protein interaction core
# % odds # % odds # % odds # % odds

A

50 1934 22.8 2.225 *** 54 0.6 0.521 ** 903 10.7 0.637 *** 4648 54.9 2.212 ***
60 2276 23.4 2.296 *** 62 0.6 0.520 ** 1018 10.5 0.622 *** 5297 54.4 2.170 ***
70 1977 21.0 1.997 *** 55 0.6 0.477 ** 979 10.4 0.619 *** 5351 56.8 2.399 ***
80 1648 18.2 1.664 *** 86 0.9 0.779 * 1046 11.5 0.695 *** 5220 57.5 2.468 ***
90 1068 15.7 1.394 *** 71 1.0 0.860 809 11.9 0.722 *** 3955 58.2 2.531 ***
100 1023 15.4 1.362 *** 76 1.1 0.945 729 11.0 0.659 *** 3775 56.9 2.398 ***

B

50 1388 37.4 4.485 *** 24 0.6 0.530 ** 410 11.0 0.663 *** 1581 42.6 1.341 ***
60 1673 35.4 4.135 *** 41 0.9 0.714 * 478 10.1 0.602 *** 2041 43.2 1.379 ***
70 1456 36.1 4.258 *** 38 0.9 0.776 399 9.9 0.587 *** 1731 43.0 1.364 ***
80 1045 32.5 3.608 *** 56 1.7 1.446 ** 394 12.2 0.746 ** 1385 43.0 1.367 ***
90 659 27.3 2.810 *** 47 1.9 1.622 ** 302 12.5 0.765 ** 1105 45.8 1.528 ***
100 655 27.6 2.856 *** 34 1.4 1.187 221 9.3 0.549 *** 1070 45.1 1.488 ***

C - 136 105 11.8 - - 13 946 1.2 - - 181 324 15.7 - - 410 091 35.6 - -

Table 1: Distribution of the structural classification of the residues corresponding to the top scoring mappings of the top-scoring
subgraphs for each superfamily at a given support threshold for the SCOP data set. Only considering significantly classifying
subgraphs (A), only significantly classifying and containing less than 50% frequent hydrophobic residues (B), all residues in the data
set (C). Shown for each structural class are the number of residues in the class (#) and percentage as well as the odds-ratio and
significance (*** < 2.2⇥ 10�16 , ** < 0.01 , * < 0.05 ) according to Fisher’s exact test.
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We also compared these results to the subset of residues that correspond to signif-
icantly classifying subgraphs that contain less than half typical frequent hydrophobic
residues (A, I, L, V) and still have the highest score in the superfamily for a given
support threshold (Table 3.2B). The removal of subgraphs consisting of mostly hy-
drophobic residues expectedly resulted in a depletion of residues classified as part of
the core of the protein and an enrichment of residues interacting with ligands. This
additional restriction therefore allows shifting the focus more towards functionally im-
portant motifs.

Another way of filtering the resulting subgraphs is to consider the rigidity of the
corresponding motif. For this we also compared the classification distribution of the
subgraphs for which the atoms from the corresponding residues in the different sup-
porting structures can be superimposed with an average pairwise RMSD of at most 3Å
in addition to the previous restrictions (Fig 5). Comparing the rigidity filtered results
with and without the hydrophobic residue restriction (the last two plots in Fig 5A),
shows that the hydrophobic residue restriction does not have a strong effect in this
case as it does without the rigidity filtering (the first two plots in Fig 5A). This proba-
bly means that there are stricter geometric constraints on the position of functionally
important residues in these sites than in protein core. When one considers that ligand-
binding sites, defined as they are by StructMAn, can frequently be catalytic sites, one
can hypothesize that identified patterns are related to catalytic residues.

In some cases the spatial location of the residues from a top-ranked subgraph can
readily suggest their function. For example, for the SCOP superfamily e.3.1 (beta-
lactamase/transpeptidase-like) we identify a subgraph that corresponds to a very well
conserved structural motif (Fig 6A). This motif includes two lysines and two serines
that can be separated by a great distance in the protein sequence (the number of
residues between one of the lysines and the following serine can be between 44 and
245). The serine and lysine of the S-x-x-K submotif are parts of the beta-lactamase
active site [43, 44]. In agreement with this, in one of the structures (PDB id 1XKZ), this
motif defines a pocket where an antibiotic derivative acylated ceftazidime is bound. In
other cases, e.g. for the rhodanese/cell cycle control phosphatase superfamily (c.46.1)
we can identify a structurally very well conserved motif buried in the protein core
(Fig 6B), which may play a role in building the protein scaffold.

3.3 Selected diverse protein families

In addition to superfamilies, we also looked at two families in SCOP which show
extremely diverse sequences (eukaryotic proteases b.47.1.2 and extended AAA-ATPase
domain c.37.1.20). SCOP families are the next hierarchical level after superfamilies,
usually proteins from the same family demonstrate an easily detectable sequence simi-
larity. However, in the cases of eukaryotic proteases and extended AAA-ATPase domain
they are extremely large and diverse, which makes them suitable for analysis with RIN-
miner. Further, we analyzed two sets of structures from virus protein families which are
of special interest due to their particularly diverse sequences. The first family comprises
3D structures from 12 manually selected RNA-dependent RNA polymerases (RdRP)
from positive- and negative-sense single-strand, as well as from double-strand RNA
viruses. The other family contains 49 3D structures of jelly-roll capsids from a very
diverse set of virus families, including double-strand DNA (e.g. Baculoviridae, Papil-

lomaviridae, Polyomaviridae), double-strand RNA (Birnaviridae), single-strand DNA
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Figure 5: Structural classification of residues corresponding to identified sub-

graphs. (A) Stacked area charts of the distributions of structural classes for different
categories of subgraphs at different support thresholds. (B) Background distribution
across all residues in the data set. (C) Number of identified frequent subgraphs in each
category of at different support thresholds. The support thresholds in A and B are in
percent of the database size from 50% to 100% with a step size of 5% and the cate-
gories are from left to right: all significantly classifying subgraphs (sig); significantly
classifying subgraphs that comprise less than a half hydrophobic residues A, I, L, V;
significantly classifying subgraphs, whose mappings into protein 3D structures can be
superimposed with a RMSD less than 3Å on average (only the highest scoring mapping
for each structure is considered); significantly classifying non-hydrophobic subgraphs
with mappings that can be superimposed with a RMSD up to 3Å on average.

(Circoviridae, Parvoviridae), and positive-sense single-strand RNA (e.g. Bromoviridae,
Caliciviridae, several Picornavirales families) viruses. The average pairwise sequence
identity in these four families ranges between 10.9% and 26.2% (Table 2).

Table 2: Average pairwise sequence identities of the selected protein families.

Family
Number of
structures

Average sequence
identity

Eukaryotic proteases b.47.1.2 7 26.2%
Extended AAA-ATPase domain c.37.1.20 23 14.6%

RNA-dependent RNA polymerases 12 11.2%
Jelly-roll capsids 49 10.9%
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Figure 6: Examples of identified subgraphs for SCOP superfamilies and their

mapping into representative 3D structures. Residues corresponding to the

subgraph are shown as sticks and colored green. (A) SCOP superfamily e.3.1
(beta-lactamase/transpeptidase-like) and mapping into the structure of S216A mutant
of Streptomyces K15 DD-transpeptidase (PDB id 1ES5). Inhibitor acylated ceftazidime
from aligned structure of acylated beta-lactam sensor domain of Blar1 from S. aureus

(PDB id 1XKZ) is shown in salmon. (B) SCOP superfamily c.46.1 (rhodanese/cell
cycle control phosphatase) and mapping into the structure of a USP8-NRDP1 complex
from human (PDB id 2GWF).

The eukaryotic proteases are ubiquitous proteins with diverged sequences and 3D
structures resolved for very many species. In our data set, we collected 7 3D structures
of proteins with average sequences identity of 26.2%. Using our approach, we can
identify a conserved structural motif that includes the catalytic triad [45] in 6 of them
(Fig 7A). A somewhat larger common subgraph in this case also reflects the higher
sequence similarity within this family. One structure (1A7S) from our data set not
containing this motif is due to it having an inactivating H41S mutation [46].

The extended AAA-ATPase family is a large and diverse protein family involved
in different cellular processes. In our data set, we selected 23 3D structures of AAA-
ATPases with on average 14.6% sequence identity. Using our method, for the support
threshold 11 we identify a subgraph corresponding to a known functional Walker A
motif [47] involved in phosphate binding (Fig 7B).

Functional motifs in the RdRP family have been previously identified by sophisti-
cated sequence comparison. One distinguishes seven functional motifs with relatively
degenerate consensus sequences, which play different roles in catalysis and coordination
of the substrate and lie at large distances that can vary substantially among viruses [2].
The subgraph with the highest score identified using the support threshold 6 defines a
structural pattern that contains three of these motifs packed tightly together in the 3D
space (Fig 7A): one of the two aspartate residues of the motif A that coordinate the
metal ions required for catalysis [48], motif B, which is located in the active center of
the polymerase and is responsible for distinguishing between ribose- and deoxyribose-
based nucleotides [49], and motif C, which is a part of the active site and participates
in coordination of metal ions as well [50, 51]. These motifs come from distant regions
of the sequences, but form a single compact structural arrangement.
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Figure 7: Examples of identified frequent subgraphs in selected diverse pro-

tein families and their mapping into protein 3D structures. (A) Eukaryotic
proteases b.47.1.2. The catalytic triad is shown in dark blue. (B) Extended AAA-
ATPase domain c.37.1.20. Walker A motif is shown in teal. (C) RNA-dependent RNA
polymerases. Motif B is peach, motif C in purple. (D) Jelly-roll capsids.

Jelly-roll capsids are found in very distant viral families, nevertheless their com-
mon evolutionary origin has been suggested, based on an exceptional conservation of
their 3D structure [52]. There is very little sequence similarity among these structures:
structure-based pairwise alignments of our 49 structures yield on average 10.9% se-
quence identity. For most support thresholds, we can identify only very small (up to 3
vertices) frequent subgraphs that consist of most common amino acids, and hence are
perhaps not very interesting. However, for the threshold of 6 (12.2%), we find a sub-
graph of 5 vertices comprised of a tryptophan along with multiple hydrophobic amino
acids (Fig 7B). Interestingly, in the 3D structure of the capsid, these residues form a
very conserved pattern of interactions in the hydrophobic core, being perhaps a part of
the proteins’ conserved structural scaffold as this motif shows a remarkably low average
RMSD (0.354Å). The 6 viruses we found this motif in belong to 3 distantly related
families: Senecavirus and Hepatovirus A to Picornaviridae, Cripavirus and Triatovirus

to Dicistroviridae, and Vesivirus and Lagovirus to Caliciviridae. These families have
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been assigned to the evolutionary related Picornavirus-like superfamily [53].

4 Conclusions
We propose a novel data-driven approach and the corresponding tool, RINminer,

for the identification of functionally important motifs in distantly related proteins with
known 3D structures. The basis of our approach is the technique of frequent subgraph
mining that has previously been applied in life sciences, for example to identify common
chemical moieties [34, 35] or protein structural motifs [23, 28].

A significant novel feature of our approach that has been implemented in RIN-
miner for the first time is that we propose a concept of approximate label matching,
in that subgraphs of graphs representing protein 3D structures are matched, even if
the edge labels representing the Euclidean distance between proteins residues do not
match exactly. We introduce an additional tunable parameter that governs the allowed
deviation between the edge labels. This allows us to use exact Euclidean distances be-
tween protein residues directly, without binning that was employed in previous studies
[28].

Another advantage is that we convert protein 3D structures to graphs using residue-
interaction networks [25] that respect the physicochemical nature of interactions among
protein atoms. Additionally, we differentiate between covalent and non-covalent inter-
actions by labeling edges as sequence or structural. Both distance and interaction type
are encoded as a multidimensional edge label. In the process of frequent subgraph min-
ing only the dimension of the labels that represent the interaction type are matched
exactly. This has been made possible by implementing support for multidimensional
labels, which is also a unique feature of RINminer.

Due to run time constraints, only approximate matching of edge labels but not
vertex labels has been considered, although approximate label matching for vertices
is also supported by the tool. Using this option will, for example, enable mining for
subgraphs that include not only exactly same, but chemically similar residues. An-
other way to account for physicochemical similarities between residues would be to use
pseudoresidue labels, i.e. group several related residues together under one label (e.g.
all aliphatic or all positively charged). We explored this possibility, but the result-
ing subgraphs were either too unspecific, or the runtimes were too long. Introducing
approximate isomorphism on the residue labels would be thus a more flexible way to
account for such relationships, which will be a matter of future research.

In various validation and application scenarios, we have shown that our approach
is able to re-discover known motifs and propose novel ones. In particular, we sug-
gested a novel structural motif in jelly-roll capsid proteins from several viruses of the
picornavirus-like superfamily.
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S1 Proof. Proof of Theorem 1
Proof. It is trivial to see that a path of forward edges where the first and last

vertex of the path are connected by a backward edge forms a cycle, however it

still has to be proven that no further edges than those stated by the theorem

can be part of any cycle. Assume that there is a forward edge e = (eroot, eleaf )
that is part of a cycle with the vertex eroot being closer to the root and eleaf
closer to the leaf such that e is not considered part of a cycle by the theorem, i.e.

it does not lie on a path connecting the end of a backward edge with its start.

We also need to consider a backward edge b that is involved in the formation

of such a cycle, because the spanning tree consisting of forward edges alone

contains no cycles. Given that e is supposed to be part of a cycle, there needs

to be a path that connects eroot to eleaf without traversing e. Because in the

spanning tree the only path connecting eroot to eleaf is e, broot needs to be on

the path between eroot and the root vertex in order for such an eleaf to eroot
path to exist. Since we require e to contradict our theorem, e must not be on

the forward edge path between bleaf to broot, which means that bleaf has to

be on a branch that does not contain e, i.e. on a branch that branched off of

the path between broot and eroot. Now in order to complete a cycle there has

to be a path between this branch and eleaf without going over e. This would

require another backward edge. However by construction there can only ever

be backward edges between the vertices on the path from the leaf to the root

node (i.e. the rightmost path at the time of construction), so any backward edge

would end on either the branch or another vertex on the path between eroot and

the root node resulting in one of the previous problems. Therefore such an edge

e can not exist and the theorem holds true.
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Supplementary Table S2. Structures used in the
Selected protein families dataset.
PDB identifiers are given followed by chain identifiers. Note that in some cases
multiple chains were used for graph generation.

Family PDB
Eukaryotic proteases
(b.47.1.2)

1A7SA, 1GVKB, 1OP0A, 1PQ7A,
1RRKA, 2HLCA, 2QY0B

Extended AAA-ATPase
domain (c.37.1.20)

1A5TA, 1D2NA, 1FNNA, 1G41A,
1G8PA, 1IN4A, 1IQPA, 1JBKA,
1JQLB, 1L8QA, 1LV7A, 1NJGA,
1NY5A, 1QZMA, 1SVMA, 1SXJA,
1SXJE, 1TUEA, 1U0JA, 1W5TA,
2A5YB, 2FNAA, 2GNOA

RNA-dependent RNA
polymerases

1KHVA, 1N35A, 2CJQA, 2EC0A,
2R7RA, 3UQSA, 3ZEDA, 4A8OA,
4GZKA, 4HDHA, 4OBCA, A4WSBB

Jelly-roll capsids

1A6CA, 1B35A, 1B35B, 1B35C,
1BEV3, 1CWPA, 1DNVA, 1DZLA,
1F15A, 1F2NA, 1IHMA, 1OHFA,
1OPOA, 1S58A, 1SVA1, 1X35A,
1YQ5A, 2BBVA, 2FZ2A, 2GH8A,
2IZWA, 2MEV1, 2TBVA, 2W0CL,
2WS91, 2WUYA, 3CJIA, 3CJIB,
3CJIC, 3FBMA, 3J1PA, 3J1QA,
3J40H, 3J4UH, 3N7XA, 3NAPA,
3NAPB, 3NAPC, 3P0SA, 3R0RA,
3RQVA, 3ZXAC, 4G0RA, 4GMP0,
4NWVA, 4Q4W1, 4QPIA, 4QPIB,
4QPIC
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