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Abstract 28 

A novel coronavirus (SARS-CoV-2) emerged from China in late 2019 and rapidly spread across 29 

the globe, infecting millions of people and generating societal disruption on a level not seen since the 30 

1918 influenza pandemic. A safe and effective vaccine is desperately needed to prevent the continued 31 

spread of SARS-CoV-2; yet, rational vaccine design efforts are currently hampered by the lack of 32 

knowledge regarding viral epitopes targeted during an immune response, and the need for more in-depth 33 

knowledge on betacoronavirus immunology. To that end, we developed a computational workflow using 34 

a series of open-source algorithms and webtools to analyze the proteome of SARS-CoV-2 and identify 35 

putative T cell and B cell epitopes. Using increasingly stringent selection criteria to select peptides with 36 

significant HLA promiscuity and predicted antigenicity, we identified 41 potential T cell epitopes (5 HLA 37 

class I, 36 HLA class II) and 6 potential B cell epitopes, respectively. Docking analysis and binding 38 

predictions demonstrated enrichment for peptide binding to HLA-B (class I) and HLA-DRB1 (class II) 39 

molecules. Overlays of predicted B cell epitopes with the structure of the viral spike (S) glycoprotein 40 

revealed that 4 of 6 epitopes were located in the receptor-binding domain of the S protein. To our 41 

knowledge, this is the first study to comprehensively analyze all 10 (structural, non-structural and 42 

accessory) proteins from SARS-CoV-2 using predictive algorithms to identify potential targets for 43 

vaccine development.  44 

Keywords: Coronavirus; immunoinformatics; T-cell epitope; B-cell epitope; HLA molecules, HLA class 45 
I, HLA class II, peptide 46 

Significance Statement: 47 

The novel coronavirus SARS-CoV-2 recently emerged from China, rapidly spreading and ushering in a 48 

global pandemic. Despite intensive research efforts, our knowledge of SARS-CoV-2 immunology and the 49 

proteins targeted by the immune response remains relatively limited, making it difficult to rationally 50 

design candidate vaccines. We employed a suite of bioinformatic tools, computational algorithms, and 51 

structural modeling to comprehensively analyze the entire SARS-CoV-2 proteome for potential T cell and 52 

B cell epitopes. Utilizing a set of stringent selection criteria to filter peptide epitopes, we identified 41 T 53 

cell epitopes (5 HLA class I, 36 HLA class II) and 6 B cell epitopes that could serve as promising targets 54 

for peptide-based vaccine development against this emerging global pathogen.      55 

 56 

 57 
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Introduction 59 

In December 2019, public health officials in Wuhan, China, reported the first case of severe 60 

respiratory disease attributed to infection with the novel coronavirus SARS-CoV-2 (1). Since its 61 

emergence, SARS-CoV-2 has spread rapidly via human-to-human transmission (2), threatening to 62 

overwhelm healthcare systems around the world and resulting in the declaration of a pandemic by the 63 

World Health Organization (3). The disease caused by the virus (COVID-19) is characterized by fever, 64 

pneumonia, and other respiratory and inflammatory symptoms that can result in severe inflammation of 65 

lung tissue and ultimately death—particularly among older adults or individuals with underlying 66 

comorbidities (4-6). As of this writing, the SARS-CoV-2 pandemic has resulted in 4 million confirmed 67 

cases of COVID-19 and over 280,000 deaths worldwide (7). 68 

SARS-CoV-2 is the third pathogenic coronavirus to cross the species barrier into humans in the 69 

past two decades, preceded by severe acute respiratory syndrome coronavirus (SARS-CoV) (8, 9) and 70 

Middle-East respiratory syndrome coronavirus (MERS-CoV) (10). All three of these viruses belong to the 71 

β-coronavirus genus and have either been confirmed (SARS-CoV) or suggested (MERS-CoV, SARS-72 

CoV-2) to originate in bats, with transmission to humans occurring through intermediary animal hosts 73 

(11-14). While previous zoonotic spillovers of coronaviruses have been marked by high case fatality rates 74 

(~10% for SARS-CoV; ~34% for MERS-CoV), widespread transmission of disease has been relatively 75 

limited (8,098 cases of SARS; 2,494 cases of MERS) (15). In contrast, SARS-CoV-2 is estimated to have 76 

a lower case fatality rate (~2-4%) but is far more infectious and has achieved world-wide spread in a 77 

matter of months (16).  78 

As the number of COVID-19 cases continues to grow, there is an urgent need for a safe and 79 

effective vaccine to combat the spread of SARS-CoV-2 and reduce the burden on hospitals and healthcare 80 

systems. No licensed vaccine or therapeutic is currently available for SARS-CoV-2, although there are 81 

over 100 vaccine candidates reportedly in development worldwide. Seven vaccine candidates have 82 

rapidly progressed into Phase I/II clinical trials: adenoviral vector-based vaccines (CanSino Biologics, 83 

ChiCTR2000030906; University of Oxford, NCT04324606), nucleic-acid based vaccines encoding for 84 

the viral spike (S) protein (Moderna, NCT04283461; Inovio Pharmaceuticals, NCT04336410; 85 

BioNTech/Pfizer, 2020-001038-36), and inactivated virus formulations (Sinopharm, 86 

ChiCTR2000031809; Sinovac (NCT04352608) (17). While the advancement of these vaccine candidates 87 

into clinical testing is promising, it is imperative they meet stringent endpoints for safety (18). Preclinical 88 

studies of multiple experimental SARS-CoV vaccines have reported a Th2-type immunopathology in the 89 

lungs of vaccinated mice following viral challenge, suggesting hypersensitization of the immune response 90 

against certain viral proteins (19-22). Similarly, a modified vaccinia virus Ankara vector expressing the 91 

SARS-CoV S protein induced significant hepatitis in immunized ferrets (23). These data suggest that 92 
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candidate coronavirus vaccines that limit the inclusion of whole viral proteins may have more beneficial 93 

safety profiles. 94 

The SARS-CoV-2 genome encodes for 10 unique protein products: 4 structural proteins (surface 95 

glycoprotein (S), envelope (E), membrane (M), nucleocapsid (N)); 5 non-structural proteins (open reading 96 

frame (ORF)3a, ORF6, ORF7a, ORF8, ORF10); and 1 non-structural polyprotein (ORF1ab) (Figure 1A, 97 

B) (24). It is currently unknown which epitopes in the SARS-CoV-2 proteome are recognized by the 98 

human immune system, although studies of SARS-CoV immune responses suggest that both cellular and 99 

humoral responses against structural proteins mediate protection against disease (19, 22, 25-27). It is 100 

likely that cellular immune responses against non-structural viral proteins also play a key role in 101 

orchestrating protective antiviral immunity (28-30). In lieu of biological data, immunoinformatic 102 

algorithms can be employed to predict peptide epitopes based on amino acid properties and known human 103 

leukocyte antigen (HLA) binding profiles (31-33). These computational approaches represent a validated 104 

methodology for rapidly identifying potential T cell and B cell epitopes for exploratory peptide-based 105 

vaccine development and have been recently used to identify target epitopes for MERS-CoV (34)  and 106 

SARS-CoV-2, although many of these reports focus solely on structural proteins (35-38).  107 

Herein, we employed a comprehensive immunoinformatics approach to identify putative T cell 108 

and B cell epitopes across the entire SARS-CoV-2 proteome (Figure 1C). We independently identified 109 

peptides from each viral protein that were restricted to either HLA class I or HLA class II molecules 110 

across a subset of the most common HLA alleles in the global population. By filtering this list of peptides 111 

on the basis of predicted binding affinity, antigenicity, and promiscuity, we produced 5 HLA class I-112 

restricted and 36 HLA class II-restricted peptides as leading candidates for further study. We also 113 

evaluated linear and structural B cell epitopes in the SARS-CoV-2 spike protein, with six antigenic 114 

regions identified as potential sites for antibody binding. These selected peptides may serve as initial 115 

candidates in the rational and accelerated design of a peptide-based vaccine against SARS-CoV-2. 116 

Methods 117 

Comparison of genome sequences from SARS-CoV-2 isolates 118 
Genomic sequences for reported SARS-CoV-2 isolates were identified and retrieved from the 119 

Virus Pathogen Resource (ViPR) database on February 27, 2020 120 

(https://www.viprbrc.org/brc/home.spg?decorator=corona_ncov). Sequences that did not cover the 121 

complete viral genome (~29,900 nucleotides) were excluded from further analysis. Remaining sequences 122 

were aligned using the Clustal Omega program (version 1.2.4) from the European Bioinformatics Institute  123 

(39) and compared against the first reported genome sequence for SARS-CoV-2 (Wuhan-Hu-1; taxonomy 124 
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ID: 2697049) (1). Sequences from Wuhan-Hu-1 viral proteins were determined to be representative of 125 

those from all viral isolates and were subsequently used for epitope prediction analyses.      126 

Prediction of SARS-CoV-2 T cell epitopes 127 

 Prediction of HLA class I and class II peptide epitopes was carried out with the 10 protein 128 

sequences reported for the Wuhan-Hu-1 isolate: E (GenBank accession: QHD43418), M (QHD43419), N 129 

(QHD43423), S (QHD43416), ORF3a (QHD43417), ORF6 (QHD43420), ORF7a (QHD43421), ORF8 130 

(QHD43422), ORF10 (QHI42199), ORF1ab (QHD43415).  131 

 For CD8+ T cell epitope prediction, NetCTL 1.2 (Immune Epitope Database) was initially used to 132 

evaluate the binding of nonameric peptides derived from each viral protein to the most common HLA 133 

class I supertypes present among the human population (40, 41). HLA class I molecules preferentially 134 

bind 9-mer peptides, and most algorithm training datasets have been based on peptides of this length. The 135 

weight placed on C-terminal cleavage and antigen transport efficiency was 0.15 and 0.05, respectively. 136 

The antigenic score threshold was 0.75. Peptides with scores above this threshold were subsequently 137 

analyzed on the NetMHCpan 4.0 server (Technical University of Denmark) to predict binding affinity and 138 

percentile rank across representative alleles of each major HLA class I supertype (HLA-A*01:01, HLA-139 

A*02:01, HLA-A*03:01, HLA-A*24:02, HLA-B*07:02, HLA-B*08:01, HLA-B*27:05, HLA-B*40:01, 140 

HLA-B*58:01, HLA-B*15:01), which collectively cover the majority of class I alleles present in the 141 

human population (42-44). Thresholds for defining binding strength were set at 0.5% and 2.0% for strong 142 

and weak binders, respectively.  143 

 For CD4+ T cell epitope prediction, NetMHCIIpan 3.2 server (Technical University of Denmark) 144 

was used for predicting the binding affinity and percentile rank of 15-mer peptides derived from each 145 

viral protein across a reference panel of 27 HLA class II molecules (33, 45). Thresholds for defining 146 

binding strength were set at 2% and 10% for strong and weak binders, respectively.  147 

HLA class I and class II peptides with high predicted binding affinities (< 500 nM), high 148 

percentile ranks (< 0.5% for class I; < 2% for class II), and broad HLA coverage (> 3 alleles) were 149 

independently analyzed on the VaxiJen 2.0 server (Edward Jenner Institute) (46, 47) using a conservative 150 

score threshold (0.7) to predict antigenicity.  151 

Molecular docking of HLA class I peptides  152 

 Docking simulations of 5 HLA class I-restricted SARS-CoV-2 peptides with high antigenicity 153 

scores and a commonly shared predicted HLA molecule (HLA-DRB1*15:01) were performed using the 154 

GalaxyPepDock server (Seoul National University Laboratory of Computational Biology) (48). The 155 

structure of HLA-DRB1*15:01 was accessed from the Protein Data Bank as a co-crystallized structure of 156 

the HLA molecule with a nonameric SARS-CoV peptide (PDB ID: 3C9N) (49). The bound nonamer 157 
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peptide was removed from the structure using Chimera 1.14 (University of California-San Francisco) (50) 158 

prior to running simulations. Ten models of each peptide-HLA complex were generated on the basis of 159 

minimized energy scores, and the top model for each complex was selected for comparative analysis.     160 

Prediction and structural modeling of SARS-CoV-2 B cell epitopes  161 

 Linear B cell epitope predictions were performed on the three exposed SARS-CoV-2 structural 162 

proteins: S (GenBank accession: QHD43416), M (QHD43419), and E (QHD43418) using the BepiPred 163 

1.0 algorithm (51). Epitope probability scores were calculated for each amino acid residue using a 164 

threshold of 0.35 (corresponding to > 0.75 specificity and sensitivity below 0.5), and only epitopes > 5 165 

amino acid residues in length were further analyzed. The structure of the SARS-CoV-2 S protein was 166 

accessed from the Protein Data Bank (PDB ID: 6VSB) (52). Discontinuous (i.e., structural) B cell epitope 167 

predictions for the S protein structure were carried out using DiscoTope 1.1 (53) with a score threshold 168 

greater than – 7.7 (corresponding to > 0.75 specificity and sensitivity below 0.5). The main protein 169 

structure was modeled in PyMOL (Schrödinger, LLC), with predicted B cell epitopes identified by both 170 

BepiPred 1.0 and DiscoTope 1.1 highlighted as spheres.  171 

Results 172 

Genetic similarity of SARS-CoV-2 isolates 173 

The primary goal of our study was to identify peptide epitopes that would be broadly applicable 174 

in vaccine development efforts against SARS-CoV-2. We identified 64 point mutations and 4 deletions 175 

across the genomes of 44 clinical isolates, with all deletions and the majority of mutations (n=45) 176 

occurring in the ORF1ab polyprotein (Supp. Figure S1). Single-point mutations were also found in the S 177 

protein (n=5), N protein (n=5), ORF8 protein (n=3), ORF3a protein (n=2), ORF10 protein (n=2), E 178 

protein (n=1), and M protein (n=1). Despite the genetic diversity introduced by these events (Figure 1D), 179 

matrix analysis determined that > 99% sequence identity was maintained across all viral genomes. Based 180 

on these findings and for study feasibility, the genome from the original virus isolate (Wuhan-Hu-1; 181 

GenBank: MN908947) was selected as the consensus sequence for all further analyses.   182 

Prediction of CD8+ T cell epitopes in the SARS-CoV-2 proteome 183 

 We next identified potential CD8+ T cell epitopes from all proteins in the SARS-CoV-2 184 

proteome. Using the NetCTL 1.2 predictive algorithm, we analyzed the complete amino acid sequence of 185 

each viral protein to generate sets of 9-mer peptides predicted to be recognized across at least one of the 186 

major HLA class I supertypes (Figure 2A, Supp. Figure S2). This approach yielded a significant number 187 

of potential epitopes from each viral protein (ORF10: 9, ORF6: 17, ORF8: 23, E: 25, ORF7: 39, N: 80, 188 

M: 87, ORF3a: 87, S: 321, ORF1ab: 2814), with the number directly related to the size of the parent 189 
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protein. We used the NetMHCpan 4.0 server to further refine the list of potential CD8+ T cell epitopes by 190 

predicting binding affinity across representative HLA class I alleles (see Methods) and assigning 191 

percentile scores to quantify binding propensity. Peptides with percentile rank scores < 0.5% (i.e., strong 192 

binders) were filtered using a 500 nM threshold for binding affinity to further delineate 740 candidate 193 

HLA class I epitopes from the viral proteome (54). For feasibility reasons, we refined our selection to 83 194 

candidate epitopes by excluding peptides predicted to bind only one HLA molecule (Supp. Table S1). 195 

The resultant peptides were enriched for predicted binders to HLA-B molecules (HLA-B*15:01=50; 196 

HLA-B*58:01=32; HLA-B*08:01=31) (Figure 2B). A final round of selection on the basis of HLA 197 

promiscuity (i.e., predicted binding to > 3 HLA molecules) and predicted antigenicity scoring using the 198 

VaxiJen 2.0 server produced a subset of five candidate peptides (four ORF1ab, one S protein) as potential 199 

targets for vaccine development (Table 1) with the hypothesis that increased HLA binding promiscuity 200 

meant broader population base coverage by those peptides. These peptides were predicted to provide 74% 201 

global population coverage and had higher predicted binding affinities for HLA-B molecules 202 

(B*08:01=42.6 nM; B*15:01=67.7 nM; B*58:01=110.3 nM) compared to HLA-A molecules 203 

(A*01:01=238.6 nM; A*24:02=142.9 nM), with the exception of one ORF1ab-derived peptide 204 

(MMISAGFSL) that was predicted to bind HLA-A*02:01 with high affinity (IC50= 6.9 nM) (Figure 2C).       205 

Prediction of CD4+ T cell epitopes in the SARS-CoV-2 proteome 206 

 We also sought to identify potential HLA class II peptides from SARS-CoV-2, as the stimulation 207 

of CD4+ T-helper cells is critical for robust vaccine-induced adaptive immune responses. Using the 208 

NetMHCIIpan 3.2 server, we identified 801 candidate HLA class II peptides from the viral proteome 209 

predicted to have high binding affinity (< 500 nM) and percentile rank scores < 2% across a reference 210 

panel of HLA molecules covering  > 97% of the population (33, 45). Similar to HLA class I epitope 211 

predictions, the number of class II epitopes identified for each viral protein (ORF10: 4, E protein: 7, 212 

ORF7: 8, ORF8: 10, ORF6: 14, N: 15, M: 29, ORF3a: 31, S: 96, ORF1ab: 587) was largely proportional 213 

to protein size. After excluding peptides predicted to bind to only a single HLA molecule in our panel, we 214 

refined our selection to 211 peptides (Supp. Table S2), which were enriched for binding to HLA-DRB1 215 

molecules (n=142) (Figure 2D). Filtering on HLA promiscuity and predicted antigenicity scores yielded 216 

a subset of 36 peptides (24 ORF1ab, 5 S protein, 2 M protein, 2 ORF7, 1 ORF3a, 1 ORF6, 1 ORF8) as 217 

CD4+ T cell epitopes for further study (Table 1). These peptides were predicted to collectively provide 218 

99% population coverage and have significantly higher average binding affinities for HLA-DR alleles 219 

(DRB1=56.4 nM; DRB3=50.9 nM; DRB4=70.1 nM; DRB5=18 nM) compared to HLA-DP (155.9 nM) 220 

or HLA-DQ (238.6 nM) molecules (Figure 2E). 221 

Characterization of HLA class I peptide docking with HLA-B*15:01  222 
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 The five candidate HLA class I peptides identified by our computational approach were predicted 223 

to provide coverage across six HLA alleles (A*01:01, A*02:01, A*24:02, B*08:01, B*15:01, B*58:01). 224 

The peptide FAMQMAYRF was the only candidate predicted to bind to A*24:02 molecules, whereas 225 

MMISAGFSL was predicted to uniquely bind A*02:01 and B*08:01 molecules. Four of the five peptides 226 

were predicted to bind A*01:01 and B*58:01 molecules, but all were predicted to bind with relatively 227 

high affinity (average IC50 = 67.7 nM) to HLA-B*15:01. Therefore, we performed molecular docking 228 

studies of each peptide with the molecular structure of HLA-B*15:01 (PDB: 3C9N).  229 

 All peptides were predicted to bind within the peptide binding groove, forming hydrogen bond 230 

contacts with numerous amino acid side chains (Figure 3A). The binding motif for HLA-B*15:01 is 231 

highly selective for residues at the P2 and P9 anchor positions, with a preference for bulky hydrophobic 232 

amino acids at the C-terminus (Figure 3B) (55). All candidate peptides possessed terminal residues (Phe, 233 

Tyr, Leu) that fit into the hydrophobic binding pocket of the HLA groove, further supporting that these 234 

peptides should be strong binders of HLA-B*15:01 and promising candidates for vaccine development 235 

studies.            236 

Prediction of B cell epitopes in SARS-CoV-2 proteins 237 

 An effective vaccine should stimulate both cellular and humoral immune responses against the 238 

target pathogen; therefore, we also sought to identify potential B cell epitopes from SARS-CoV-2 239 

proteins. We limited our analysis to the primary structural proteins exposed on the virus capsid (S, N, M, 240 

and E), as these are the most accessible antigens for engaging B cell receptors. Using the Bepipred 1.0 241 

algorithm, we identified 26 potential linear B cell epitopes in the S protein, 14 potential epitopes in the N 242 

protein, and 3 potential epitopes in the M protein (Table 2). No epitopes were identified in the E protein. 243 

Studies have previously shown the S protein to be the predominant target of neutralizing antibodies 244 

against coronaviruses (56, 57), and, as our findings indicate this to likely be the case for SARS-CoV-2, 245 

we focused all subsequent analyses on the S protein. While the N protein is also a major target of the 246 

antibody response (58), it is unlikely these antibodies have any neutralizing activity based on the viral 247 

structure. As epitope conformation can significantly influence recognition by antibodies, we also 248 

employed DiscoTope 1.1 to identify discontinuous B cell epitopes in the protein structure. Our analysis 249 

identified 14 potential structural epitopes in the S protein (7 in the S1 domain, 7 in the S2 domain), with 250 

six regions having significant overlap with our predicted linear epitopes (Table 2). Antigenic regions 251 

identified in both analyses were modeled using the recently published structure of the SARS-CoV-2 S 252 

protein (52) to examine their accessibility for antibody binding. Epitopes in the S2 domain (P792-D796; 253 

Y1138-D1146) were clustered near the base of the spike protein, whereas regions in the S1 domain 254 

(D405-D428; N440-N450; G496-P507; D568-T573) were exposed on the protein surface (Figure 4).               255 
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Discussion 256 

 In the face of the COVID-19 pandemic, it is imperative that safe and effective vaccines be rapidly 257 

developed in order to induce widespread herd immunity in the population and prevent the continued 258 

spread of SARS-CoV-2. Our study identified probable peptide targets of both cellular and humoral 259 

immune responses against SARS-CoV-2 using computational methodologies to investigate the entire viral 260 

proteome a priori. Studies such as these are paramount during the early stages of pandemic vaccine 261 

development given the relative scarcity of biological data available on the viral immune response, and we 262 

employed an approach that allowed us to systematically refine our predictions using increasingly stringent 263 

criteria to select a subset of the most promising epitopes for further study. The data we have curated could 264 

inform the design of a candidate peptide-based vaccine or diagnostic against SARS-CoV-2. 265 

  As selective pressures are known to introduce viral mutations that promote fitness and can lead 266 

to evasion of immune responses (59, 60), we first sought to investigate the genetic similarity of all 267 

reported SARS-CoV-2 clinical isolates and identify a consensus sequence for use in our epitope 268 

prediction studies. We identified 68 mutations/deletions across the 44 genomes of clinical isolates 269 

reported as of 27 February 2020. Despite these variations, the viral genomic identity was > 99% 270 

conserved across all isolates. As the protein coding sequences were largely conserved, the genome of the 271 

original virus isolate (Wuhan-Hu-1) was deemed a representative consensus sequence for analysis of the 272 

SARS-CoV-2 proteome.    273 

 CD4+ and CD8+ T cell responses will likely be directed against both structural and non-structural 274 

proteins during antiviral immune responses, as all viral proteins are accessible for processing and 275 

presentation on the HLA molecules of infected cells. Therefore, we sought to identify T cell epitopes 276 

across the entire viral proteome. Our analysis identified 83 potential CD8+ T cell epitopes (Supp. Table 277 

S1) and 211 potential CD4+ T cell epitopes (Supp. Table S2), with stringent filtering for more 278 

promiscuous peptides with high predicted antigenicity yielding a subset of 5 CD8+ T cell epitopes and 36 279 

CD4+ T cell epitopes (Table 1) as potential targets for vaccine development. A single study by Grifoni 280 

and colleagues has recently reported the computational identification of 241 CD4+ T cell epitopes from 281 

SARS-CoV-2 (35), and 22 peptides from our analysis shared sequence homology or were nested within 282 

peptides identified in their study. Moreover, seven peptides from this initial report were replicated in our 283 

final subset of HLA class II epitopes, supporting that these peptides may be promising vaccine targets.  284 

 An increasing number of studies have employed predictive algorithms to identify potential HLA 285 

class I epitopes for SARS-CoV-2, although relatively few have comprehensively analyzed the entire viral 286 

proteome. A report from Feng et al. recently outlined the identification of 499 potential class I epitopes in 287 

the main structural proteins from SARS-CoV-2 but did not consider any non-structural proteins (38). 288 

Grifoni and colleagues conducted a more rigorous analysis, identifying 628 unique CD8+ T cell epitopes 289 
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across all SARS-CoV-2 proteins but focusing their analyses solely on peptides with sequence homology 290 

to known SARS-CoV epitopes (35). Our approach initially identified ~ 3,500 potential CD8+ T cell 291 

epitopes across all viral proteins, which we refined to a subset of 5 peptides (Table 1). One peptide 292 

derived from ORF1ab (MMISAGFSL) was predicted to bind HLA-A*02:01 with high affinity (IC50= 6.9 293 

nM) (Figure 2C). Given the prevalence of this allele in the American and European populations (25-60% 294 

frequency) (61), MMISAGFSL may represent a promising epitope capable of providing broad vaccine 295 

population coverage.  296 

We also observed a notable enrichment of epitopes predicted to bind HLA-B molecules–297 

particularly HLA-B*15:01–as we imposed more stringent selection criteria (Figure 2B). All five peptides 298 

identified by our approach were predicted to be relatively strong binders for this allele (IC50 = 67.7 nM), 299 

with molecular docking simulations illustrating strong contacts with amino acid residues in the peptide 300 

binding groove (Figure 3 A, B). A recent computational study identified another HLA-B allele (B*15:03) 301 

as having a high capacity for presenting epitopes from SARS-CoV-2 that were conserved among other 302 

pathogenic coronaviruses (62).  These data collectively suggest the HLA-B locus may be significantly 303 

associated with the immune response to SARS-CoV-2 (and potentially other coronaviruses), with further 304 

biological studies warranted to determine the true role of host genetics in SARS-CoV-2 immunology.  305 

Lastly, we analyzed the primary structural proteins of SARS-CoV-2 (S, N, M, E proteins) for 306 

potential B cell epitopes, as an ideal vaccine would be designed to stimulate both cellular and humoral 307 

immunity. Our analysis identified potential linear B cell epitopes in all proteins except for the E protein 308 

(Table 2). The greatest number of epitopes were predicted in the surface-exposed S protein (n=26), but a 309 

significant number of epitopes were also predicted for the N protein (n=14). This is not surprising, as 310 

previous reports identified the N protein as a significant target of the humoral response to SARS-CoV 311 

(63, 64). As the S protein is the predominant surface protein and has been the primary target of 312 

neutralizing antibody responses against other coronaviruses (56, 57), we elected to focus our subsequent 313 

analyses solely on antigenic regions in the S protein. We identified 14 potential structural epitopes in the 314 

S protein structure and referenced against our linear epitope predictions to identify six regions that were 315 

independently identified by both analyses (Table 2, Figure 4). Feng et al. recently reported the 316 

computational identification of 19 surface epitopes in the S protein using Bepipred and the Kolaskar 317 

method (38), four of which had significant sequence overlap with the regions identified by our analyses. 318 

 To further evaluate the potential of these six antigenic regions as targets for antibody binding, we 319 

modeled their surface accessibility on the crystal structure of the SARS-Cov-2 spike protein (52). Four 320 

regions in the S1 domain (D405-D428; N440-N450; G496-P507; D568-T573) were solvent exposed 321 

(Figure 4 A, B), with minimal steric hindrance for antibody accessibility. The S1 domain contains the 322 

residues (N331-V524) important for virus binding to angiotensin converting enzyme 2 (ACE2) on the cell 323 
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surface (65), and studies have shown that antibodies with potent neutralizing activity against SARS-CoV 324 

target this domain (66-68). Indeed, three of the four S1 epitopes identified in our analyses are located in 325 

the ACE2-binding region, supporting their potential utility in vaccine development against SARS-CoV-2. 326 

Two regions were identified in the S2 “stalk” domain of the S protein (Figure 4 A, C). While Y1138-327 

D1146 is located at the base of the S protein and likely inaccessible to antibodies, P792-D796 is on the 328 

outer face of the protein and has been previously identified as part of a larger B cell epitope that is 329 

conserved with SARS-CoV (35). As SARS-CoV S2-specific antibodies have previously been shown to 330 

possess antiviral activity (66), it is interesting to speculate whether a strategy similar to targeting the 331 

influenza hemagglutinin protein stalk could be employed for developing a broadly reactive coronavirus 332 

vaccine.   333 

    Our study possessed several strengths and limitations. Rather than restricting our analyses of 334 

HLA class I and class II epitopes to specific proteins based on prior studies of SARS-CoV immunology, 335 

we investigated the complete proteome of SARS-CoV-2 using an unbiased approach. Furthermore, we 336 

employed a multi-tiered strategy for identifying putative B cell and T cell epitopes from all viral proteins 337 

studied. Our initial analyses were performed with liberal thresholds for epitope identification, and at each 338 

additional step, we imposed more stringent selection criteria to filter these peptides to a subset of B cell 339 

and T cell epitopes for further study. Nevertheless, the results of this study are derived purely from 340 

computational methods, and it should be noted that computational algorithms can fail to capture a 341 

significant number of antigenic peptides (69). Experimental validation with biological samples will 342 

ultimately be needed.  343 

 During the early stages of a pandemic, access to sufficient biological samples may be extremely 344 

limited, so we must continue to utilize methodologies—such as computational predictive algorithms—345 

that allow us to explore the epitope landscape for experimental vaccine development. Our approach in this 346 

study allowed us to identify and refine a manageable subset of T cell and B cell epitopes for further 347 

testing as components of a SARS-CoV-2 vaccine. Based on our results, our proposed SARS-CoV-2 348 

vaccine formulation could contain the following: 1) one or more B cell peptide epitopes from the S 349 

protein to generate protective neutralizing antibodies; and 2) multiple HLA class I and class II-derived 350 

peptides from other viral proteins to stimulate robust CD8+ and CD4+ T cell responses. Based on global 351 

allele frequencies, these class I and class II peptides would be expected to collectively provide 74% and 352 

99% population coverage, respectively. While such a vaccine could be readily formulated as a synthetic 353 

polypeptide or an adjuvanted peptide mixture, these strategies may not retain the epitope structural 354 

features necessary to induce a robust antibody response. Recombinant nanoparticles and assembly into 355 

VLPs represent promising alternative vaccine platforms, as they have been extensively used for the 356 

controlled display and delivery of peptide-based vaccine components (70-73). By omitting whole viral 357 
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proteins from the vaccine formulation, a peptide-based SARS-CoV-2 vaccine should have a well-358 

tolerated safety profile and avoid the adverse events previously observed with experimental SARS-CoV 359 

vaccines (19-22).   360 

 In summary, we have identified 41 potential T cell epitopes (5 HLA class I, 36 HLA class II) and 361 

6 potential B cell epitopes from across the SARS-CoV-2 proteome that are predicted to have broad 362 

population coverage and could serve as the basis for designing investigational peptide-based vaccines. 363 

Further study on the biological relevance and immunogenicity of these peptides is warranted in an effort 364 

to develop a safe and effective vaccine to combat the SARS-CoV-2 pandemic.   365 
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Figure legends 576 

Figure 1. (A) Diagram of SARS-CoV-2 virion structure with the major structural proteins (S, M, N, and 577 
E) highlighted. (B) Cartoon representation of the SARS-CoV-2 genome with the 10 major protein-coding 578 
regions annotated. The box diagrams are proportional to the protein size. (C) Diagram of peptide 579 
identification workflow illustrating the algorithms used (33, 40-43, 45-47, 51, 53) and filtering criterion 580 
applied to refine peptide selection. (D) Cladogram illustrating the genetic relationship of SARS-CoV-2 581 
isolates. The original viral isolate and consensus sequence (Wuhan-Hu-1) is highlighted in red. 582 

 583 

Figure 2. Immunogenicity scoring of peptides in the SARS-CoV-2 proteome with predicted HLA class I 584 
and II coverage and binding affinities. (A) Plots illustrating the NetCTL score for each sequential peptide 585 
across the entire amino acid sequence for each SARS-CoV-2 protein. Scores presented are the highest 586 
score identified across all HLA class I supertypes for each peptide. (B) Total number of predicted peptide 587 
epitopes distributed across HLA class I alleles. (C) Average predicted binding affinities by HLA allele for 588 
the top candidate class I peptides listed in Table 1. (D) Total number of predicted peptide epitopes 589 
distributed across HLA class II alleles. (E) Average predicted binding affinities by HLA allele for the top 590 
candidate class II peptides listed in Table 1.   591 
 592 

 593 

Figure 3. Docking of top predicted HLA class I peptides with a shared HLA molecule. (A) Structural 594 
docking model for each indicated peptide with the molecular structure of HLA-B*15:01 (PDB: 3C9N). 595 
Individual panels represent top-down views of the peptide binding groove. (B) Binding motif for HLA-596 
B*15:01. (C) Template Modeling and Interaction Similarity scores for the selected peptide docking 597 
models shown in panel A. (74, 75) 598 

 599 

 600 

Figure 4. Modeling of predicted B cell epitopes on the crystal structure of the S glycoprotein. Predicted 601 
structural epitopes in the S1 domain (A) and S2 domain (B) highlighted on the structure of the S 602 
glycoprotein monomer (PDB: 6VSB). (C) Top predicted B cell epitopes identified by both Bepipred and 603 
DiscoTope prediction algorithms highlighted on the trimeric structure of the S glycoprotein. Inset panels 604 
show the S1 domain (upper) and S2 domain (lower). Predicted epitopes are highlighted as colored atoms 605 
(green, blue, red) on the surface of the S protein (salmon).     606 

 607 

 608 

 609 

 610 
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Table 1. Top predicted HLA class I and class II T cell epitopes. 611 

Protein Peptide Antigenicity 
Score Predicted Alleles Binding Affinity  

(nM) 
Class I 

S FAMQMAYRF 
 A*24:02  142.9 

1.0278 B*15:01  123.9 
 B*58:01 23.4 

ORF1ab LSFKELLVY 
 A*01:01 371.8 

0.7234 B*15:01 42.6 
 B*58:01 35.7 

ORF1ab MMISAGFSL 
 A*02:01 6.9 

1.0248 B*08:01 367.6 
 B*15:01 16.2 

ORF1ab MSNLGMPSY 
 A*01:01 184.2 

0.9272 B*15:01 74.1 
 B*58:01 87.6 

ORF1ab STNVTIATY 
 A*01:01 241.1 

0.7143 B*15:01 81.9 
 B*58:01 294.5 

Class II 

M ASFRLFARTRSMWSF 0.7304 

DRB1*01:01 19.2 
DRB1*07:01 30.9 
DRB1*08:02 53.5 
DRB1*09:01 49.9 
DRB1*11:01 12.2 
DRB5*01:01 16.3 

DPA1*02:01/DPB1*05:01 256.2 
DPA1*02:01 DPB1*14:01  387.3 

M LLQFAYANRNRFLYI 0.7387 

DRB1*03:01 179.8 
DRB1*07:01 58.2 
DRB1*08:02 225.6 
DRB1*11:01 36.2 
DRB1*13:02 27.8 
DRB3*02:02 46.6 
DRB5*01:01 26.3 

S AAEIRASANLAATKM 0.7125 

DRB1*08:02 101.3 
DRB1*13:02 23.0 
DRB3*02:02 52.7 

DQA1*01:02/DQB1*06:02 141.5 
DPA1*02:01/DPB1*14:01 327.4 

S ALQIPFAMQMAYRFN 1.0112 
DRB1*09:01 52.9 
DRB1*12:01 159.5 
DRB1*15:01 50.3 

S PYRVVVLSFELLHAP 0.8161 

DPA1*02:01/DPB1*01:01 79.6 
DPA1*01:03/DPB1*02:01 53.3 
DPA1*01:03/DPB1*04:01 77.1 
DPA1*03:01/DPB1*04:02 92.9 

S QPYRVVVLSFELLHA 0.9109 

DPA1*02:01/DPB1*01:01 73.2 
DPA1*01:03/DPB1*02:01 50.2 
DPA1*01:03/DPB1*04:01 71.4 
DPA1*03:01/DPB1*04:02 90.1 
DPA1*02:01/DPB1*05:01 211.1 
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S YQPYRVVVLSFELLH 0.9711 

DPA1*02:01/DPB1*01:01 102.2 
DPA1*01:03/DPB1*04:01 93.0 
DPA1*03:01/DPB1*04:02 127.5 
DPA1*02:01/DPB1*05:01 299.3 

ORF1ab ANYIFWRNTNPIQLS 1.0311 
DRB1*04:05 89.9 
DRB1*07:01 35.2 
DRB1*13:02 13.5 

ORF1ab FKWDLTAFGLVAEWF 0.8059 
DQA1*05:01/DQB1*02:01 178.3 
DQA1*03:01/DQB1*03:02 425.3 
DQA1*04:01/DQB1*04:02 349.3 

ORF1ab HIQWMVMFTPLVPFW 0.7238 

DQA1*01:01/DQB1*05:01 293.1 
DPA1*02:01/DPB1*01:01 116.3 
DPA1*01:03/DPB1*04:01 84.6 
DPA1*03:01/DPB1*04:02 135.4 

ORF1ab IINLVQMAPISAMVR 0.7682 
DRB1*01:01 12.8 
DRB1*08:02 118.8 
DRB4*01:01 54.7 

ORF1ab INLVQMAPISAMVRM 0.9037 

DRB1*12:01 176.9 
DRB4*01:01 57.1 

DQA1*01:02/DQB1*06:02 116.5 
DPA1*02:01/DPB1*14:01 398.6 

ORF1ab IVFMCVEYCPIFFIT 1.0267 

DPA1*02:01/DPB1*01:01 116.2 
DPA1*01:03/DPB1*02:01 53.9 
DPA1*01:03/DPB1*04:01 70.9 
DPA1*03:01/DPB1*04:02 144.9 

ORF1ab IVTALRANSAVKLQN 0.7692 

DRB1*08:02 115.9 
DRB1*13:02 9.4 
DRB3*02:02 19.5 

DPA1*02:01/DPB1*14:01 408.7 

ORF1ab KGRLIIRENNRVVIS 0.7821 

DRB1*12:01 170.9 
DRB1*13:02 9.5 
DRB1*15:01 48.2 
DRB4*01:01 58.8 

ORF1ab KSAFYILPSIISNEK 0.7169 

DRB1*01:01 9.3 
DRB1*04:01 49.3 
DRB1*04:05 47.5 
DRB1*08:02 96.3 

ORF1ab LIVTALRANSAVKLQ 0.7473 

DRB1*01:01 8.8 
DRB1*07:01 39.2 
DRB4*01:01 78.6 

DQA1*01:02/DQB1*06:02 142.5 
DPA1*02:01/DPB1*14:01 368.3 

ORF1ab NLPFKLTCATTRQVV 1.1632 
DRB1*07:01 35.9 
DRB1*09:01 58.6 
DRB5*01:01 23.9 

ORF1ab PASRELKVTFFPDLN 1.0155 

DPA1*02:01/DPB1*01:01 76.9 
DPA1*01:03/DPB1*02:01 48.9 
DPA1*01:03/DPB1*04:01 64.3 
DPA1*03:01/DPB1*04:02 149.5 

ORF1ab PFAMGIIAMSAFAMM 0.9834 
DRB1*01:01 12.3 
DRB1*09:01 57.6 

DQA1*05:01/DQB1*03:01 45.6 
ORF1ab QMNLKYAISAKNRAR 1.5044 DRB1*01:01 14.9 
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DRB1*04:01 56.9 
DRB1*08:02 49.1 
DRB1*09:01 45.2 
DRB1*11:01 22.1 
DRB3*02:02 84.9 

DPA1*02:01/DPB1*14:01 158.3 

ORF1ab QQKLALGGSVAIKIT 1.2533 

DRB1*01:01 12.6 
DRB1*07:01 23.4 
DRB1*09:01 32.3 

DQA1*05:01/DQB1*03:01 42.9 

ORF1ab RFKESPFELEDFIPM 1.2101 

DPA1*02:01/DPB1*01:01 74.0 
DPA1*01:03/DPB1*02:01 65.9 
DPA1*01:03/DPB1*04:01 81.9 
DPA1*03:01/DPB1*04:02 130.6 

ORF1ab SAFAMMFVKHKHAFL 0.7305 

DRB1*08:02 110.4 
DRB1*11:01 18.3 
DRB1*15:01 50.9 
DRB4*01:01 79.2 
DRB5*01:01 15.1 

ORF1ab SFLAHIQWMVMFTPL 0.8215 

DPA1*02:01/DPB1*01:01 103.9 
DPA1*01:03/DPB1*02:01 47.8 
DPA1*01:03/DPB1*04:01 70.7 
DPA1*03:01/DPB1*04:02 140.6 

ORF1ab SIGFDYVYNPFMIDV 1.0823 

DPA1*02:01/DPB1*01:01 108.9 
DPA1*01:03/DPB1*02:01 47.1 
DPA1*01:03/DPB1*04:01 81.9 
DPA1*03:01/DPB1*04:02 137.6 

ORF1ab TEETFKLSYGIATVR 0.8859 
DRB1*01:01 8.7 
DRB1*07:01 21.8 
DRB1*09:01 25.9 

ORF1ab VLVQSTQWSLFFFLY 0.7309 

DPA1*02:01/DPB1*01:01 77.0 
DPA1*01:03/DPB1*02:01 35.3 
DPA1*01:03/DPB1*04:01 42.3 
DPA1*03:01/DPB1*04:02 93.1 

ORF1ab VQSTQWSLFFFLYEN 0.7509 
DPA1*02:01/DPB1*01:01 107.1 
DPA1*01:03/DPB1*02:01 49.9 
DPA1*03:01/DPB1*04:02 129.8 

ORF1ab WLIINLVQMAPISAM 0.9389 
DRB1*12:01 130.6 
DRB4*01:01 65.9 

DQA1*01:02/DQB1*06:02 139.6 

ORF1ab YFNMVYMPASWVMRI 0.7244 

DRB1*01:01 8.3 
DRB1*04:05 80.2 
DRB1*07:01 38.2 
DRB1*09:01 37.4 
DRB1*12:01 184.5 
DRB1*15:01 30.1 

ORF3 KKRWQLALSKGVHFV 0.8172 

DRB1*01:01 9.2 
DRB1*07:01 11.6 
DRB1*08:02 200.3 
DRB1*09:01 17.9 
DRB1*11:01 43.1 
DRB1*12:01 119.6 
DRB1*13:02 30.0 
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DRB1*15:01 34.2 
DRB4*01:01 79.8 
DRB5*01:01 18.4 

ORF6 MFHLVDFQVTIAEIL 1.0366 

DQA1*05:01/DQB1*02:01 192.0 
DQA1*01:01/DQB1*05:01 292.1 
DPA1*02:01/DPB1*01:01 108.3 
DPA1*01:03/DPB1*04:01 100.7 

ORF7 VKHVYQLRARSVSPK 1.0865 

DRB1*01:01 14.3 
DRB1*08:02 150.6 
DRB1*11:01 38.3 
DRB4*01:01 86.6 

ORF7 NKFALTCFSTQFAFA 1.1728 

DPA1*02:01/DPB1*01:01 50.9 
DPA1*01:03/DPB1*02:01 29.1 
DPA1*01:03/DPB1*04:01 35.9 
DPA1*03:01/DPB1*04:02 80.2 
DPA1*02:01/DPB1*05:01 273.4 

ORF8 SKWYIRVGARKSAPL 0.8829 

DRB1*01:01 13.7 
DRB1*08:02 87.8 
DRB1*09:01 50.7 
DRB1*11:01 15.3 
DRB5*01:01 8.8 

 612 

 613 

 614 

 615 

Table 2. Top predicted B cell epitopes.   616 

Peptide Residues  Bepipred Scorea DiscoTope Scorea 

DEVRNIAPGNTGKIADTNTKLPDD 405-428 0.715 -5.71 
NLDSKVGGSYN 440-450 0.577 -5.77 
GFNPTVGYNP 496-507 1.01 -5.73 

DIADTT 568-573 0.853 -5.55 
PPIKD 792-796 0.936 -3.28 

VYDPLQPELDSF 1138-1149 0.747 -4.12 

aReported scores represent the average calculated across all amino acids. 617 

 618 
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