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Abstract

We present PALLAS, a practical method for gene regu-
latory network (GRN) inference from time series data,
which employs penalized maximum likelihood and par-
ticle swarms for optimization. PALLAS is based on
the Partially-Observable Boolean Dynamical System
(POBDS) model and thus does not require ad-hoc bi-
narization of the data. The penalty in the likelihood is
a LASSO regularization term, which encourages the re-
sulting network to be sparse. PALLAS is able to scale
to large networks under no prior knowledge, by virtue of
a novel continuous-discrete Fish School Search particle
swarm algorithm for efficient simultaneous maximiza-
tion of the penalized likelihood over the discrete space of
networks and the continuous space of observational pa-
rameters. The performance of PALLAS is demonstrated
by a comprehensive set of experiments using synthetic
data generated from real and artificial networks, as well
as real time series microarray and RNA-seq data, where
it is competed to several other well-known methods for
gene regulatory network inference. The results show
that PALLAS can infer GRNs efficiently and accurately.
PALLAS is a fully-fledged program with a command-
line user interface, written in python, and available on
GitHub (https://github.com/yukuntan92/PALLAS).

1 Introduction

Inference of gene regulatory networks (GRN) from gene
expression time-series data is a problem of critical im-
portance in Bioinformatics [12]. Many mathematical
models have been proposed in the literature to address
this problem, including linear models [48, 13], Bayesian
networks [37, 18], neural networks [49], differential equa-
tions [13, 10] and information theory based approaches
[15, 4]. The Boolean network (BN) model [29], is an ef-
fective model for GRNs due to its ability to describe tem-
poral patterns of gene activation and inactivation and
its comparatively small data requirement for inference
[1, 33, 16, 24, 43]. Several extensions of the BN model
have been proposed, including Random Boolean Net-
works [29], Boolean Networks with perturbation (BNp)
[41], and Probabilistic Boolean Networks (PBN) [42],
and Boolean Control Networks (BCN) [11, 38]. How-
ever, all of those models assume that the system Boolean
states are completely observable. This is a significant

drawback, since all practical methods for the inference
of Boolean networks must include a step of ad-hoc bi-
narization of the gene expression data. The Partially-
observed Boolean dynamical system (POBDS) model [9]
addresses this problem in a principled way, by postulat-
ing separate Boolean state and general observation pro-
cesses. The time-series gene expression data, whether
microarray or RNA-seq data, is modeled by the observa-
tion process, while the Boolean states are hidden. This
allows the optimal inference of the sequence of Boolean
states from the time series data, as well as parameter
estimation directly from the data.

In this paper, we present PALLAS, a practical method
for parametric gene network inference based on the
POBDS model, using penalized maximum likelihood
and particle swarms for optimization. The penalty in
the likelihood score is a L1-norm LASSO regulariza-
tion term [47], which encourages the resulting network
to be sparse, i.e., contain a small number of edges be-
tween genes; its value can be adjusted by the user to
obtain a desired level of sparsity. The likelihood it-
self is calculated efficiently by an auxiliary particle fil-
ter (APF) implementation of the Boolean Kalman Filter
[9, 25]. Another novel feature of PALLAS is the appli-
cation to Boolean models of a particle swarm method:
a new mixed continuous-discrete version of the Fish
School Search algorithm [6, 7], for efficient simultane-
ous maximization of the penalized likelihood over the
discrete space of networks and the continuous space
of observational parameters. An early version of this
work appeared previously in a short communication [46].
We mention that particle swarm methods have been
employed before for GRN inference using non-Boolean
models, namely, recursive neural networks (RNN) in [50]
and S-systems in [28].

PALLAS is an extension of the adaptive filtering
method proposed in [25]. The latter performs maxi-
mization of the likelihood function by exhaustive search
over the space of networks and expectation maximiza-
tion over the space of parameters of the observational
model for each candidate network. It is well suited if
there is prior knowledge about the network, e.g., most
of the edges are known and only a few putative edges
are being sought, given the prohibitive computational
cost of exhaustively searching the space of all networks.
For example, with only 4 genes, there are a total of
688,747,536 Boolean network models to be searched,
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and with 8 genes this number jumps to approximately
8.8×1032, rendering exhaustive search completely unfea-
sible. PALLAS differs from the method in [25] in using
penalized maximum likelihood and particle swarms for
optimization, which allows it to handle large networks
in the absence of any prior knowledge.

The performance of PALLAS is demonstrated by a
comprehensive set of experiments. Using synthetic data
generated from both real and artificial GRNs, which al-
lows computation of performance metrics, we compare
PALLAS to GENIE3 [27], TIGRESS [21], Banjo [44],
Best-Fit algorithm [32], REVEAL [34], and GABNI [5].
Using real time series microarray data from the SOS
DNA Repair System in E. Coli, we compare PALLAS to
the methods in [31, 30, 28]. We also illustrate the perfor-
mance of PALLAS in recovering known regulatory links
in the E. Coli Biofilm Formation Pathway using time
series RNA-Seq data.

2 Methods

2.1 Partially-Observable Boolean Dy-
namical Systems

The Partially-Observable Boolean dynamical system
(POBDS) model [9] allows for uncertainty in Boolean
state transitions and partial observation of the Boolean
state variables through noise.

2.1.1 State model

Consider a state process {Xk; k = 0, 1, . . .}, where
Xk ∈ {0, 1}d is a Boolean vector of size d, which evolves
according to

Xk = f (Xk−1) ⊕ nk , (1)

for k = 1, 2, . . . where f : {0, 1}d −→ {0, 1}d is called
the network function, nk ∈ {0, 1}d is additive noise at
time k, and “⊕” indicates component-wise modulo-2 ad-
dition. The state and noise processes are assumed to
be independent. The state model (1) can be suitably
modified to include external inputs, if desired.

The noise random vector nk models uncertainty in
the state transition: if a component of nk is 1, the cor-
responding component of f (Xk−1) is flipped. As long as
all components of nk have a nonzero probability of being
1, the state process is an ergodic Markov Chain, with a
steady state distribution. But if the noise is too intense,
i.e., the probability of 1’s in nk is too large, state evo-
lution becomes chaotic. However, it is well known that
important biological pathways are tightly regulated. Ac-
cordingly, each component of the noise vector is assumed
here to be equal to 1 with a small value p = 0.05, inde-
pendently of the others. A different value 0 ≤ p ≤ 0.5
can be selected by the user; however, a value much larger
or smaller than 0.05 is not representative of real gene
regulatory networks.

We assume a specific model for the network func-
tion that is motivated by gene pathway diagrams com-
monly encountered in biomedical research. Let a sam-
ple state vector x ∈ {0, 1}d and the network function

f be expressed in component form as x = (x1, . . . , xd)
and f = (f1, . . . , fd), respectively. Each component
fi : {0, 1}d → {0, 1} is given by

fi(x) =

{
1,

∑d
j=1 aijxj + bi > 0 ,

0, otherwise,
(2)

where aij = +1 if there is positive regulation (activa-
tion) from gene j to gene i; aij = −1 if there is negative
regulation (inhibition) from gene j to gene i; and aij = 0
if gene j is not an input to gene i, whereas bi = +1/2
if gene i is positively biased in the sense that an equal
number of activation and inhibition inputs will produce
activation; the reverse being the case if bi = −1/2. The
network model is depicted in Figure 1, where the thresh-
old units are step functions that output 1 if the input
is positive, and 0, otherwise. This model constraint re-
duces the number of parameters needed to specify f from
2d to d2 + d.

Figure 1: Schematic representation of the network func-
tion.

2.1.2 Observation Model

The sequence of states is observed indirectly through
the process {Yk; k = 0, 1, . . .}, where the measurement
vector Yk is a general nonlinear function of the state
and observation noise:

Yk = h (Xk,vk) (3)

for k = 1, 2, . . ., where the noise vector vk is assumed
to independent of the state process and state transi-
tion noise process. We describe next the two observa-
tional models considered in this paper, corresponding
to two common gene expression modalities: RNA-Seq
count data or microarray fluorescence data. Observa-
tional models for other data modalities can be intro-
duced, if desired.

RNA-Seq observation model
RNA-Seq data can be modeled with the Poisson distri-
bution [19] or the negative binomial distribution [20, 2].
Here, we employ the latter, since it is able to address
overdispersion in the count distributions. We assume
that the transcript counts Yk = (Yk1, . . . , Ykd) are re-
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lated to the state Xk = (Xk1, . . . , Xkd) via

P (Yk = y | Xk = x) =
d∏
i=1

P (Yki = yi | Xki = xi),

(4)
and adopt the negative binomial model for each count,

P (Yki = yi | Xki = xi) =

Γ(yi + φi)

yi! Γ(φi)

(
λi

λi + φi

)yi( φi
λi + φi

)φi

,
(5)

where Γ denotes the Gamma function, and φi, λi > 0 are
the real-valued inverse dispersion parameter and mean
read count of transcript i, respectively, for i = 1, . . . , d.
The inverse dispersion parameter φi specifies the amount
of observation noise: the larger it is, the less observation
noise is present. We model the parameter λi in log-space
as:

log λi = log s + µi + δi xi , (6)

where the parameter s is the sequencing depth, which
depends on the instrument, µi ≥ 0 is the baseline level of
expression in the inactivated transcriptional state, and
δi > 0 is the difference between read count as gene i goes
from the inactivated (xi = 0) to the activated (xi = 1)
state, for i = 1, . . . , d.
Microarray observation model
A reasonable model for continuous microarray fluores-
cence data is a Gaussian linear model:

y = µ +D x + v , (7)

where µ = (µ1, . . . , µd) ≥ 0 is the vector of baseline
expression levels corresponding to the “zero” or inac-
tive state for each gene, D = diag{δ1, . . . , δd} > 0
is a diagonal matrix containing differential expression
values for each gene, and v ∼ N (0,Σ) is an uncor-
related zero-mean Gaussian noise vector, where Σ =
diag{σ2

1 , . . . , σ
2
d} > 0. Notice that (4) is still satisfied

here.

2.1.3 Boolean Kalman Filter

Given a time series of observations Y1:k =
{Y1, . . . ,Yk}, the Boolean Kalman Filter[9] (de-
scribed in detail in the Supplementary Material)
computes exactly the minimum mean-square error state
estimator:

X̂MS
k = argmin

X̂k∈{0,1}d
E[ ||X̂k −Xk||2 | Y1:k] . (8)

The BKF also computes the probabilities needed to
determine the likelohood function, as detailed in Sec-
tion 2.2.1. When the network is large, however, com-
putation of the BKF is intractable since each transition
matrix contain 22d elements which requires large com-
putation and memory. In this case, approximate meth-
ods must be used, such as the Sequential Monte Carlo
(SMC) method, also known as particle filter [3]. Here
we use the auxiliary particle filter implementation of the
Boolean Kalman Filter (APF-BKF), described in [26]
(please see that reference for the details).

2.2 PALLAS Algorithm
In this section, we describe in detail PALLAS (Penal-
ized mAximum LikeLihood and pArticle Swarms), an
algorithm for inference of Boolean gene regulatory net-
works from noisy time series of gene expression data.
The algorithm has two main components: 1) efficient
computation of a penalized log-likelihood cost function;
2) maximization of the previous cost function using a
novel particle swarm method, namely, a mixed discrete-
continuous fish school search procedure. We describe
here the general case, where no prior knowledge is avail-
able to set model parameters. The algorithm can be
easily modified to allow some of the parameters to be
specified by the user, by simply reducing the size of the
parameter space and using the known parameter values
in the likelihood computation.

Let θ = (θdisc, θcont) ∈ Θ, with θdisc ∈ Θdisc and
θcont ∈ Θcont, be the discrete and continuous unknown
model parameters, where Θ, Θdisc and Θcont are the cor-
responding parameter spaces, with Θ = Θdisc × Θcont.
Here, θdisc contains the parameters of the network func-
tion in (2), namely the edge parameters aij ∈ {−1, 0, 1},
for i, j = 1, . . . , d, and the regulation bias parameters
bi ∈ {−1/2, 1/2}, for i = 1, . . . , d. Hence, Θdisc =

{−1, 0, 1}d2 × {−1/2, 1/2}d. This is a finite space, but
its cardinality |Θdisc| = 3d

2×2d increases extremely fast
with the number of genes d. For example, for a net-
work with only d = 4 genes, |Θdisc| = 688747536, while
if d = 8, then |Θdisc| ≈ 8.8 × 1032. On the other hand,
θcont contains the observational parameters: the baseline
expression levels µi > 0 and the differential expression
levels δi > 0, for i = 1, . . . , d, for both RNA-Seq and mi-
croarray data, the inverse dispersion parameters φi > 0,
for i = 1, . . . , d, for RNA-Seq data, and the standard
deviations σi > 0, for i = 1, . . . , d, for microarray data
(the sequencing depth parameter s is assumed known for
a given RNA-seq assay, so it is not part of θcont). Hence,
the dimensionality of θcont is Q = 3d in both cases.

The mixed discrete-continuous fish school search pro-
cedure employed by PALLAS assumes that the param-
eter space is a closed and bounded region with an ab-
sorbing decision boundary (if the current best estimate
exceeds the boundary, it remains at the boundary). This
is not a limiting requirement in practice, since sen-
sible lower and upper bounds can be set for all the
observational parameters. These intervals can be set
by the user, or the following data-driven procedure to
obtain default intervals is employed. Let min, max,
and mean be respectively the minimum, maximum, and
mean value of the observed data for all genes across all
time points and available time series. In the case of
RNA-Seq data, the data must be normalized by divid-
ing the measurements by the sequencing depth and then
taking logs prior to computing the mean, max, and mean
values. Then the following intervals are assumed:

µi ∈ [ min , mean ] ,

δi ∈ [ min{max−mean,mean−min}/3 , max−min ] ,

σi ∈ [ 0.1 , max{max−mean,mean−min}/3 ] ,

φi ∈ [ 0.5, 7] ,
(9)
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for i = 1, . . . , d. Some of the parameters can often be
assumed to be the same across different genes, which
reduces the data requirement of the estimation problem.
In the simplest case, there are single parameters µ, δ,
and σ or φ for all genes, so that Q = 3. In any case,
Θcont is a closed and bounded rectangular region in RQ+.

Next we describe the two main steps comprising
the PALLAS algorithm: computation of the penalized
log-likelihood function and the novel mixed discrete-
continuous fish-school search method.

2.2.1 Penalized Maximum-Likelihood Compu-
tation

Suppose that the sample data consist of n independent
time series Yj

1:k = {Yj
1, . . . ,Y

j
k} up to time k, for j =

1, . . . , n. The penalized log-likelihood of model θ at time
k is defined as

Lk(θ) =
1

kn
log pθ(Y

(1)
1:k, . . . ,Y

(n)
1:k ) − η

2d∑
i,j=1

|aij |

=
1

kn

n∑
j=1

log pθ(Y
j
1:k) − η

2d∑
i,j=1

|aij | ,

(10)

where η > 0 is a regularization parameter, which has a
default value of η = 0.01 in our implementation. Hence,
the penalized log-likelihood in (10) is the sum of the
average log-likelihood per time series and a negative
value times the number of edges in the model. Maxi-
mization of (10) thus encourages the model to both fit
the data and be sparse, i.e., contain a small number of
edges between genes, which is in agreement with biolog-
ical knowledge. The value of η can be adjusted by the
user to obtain a desired level of sparsity. Notice that

log pθ(Y
j
1:k) = log

[
pθ(Y

j
k|Y

j
1:k−1)pθ(Y

j
k−1|Y

j
1:k−2)

· · · p(Yj
2 | Y

j
1)p(Yj

1)
]

=
k∑

m=1

log pθ(Y
j
m | Y

j
1:m−1) ,

(11)
where

pθ(Y
j
m | Y

j
1:m−1)

=
2d∑
i=1

pθ(Y
j
m|Xm = xi,Yj

1:m−1)Pθ(Xm = xi|Yj
1:m−1)

=
2d∑
i=1

pθ(Y
j
m | Xm = xi) Pθ(Xm = xi |Yj

1:m−1) .

(12)
With (βθ,jm )i = pθ(Y

j
m | Xm = xi) Pθ(Xm =

xi |Yj
1:m−1), the penalized log-likelihood in (10) be writ-

ten as

Lk(θ) =
1

kn

n∑
j=1

k∑
m=1

||βθ,jm ||1 − η

2d∑
i,j=1

|aij | . (13)

The sequence of values ||βθ,jm ||1, for j = 1, . . . , n and
m = 1, . . . , k, can be computed by a BKF tuned to pa-
rameter θ applied to the time series Yj

1:k (see the Sup-
plementary Material for a description of the BKF). As

mentioned in the previous section, here we use the aux-
iliary particle filtering implementation of the BKF, for
computational efficiency. The maximum-likelihood esti-
mator of parameter θ at time k is then given by

θ̂ML
k = arg max

θ∈Θ
Lk(θ) . (14)

A state estimate X̂ML
k = X̂k(θ̂ML

k ) can be obtained, if
desired, where X̂k(θ) denotes the optimal state estima-
tor produced by a BKF tuned to the parameter θ.

2.2.2 Mixed Fish School Search Algorithm

In this section, we describe in detail a novel particle-
swarm algorithm for optimization over a combined
discrete-continuous parameter space, called the mixed
fish school search (MFSS) algorithm, which is an exten-
sion of the fish school search (FSS) algorithm for con-
tinuous parameter spaces proposed in [6].

In the MFSS algorithm, the objective is to find a
model that maximizes a given score or fitness — in
our present case, this is the penalized log-likelihood de-
fined in the previous section. Each candidate model, i.e.,
each candidate parameter vector θ = (θdisc, θcont), corre-
sponds to a particle or “fish.” The length of θ is denoted
by P . From the previous section, P = d2 + d+Q. The
fish school is an ensemble of S such particles in the pa-
rameter space Θ = Θdisc×Θcont. The position of fish s at
iteration r will be denoted by θs(r) = (θsdisc(r), θscont(r)),
for s = 1, . . . , S, and r = 0, . . . , R. The number of fishes
S and the total number of iterations R are user-defined
parameters (in practice, S = 3 × P and R = 5000 are
found to be good values). In addition, each fish s has a
weight ws(r) at iteration r, which reflects the quality of
the solution.
Initialization
The initial position θs(0) = (θsdisc(0), θscont(0)) of each
fish is assigned randomly. The continuous vector θscont(0)
is drawn from a uniform distribution over Θcont, but for
the discrete part, it is advantageous to use a non-uniform
distribution to initialize the edge parameters, in such a
way that asij(0) is equal to −1 or 1 with probability 1/4,
and 0 with probability 1/2, for i, j = 1, . . . , d, which
introduces a bias towards 0 over 1 and −1. This is in
agreement with the biological observation that GRNs
tend to be sparsely connected. The initial value bsi (0)
of the regulation bias parameter is chosen to be either
−1/2 or 1/2 with equal probabilities, for i = 1, . . . , d.
Individual movement operator
This is an exploratory step, where each fish indepen-
dently moves a short distance in a random direction,
as long as this increases the fitness function. Let
∆θsind(r) = (∆θsdisc,ind(r),∆θscont,ind(r)) be the (candi-
date) individual displacement vector for fish s at it-
eration r. Vector ∆θsdisc,ind(r) is drawn from a uni-
form distribution over the rectangular region [−1, 1]d

2+d,
while ∆θscont,ind(r) is drawn from a uniform distribu-
tion over the rectangular region [−τ1(r), τ1(r)] × · · · ×
[−τQ(r), τQ(r)]. The step size bounds τq(r), for q =
1, . . . , Q, shrink linearly with r, in order to ensure con-
vergence and emphasize exploitation over exploration at
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later iterations. In our implementation, the initial and
final values τq(1) and τq(R) are set, respectively, to 10%
and 0.01% of the range (i.e., the difference between up-
per and lower bounds) of the corresponding continuous
parameter — these values can be modified by the user,
if desired. Now, ∆θsdisc,ind(r) needs to be quantized into
the lattice {−1, 0, 1}d2+d in order to be added to the
discrete component of the current fish position. The
quantization scheme we adopt here is a generalization
of the method for binary parameters in [40]. We define
two adaptive thresholds:

thrspos(r) = max+(∆θsdisc,ind(r))× r
R ,

thrsneg(r) = min−(∆θsdisc,ind(r))× r
R ,

(15)

where the operator max+(v) is equal to the maximum of
the components of vector v if at least one of them is pos-
itive, and equal to zero, otherwise; similarly, min−(v) is
equal to the minimum of the components of v if at least
one of them is negative, and equal to zero, otherwise.
The factor r/R increases the thresholds (in magnitude)
with r, to favor exploitation over exploration at later
iterations and ensure convergence.

The quantized discrete displacement vector is ob-
tained by assigning 1 to a positive component if it is
larger than thrspos(r), assigning −1 to a negative com-
ponent if it is smaller than thrsneg(r), and assigning 0 to
all other components (no movement). Then the posi-
tion of fish s is updated if the exploratory move causes
an increase in fitness:

θsind(r) =


θs(r−1) + ∆θsind(r),

if Lk(θs(r−1)+∆θsind(r)) > Lk(θs(r−1)),

θs(r−1), otherwise.
(16)

where Lk is the penalized log-likelihood of the model,
defined in the previous section. An absorbing boundary
condition is adopted, whereby each fish interrupts its
movement at the boundary of the parameter space, at
the point where it encounters it.
Feeding operator
The weights of all fish are updated based on the fitness
improvement from the previous individual movement, if
any:

ws(r) = ws(r−1) +
Lk(θsind(r))− Lk(θs(r−1))

maxs{Lk(θsind(r))− Lk(θs(r−1))}
.

(17)
Collective instinctive movement operator
This operator makes the fish that had successful indi-
vidual movements influence the collective direction of
movement of the school. The position of each fish s is
updated according to:

θsinst(r) =

θsind(r) +

∑S
s′=1 ∆θs

′

ind(r)(Lk(θs
′

ind(r))−Lk(θs
′
(r−1)))∑S

s′=1(Lk(θs
′

ind(r))−Lk(θs′(r−1)))
.

(18)
The displacement in discrete parameter space is quan-
tized following the same procedure adopted to discretize
the individual movement displacement vector.

Collective volitive movement operator
This is similar to the individual movement step, but now
the fish move in concert, depending on whether the fish
school is successful after the previous steps, i.e., its total
weight increases, or not. If the fish school is successful,
then it should contract, changing from exploration to
exploitation mode. Otherwise, it should expand in order
to explore the space more. This is accomplished by first
defining the current fish school barycenter:

b(r) =

∑S
s=1 w

s(r)θsinst(r)∑S
s=1 w

s(r)
. (19)

For each fish s, after the collective instinctive move-
ment at iteration r, let ξs(r) = θsinst(r) − b(r) =
(ξs1(r), . . . , ξsR(r)) be the position vector with re-
spect to the school barycenter. Let ∆θsvol(r) =
(∆θsdisc,vol(r),∆θ

s
cont,vol(r)) be the collective volitive dis-

placement vector for fish s at iteration r. Vector
∆θsdisc,vol(r) is drawn from a uniform distribution over
the rectangular region [0, ξs1]× · · · × [0, ξsd2+d] and quan-
tized by the same process used in the individual move,
while ∆θscont,vol(r) is drawn from uniform distribu-
tion over the rectangular region [0, 2τ1(r)ξsd2+d+1(r) ×
· · · × [0, 2τQ(r)ξsd2+d+Q(r)], where τ1(r), . . . , τQ(r) are
the same step sizes used in the individual movement
step. If the school is successful, i.e., if

∑S
s=1 w

s(r) >∑S
s=1 w

s(r−1), then its radius should contract, and

θsvol(r) = θsinst(r)−∆θsvol(r) , (20)

otherwise, the radius expands, so the school can escape
a bad region, and

θsvol(r) = θsinst(r) + ∆θsvol(r) , (21)

The result is the new position of the fish θs(r).

3 Results

In this section, we present the result of a comprehen-
sive set of numerical experiments, using both synthetic
and real gene expression time series data, to assess the
performance of PALLAS and compare it against that
of other popular methods in the literature. No prior
knowledge is used; i.e., all model parameters must be
estimated. Unless otherwise noted, the default values
for all PALLAS fixed parameters and estimation inter-
vals are used, as described in the previous sections.

3.1 Performance Criteria

The problem of comparing networks is a nontrivial one;
there is not a single metric that captures both the topo-
logical and dynamical properties of the networks [14].
Here we consider two classes of metrics, one based on the
difference between the network functions, which takes
into account the full regulatory relationships among
genes, and the other based on edge-calling error rates,
which considers only the network topology.
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3.1.1 Network Function Distance

Let f = (f1, . . . , fd) and f̂ = (f̂1, . . . , f̂d) be the net-
work functions of the groundtruth and inferred net-
works, where the component functions fi and f̂i are
Boolean functions on d variables, for i = 1, . . . , d; see
(1). The performance criterion is the average number of
disagreeing Boolean functions between the two networks

ϕ(f , f̂) =
1

d× 2d

d∑
i=1

2d∑
j=1

[fi(x
j) ⊕ f̂i(x

j)] . (22)

This distance is related to the dynamical behavior of
the networks, since it has to do with how the Boolean
functions differ.

3.1.2 Edge-Calling Error Rates

An edge in the groundtruth network represents a rela-
tionship between two genes. Here we consider direction-
ality (an edge from gene i to gene j is distinct from
an edge from gene j to gene i), but disregard activa-
tion/inhibition relationships (this is done because some
of the methods to which PALLAS is compared in this
section do not capture activation/inhibition). Let TP
and FN be the total number of directional edges that are
correctly detected (irrespective of inhibition/activation)
and incorrectly missed by the inference algorithm, re-
spectively. Similarly, let FP and TN be the total num-
ber of directional edges that are incorrectly found and
correctly missed, respectively. We define the following
edge-calling error rates:

(i) Sensitivity/True Positive Rate (TPR):

TPR =
TP

TP + FN
. (23)

(ii) Specificity/True Negative Rate (SPC):

SPC =
TN

FP + TN
. (24)

(iii) Precision/Positive Predictive Value (PPV):

PPV =
TP

TP + FP
. (25)

3.2 Experiments with Synthetic Data
3.2.1 Mammalian Cell-Cycle Network with

Synthetic RNA-Seq Data

Here, we present results based on the well-known Mam-
malian Cell-Cycle network [17], which is displayed in
Figure 2. (Results for a different GRN are presented
in the Supplementary Material). The state vector is
X = (CycD, Rb, p27, E2F, CycE, CycA, Cdc20, Cdh1,
UbcH10, CycB). This is a large network, with a huge
parameter space, for which the estimation problem is
hard. The gene interaction parameters aij can be read
from Figure 2 in the same way as in the last section.
Once again, the regulation biases are set to bi = −1/2,
for i = 1, . . . , 10. The transition noise parameter p is se-
lected randomly in the interval [0.01, 0.1]. The RNA-Seq

Figure 2: Mammalian cell cycle network.

data model parameters are µi ≡ µ = 0.1, δi ≡ δ = 3,
φi ≡ φ = 5, for i = 1, . . . , 10. The sequencing depth
is set to s = 22.52 (500K-550K reads) and the time se-
ries length is fixed at 50. Here we compare PALLAS
with the GENIE3 [27], TIGRESS [21], and Banjo [44]
algorithms. Like PALLAS, these algorithms can oper-
ate directly on the noisy time series, without a need for
ad-hoc binarization. However, they do not estimate ob-
servational parameters or provide activation/inhibition
information, so only the edge-calling error rates in Sec-
tion 3.1.2 are appropriate here. Average rates obtained
over 20 repetitions of the experiment are displayed in
Figure 3. One can see that with similar specificity, PAL-
LAS displays higher sensitivity and precision than GE-
NIE3 and TIGRESS. Although it was not possible to
adjust the specificity of Banjo to the same levels, we
can see that its sensitivity is quite low. In fact, Banjo
returned a very small number of edges overall in this ex-
periment. PALLAS also displayed the highest precision
among all the algorithms.

Figure 3: Mammalian cell cycle experiment results.

3.2.2 Artificial Networks with Synthetic RNA-
Seq Data

In this section we report results obtained on an ensem-
ble of 10 randomly generated networks with d = 8 genes,
where each gene is regulated by 3 other genes on aver-
age. Edge connectivity, including activation and inhibi-
tion, as well as regulation biases, are randomly chosen.
The transition noise parameter p is selected randomly
in the interval [0.01, 0.1]. RNA-Seq synthetic data are
generated with parameters µi ≡ µ = 0, φi ≡ φ = 1 or 5,
for i = 1, . . . , 8. In the first case, there is more observa-
tion noise, and the problem is harder. The parameters
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δi are allowed to vary uniformly over the intervals [1, 2]
or [1, 5], for i = 1, . . . , 8. In the first case, the problem is
harder, since the differences in observed expression are
smaller. Sequencing depth is set at s = 22.52 (500K-
550K reads).

Here, we compare PALLAS with the Best-Fit [32],
REVEAL [34], and GABNI [5] algorithms. These meth-
ods apply to Boolean time series, so they need to employ
ad-hoc binarization of the gene expression data. For
the first two, [8] recommends the use of the KM3 bina-
rization method, while for GABNI, [4] recommends the
use of K-means binarization; hence, we use those bina-
rization methods here. The output of the Best-Fit and
REVEAL algorithms are Boolean transition functions,
for which the network function distance is appropriate.
On the other hand, the output of GABNI consist of posi-
tive (activating) or negative (inhibitory) interactions, for
which we use the edge-calling error rates defined previ-
ously.

Average network function distances and edge-calling
error rates obtained over 20 repetitions of the experi-
ment (2 for each of the 10 networks) with φ = 5 are
displayed in Figures 4 and 5 (corresponding results for
φ = 1 are shown in the Supplementary Material). Fig-
ure 4 shows that the performance of Best-Fit and PAL-
LAS increases with the time series length, while the per-
formance of REVEAL is mostly stable. PALLAS per-
form better than the Best-Fit algorithm, especially when
δ is smaller. This reflects the fact that ad-hoc binariza-
tion of the data becomes less accurate with a smaller
difference between activation/inactivation levels in the
observed data, which is determined by δ. Figure 5 shows
that PALLAS beats GABNI in sensitivity throughout,
as well as in specificity under low observation noise and
sufficient data. Indeed, the specificity of GABNI is arti-
ficially large for small amounts of data, when it detects
very few edges.

3.3 Experiments with Real Data

3.3.1 E. Coli SOS DNA Repair System

In this section, we demonstrate the application of PAL-
LAS to real microarray data from a well-known bio-
logical system, namely, the SOS DNA repair system
in E. Coli. In the normal state, the protein LexA is
known to be a repressor to the SOS genes. When DNA
is damaged, the protein RecA becomes activated and
mediates LexA autocleavage, which causes activation of
the SOS genes. After the activated SOS genes repair
the damaged DNA, RecA stops mediating LexA auto-
cleavage and LexA represses the SOS genes again. The
full SOS DNA repair gene network is displayed in Fig-
ure 6 [45, 28]. We attempt to infer this network from
gene expression time series datasets generated by [39]
(http://www.weizmann.ac.il/mcb/UriAlon/download/
downloadable-data). Each time series contains 50 mea-
surements for every 6 minutes including the initial zero
concentrations; we pick the third dataset in the database
for this experiment, and compare the results against
those found in [31, 30, 28].

The sparsity parameter λ in (10) is chosen to produce

about half of the possible edges in the six-gene network.
Figure 6 displays in red the edges of the original network
that were successfully recovered by a consensus of the
top three networks found by PALLAS, according to the
penalized likelihood score (the full network is displayed
in the Supplementary Material). We can see that all
inhibitory edges from lexA were successfully detected.
Although PALLAS infers the wrong direction between
recA and lexA, the connection is detected. With a simi-
lar total number of inferred edges, [30] finds the opposite
regulations, i.e., all the inhibitory edges are inferred as
activating edges. While [31] finds most of the inhibitory
edges, it misses the important edge from lexA to uvrA.
Finally, [28] recovers only two of the edges.

3.3.2 E. Coli Biofilm Formation Pathway

In this section, we demonstrate the performance of
PALLAS on RNA-Seq time series expression data
from a pathway involved in biofilm formation by
E. Coli, namely, the Rpos(sigmaS)/MlrA/CsgD cas-
cade, which involves eight genes: Rpos, MlrA, CsgD,
YciR, YoaD, BcsA, YaiC, YdaM. Information on
this pathway can be found in the KEGG database
(https://www.genome.jp/kegg/) as well as in [22, 35,
36]. Figure 7 displays a consensus gene network
derived from these sources. The gene expression
data used is from the E. Coli Strain B/REL606
and is available at the Dryad Digital Repository
(https://datadryad.org/resource/doi:10.5061/dryad.hj6
mr) [23]. This dataset consists of 3 bacterial samples
and 9 time points evenly spaced for each sample. The
genes in this pathway display similar values at low ex-
pression levels, but vary considerably at high expression
levels. Accordingly, we assume a single baseline param-
eter µi ≡ µ for all genes, but the parameters δi and φi
are allowed to differ from gene to gene, for i = 1, . . . , 8.
The sequencing depth is set at s = 1.02 (1k-50k reads)
reflecting the low read counts in the data set.

As in the previous experiment, the sparsity parameter
λ in (10) is chosen to produce about half of the possible
edges in the eight-gene network. Figure 7 displays in red
the edges of the original network that were successfully
recovered by a consensus of the top three networks found
by PALLAS, according to penalized likelihood score (the
full network is displayed in the Supplementary Mate-
rial). PALLAS successfully infers five out of the six im-
portant activating interactions from RpoS. Most of the
other connections in the original network were correctly
detected.

4 Conclusion

We presented in this paper PALLAS, a new framework
for inference of Boolean gene regulatory networks from
gene expression time series data. The algorithm avoids
ad-hoc binarization of the gene expression data and al-
lows inference of large networks by employing penalized
maximum likelihood as a regularization method, apply-
ing particle filtering for the computation of the likeli-
hood, and using a novel version of the fish school search
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Figure 4: Comparison of network function distance among the PALLAS, Best-Fit, and REVEAL algorithms, under
different δ ranges.

Figure 5: Comparison of edge-calling error rates between the PALLAS and GABNI algorithms, under different δ
ranges.

Figure 6: SOS DNA repair system in E.coli (the red
edges are the ones successfully recovered by PALLAS).

Figure 7: Biofilm architecture of Escherichia coli (the
red edges are the ones successfully recovered by PAL-
LAS).

particle swarm algorithm to search the parameter space.
Numerical experiments using synthetic time series data
show that PALLAS outperforms other well-known GRN
inference methods. The performance of PALLAS was
also demonstrated on real gene expression time series
data from the SOS DNA repair and Biofilm formation
pathways in E. Coli.
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