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Abstract 

Higher mortality of COVID19 patients with comorbidity is the formidable challenge faced by the 

health care system. In response to the present crisis, understanding the molecular basis of 

comorbidity is essential to accelerate the development of potential drugs. To address this, we have 

measured the genetic association between COVID19 and various lung disorders and observed a 

remarkable resemblance. 141 lung disorders directly or indirectly linked to COVID19 result in a 

high-density disease-disease association network that shows a small-world property.  The clustering 

of many lung diseases with COVID19 demonstrates a greater complexity and severity of SARS-

CoV-2 infection. Furthermore, our results show that the functional protein-protein interaction 

modules involved RNA and protein metabolism, substantially hijacked by SARS-CoV-2, are 

connected to several lung disorders. Therefore we recommend targeting the components of these 

modules to inhibit the viral growth and improve the clinical conditions in comorbidity.   
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Introduction  

The novel Coronavirus Disease 2019 (COVID-19) cases crossed the 4200000 all over the 

world as of May 12, 2020. The recent data show that the most affected groups are with two or 

more pre-existing medical conditions such as hypertension, diabetes, metabolic, 

cardiovascular, and digestive disorder[1-3]. Moreover, comorbidity (or existence of multiple 

disorders) causes a higher risk of developing a severe illness, poor prognosis, and higher 

mortality of COVID-19 patients [4]. A virus causes the disease by hijacking the host cell 

machinery for its replication. Interactions of the virus with host perturb the highly organized 

host cellular networks and re-construct different networks that are favorable to virus 

replication. 

Similarly, coordinated interactions between molecules in a healthy cell are altered in disease 

state due to changes in the genetic and epigenetic factors. Hence SARS-CoV-2 interaction 

pattern with healthy human cells will be different from the disease cell, and this could lead to 

various impacts on SARS-CoV-2 infection. Human diseases are connected via defects in 

common genes [5,6]. Moreover, the similarity in disease phenotype often indicates 

underlying genetic connections.  Therefore pre-existing medical conditions can facilitate the 

appearance of another disease if they share the same or functionally related genes [7]. SARS-

CoV-2 has been associated with respiratory tract infection (RTI), and in some cases, it 

severely damages adult lungs. Here, we predict the risk of COVID19 infection in patients 

with various lung diseases. In the present work, we have considered a disease in the lung or 

diseases in other tissues or organs affecting lungs as ‘lung disease’.  Recent efforts by Gordon 

et al. [8] identified 26 of the 29 SARS-CoV-2 proteins, which bind to 332 human proteins 

and hijack the host translational machinery. Here, we have constructed a tissue (lungs)-

specific neighborhood network of the 332 human targets of SARS-CoV-2.  Based on the 

shared genes, we have integrated this neighborhood network with lung diseases and 

constructed a disease-gene network of the lung. Subsequently, we have built a human lung 

disease network (HLDN), which also includes COVID19.  We observed that 141 lung 

diseases are associated with COVID19. 49 out of 141 disorders are directly linked to 

COVID19, apparently justifying the characteristics of a complex disorder. Importantly, 

HLDN represents a small-world like property, indicating a high-density diseases cluster, 

indicating severe health risk of patients with comorbidity on SARS-CoV-2 infection. 
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Next, we identified functional protein modules that are maximally perturbed by SARS-CoV-2 

and involved in RNA processing, export, and protein synthesis machinery of the cell. 

Moreover, these protein modules are associated with various lung disorders, indicating the 

hotspot for comorbidity.  Therefore we suggest targeting these functional protein modules to 

inhibit the viral growth and improve the clinical conditions in comorbidity. The rate of mutation of 

SARS-CoV-2 is very high, which enables the virus to develop drug resistance [9]. Therefore 

identification and targeting host factors will be an enduring approach instead of targeting 

viral proteins.  

 

Results  

Construction of SARS-CoV-2 –host interactome in lung  

To depict the SARS-CoV-2 –host interaction network, the protein-protein interactions (PPI) 

network of lungs was obtained from the TissueNet v.2 database [10]. We collected the list of 

332 human targets of SARS-CoV-2 from Gordon et al. [8] article and constructed the 

subnetwork of these 332 proteins from the PPI network of lungs. Out of the 332 viral targets, 

323 proteins were present in the subnetwork. The resulting subnetwork, named as SARS-

CoV-2 target network (STN), consists of 5050 nodes and 11256 pairwise interactions (Fig.1 

a, supplementary table1). The degree distribution of STN demonstrated that it has the scale-

free property (Fig. 1b). The network was validated by comparing the average path length of 

STN with 1000 Erdős–Rényi random graphs of the same density. We observed that the 

average path length distribution of the 1000 random networks was significantly high (p-

value<0.0001) than STN (Fig.1c). Next, we computed the dyadicity (D) (a measure of the 

connectedness of the nodes with the same label, see method) among the SARS-CoV-2 targets 

in the STN to know if they share more or fewer edges than expected in a random 

configuration of the network. We found D=7.664, indicating high connectedness among 

SARS-CoV-2 targets, or they are aggregated in the same network vicinity. D>1 signifies that 

SARS-CoV-2 targets are forming a community like structure to hijack the host cellular 

machinery. Proteins in a community, if implicated in diseases, then they can exhibit a higher 

chance of comorbidity than those who are not in the community. This is because proteins in a 

community frequently interact, coexpress, and are functionally interconnected [11]. Therefore 
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to understand the risk of COVID19 with comorbidity, we have constructed and analyzed the 

disease-gene and disease –disease association map of the STN.  

Disease-gene and disease –disease associations map in lungs 

To construct a disease association map of STN, we obtained the disease-gene association data 

from the ORGANizer database [12]. 184 lung diseases, 1957 genes, and 6039 disease-gene 

pairs were considered for further analysis (see Methods) (supplementary table 2). To 

construct the disease-gene association map, we screened the diseases which are associated 

with proteins (nodes) in STN.  A disease and node are then connected if the node is 

associated with the disorder in the lungs. We observed, 618 gene/proteins, consisting of 36 

SARS-CoV-2 targets, are linked to a total of 146 disorders, which includes COVID19 

(supplementary table 3). Figure. 2a shows the resulting disease-gene association map, named 

as the lung disease-gene network (LDGN), consisting of 1814 disease-gene pairs. The largest 

connected component within the LDGN consists of 141 lung diseases and 610 genes, 

indicating many of the disorders share the common genotype. For example, SARS-CoV-2 

targets, FBN1 (degree, k=15), FBLN5 (k =11), COMT (k =9) and neighbourhood nodes, 

OFD1 (k =19), DNAAF2 (k =16), DNAAF5 (k =16) are linked to multiple disorders (Fig. 2c). 

Similarly, a disorder in the LDGN is also connected to multiple genes. For instance,  

ventricular septal defect (k =142), respiratory insufficiency (k =133), congestive heart failure 

(k =95), apnea (k =63) and hypothyroidism (k =60) (Fig. 2b and Fig S1). The disease-gene 

association pattern in LDGN indicates the molecular connection of COVID19 with a wide 

range of lung disorders.  To comprehend the association between COVID19 and lung 

diseases, a disease-disease association network (DDAN) was constructed, where two diseases 

were linked if they share one associated gene (Fig 2d).  DDAN consists of a total of 141 

diseases (nodes) and 1326 links, indicating a higher clustering between diseases. We 

observed 49 diseases (red nodes) in DDAN, which are directly connected to COVID19 

(yellow node) (Fig. 3d). Jaccard similarity coefficient was computed based on the number of 

common genes to identify the extent of molecular overlapping between lung diseases and 

COVID19. There are several diseases, like respiratory insufficiency, congestive heart failure, 

respiratory failure, ventricular septal defect, mitral regurgitation, and hyperthyroidism, which 

are closely associated with COVID19 (Fig. S2a and b). Thus patients having these disorders 

probably are more vulnerable for COVID19 symptoms or vice versa because of overlapping 

molecular connections. We observed that the degree distribution of DDAN does not follow 
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the scale-free property (Fig.2e).  To find the exact topological nature, we measured network 

transitivity (�����=0.4264) and average path length (�����=2.0585) of DDAN.  These 

topological parameters were compared with the equivalent 1000 Erdős−Rényi random 

graphs. Our results show an average path length of DDAN is significantly less (p-

value<0.0001), whereas transitivity, is significantly high (p-value<0.0001) compared to 

random graphs (������	 � 2.44680  and ������	 � 0.0668) (Fig.2g). Further, we 

calculated small-worldness scalar (S) for DDAN as follows  


 �

����


�����	

� 6.383 

� �
�����

������	
� 0.841 

 �



�
� 7.589 

A network is said to be a small-world network if S>1[13]. Hence the topology of DDAN 

represents a small-world property, indicating any two diseases in DDAN have a high 

tendency to be interconnected and resulting in the overlapping pathogenesis between the 

diseases in DDAN. The molecular similarities between these lung disorders create a high-

density comorbidity cluster and contribute to higher mortality in COVID19 patients. 

Therefore, it is necessary and a challenge to develop effective drugs to control the patient-

specific risks of comorbidity in SARS-CoV-2 infection. However, it is difficult to select and 

prioritize the targets for treatment due to the several overlapping molecular connections. 

Therefore, we propose to target host functional protein modules associated with different 

disorders and hijacked by SARS-CoV-2.     

Functional protein modules preferentially hijacked by SARS-CoV-2 are linked to a 

broad range of lung disorders.  

Modularity in the network refers to the pattern of connectedness in which nodes are grouped 

into highly connected subsets [14]. One of the key features in the protein interaction network 

is that the tightly connected proteins within a community are mostly involved in similar 

biological functions [15]. Similarly, genes involved in related diseases are shown to be highly 

connected; moreover, diseases linked to common genes resulting in the formation of disease 

modules and comorbidity [16].  We have compared various community detection algorithms, 

i.e., fast-greedy, walktrap, louvain, leading eigenvector, and spinglass, to identify protein 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 13, 2020. ; https://doi.org/10.1101/2020.05.13.092577doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.13.092577
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

6 

 

modules in STN [17,18]. Spinglass showed good partitioning, i.e., higher modularity score 

compared to other algorithms (see methods and supplementary table 4). Our findings are in 

agreement with previous studies by Rahiminejad et al. [19], where authors observed good 

partitioning of the functional protein module using spinglass in eukaryotes. Out of 21 

modules, the top four protein modules were selected based on the presence of a large number 

of SARS-CoV-2 targets (>20) and gene ontology semantic similarity score (>0.2) of 

biological processes (supplementary table 5). A large number of the viral targets were 

considered because those modules are largely hijacked and strongly perturbed upon infection 

compared to other functional modules in the network. The modules were named as modules 

1, 2, 3, and 4, and each module contains 63, 50, 28, 23 SARS-CoV-2 target proteins, 

respectively (Fig3). The biological process and pathway enrichment analysis show that 

module1, one the largest module, is mostly enriched with RNA metabolism, including 

transcription, mRNA processing, transport, mRNA deadenylation, and surveillance. 

Presumably, biological processes linked to module1 are hijacked by SARS-CoV-2 in the 

early stage of infection for the production of its RNA. Notably, the components of module1 

are linked to 64 disorders, among which the highly connected are respiratory insufficiency, 

ventricular septal defect, respiratory distress, pneumonia, and neoplasm of the lung (Fig3a, 

3rd column, supplementary table 6). It is worth noting that most of the diseases associated 

with module1are directly connected to COVID19 (Fig.2d and Fig.S2). On the other hand, 

hijacking module2 can predominantly affect the protein degradation (ERAD pathway, HRD1 

complex, regulation of protein catabolic process), transport, folding and stability (retrograde 

protein transport, regulation of protein stability, VCP-VIMP-DERL1-DERL2-HRD1-SEL1L 

complex, regulation of intracellular transport, regulation of vesicle-mediated transport, 

protein folding in the endoplasmic reticulum). Module3 and module4 involve several 

processes, majorly cellular transport, localization, organization, and cell cycle. Modules 2, 3, 

and 4 are linked to a total of 79, 60, and 32 different disorders, respectively (supplementary 

table 6). Many clinical conditions such as ventricular septal defect, respiratory-related 

problems, neoplasm of the lung, apneas are associated with all modules, indicating a higher 

risk of the severe illness of patients on the onset of COVID19 infection. Besides, we found a 

wide spectrum of disorders of various classes such as neoplasm, neurological, and digestive 

system are associated with these modules (Fig S3). Gysi et al.[20] predicted the manifestation 

of SARS-CoV-2 in different human tissues could cause various disorders. Therefore not only 

lung-related disorders but comorbidity in various organs can also be a potential threat for 

COVID19 patients. To strengthen this observation, the pattern of coexpression of genes in 
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functional modules was analyzed. Genes in the same functional module often show a high 

coexpression profile; therefore, we have calculated Pearson correlation coefficients of pairs 

of genes using gene expression data of healthy lung tissue from TCGA. The median value of 

the positive correlation between the genes in all modules is significantly higher (p-value< 

0.0001) compared with the random gene set (Fig3, fourth column). Therefore theses modules 

can be identified as coexpress modules that share core transcriptional programs in the lung, 

indicating that their perturbation can result in a similar disease phenotype.  

Targeting the functional modules as a treatment strategy  

We propose to target functional protein modules, hijacked by SARS-CoV-2, by drug 

repositioning. There are two main reasons to target these modules. Firstly, the binding of a 

drug to its target in a module will prevent the replication of the virus. Secondly, as a module 

is linked to several lung diseases, targeting a module can improve the severity of 

comorbidity. We identified 56 approved targets in the functional modules (red color nodes in 

Fig.4) from DrugBank [21]. Considering the complexity of COVID19, we also suggest using 

combination therapy to target multiple highly connected nodes simultaneously in the same or 

different functional modules (indicated by the arrow in Fig.4).  For example, NTRK1 (k=43), 

and IMPDH2 (k=37) in module1,  as well as PLAT (k=17), and COMT (k=10) in module2. 

Targeting these nodes can efficiently hinder the viral possession of these modules by rewiring 

the cellular network and can effectively reduce the growth of the virus. The target proteins 

suggested here, do not directly interact with SARS-CoV-2; rather, they are neighborhood 

nodes, as they are present in the same functional module, indicating their aggregation in the 

same network vicinity. Therefore binding of drugs to theses target can efficiently perturb the 

network modules as well as viral growth [22]. Importantly, the proposed targets should be 

tested and validated through clinical trials.  

Discussion 

Currently, there is an urgent need for a speedy drug discovery or vaccine development to stop 

the infection and rapid transmission of SARS-CoV-2. Most alarming is that the aged 

COVID19 patients with comorbidity are in severe health risks worldwide. The present study 

has shown the risk of SARS-CoV-2 infection on the onset of various lungs related disorders 

and molecular basis of comorbidity by applying the principle of network biology. COVID19 

appears to be a complex disease like cancer because of wide-ranging SARS-CoV-2 targets in 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 13, 2020. ; https://doi.org/10.1101/2020.05.13.092577doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.13.092577
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

8 

 

the host cell, establishing the molecular connection with various lung-related disorders.   The 

disease-gene and disease-disease association map, including COVID19, have shown 

overlapping molecular connections and high clustering of diseases in the same network 

vicinity, indicating a close pathobiological similarity. Indeed, the formation of a small-world 

network among lung diseases and COVID19 demonstrates a high-density comorbidity 

cluster. The observations strengthen our understanding of the molecular basis of the severe 

illness of COVID19 patients with comorbidity. It is now a great challenge to find the specific 

targets and potential drugs for patients with pre-clinical conditions because of large-scale 

molecular similarities of COVID19 with the other lung disorders.  Therefore we suggest 

targeting the host functional protein modules, which are the origin of many lung disorders 

and primarily hijacked by the SARS-CoV-2. Perturbing these modules by repurposing FDA-

approved drugs may rescue the host cellular machinery utilized by the virus for its 

replication. Realizing the complexity of SARS-CoV-2 infection, we further suggest testing 

multiple drugs or drug targeting various proteins, to improve clinical outcomes. Besides, 

patient-specific high-throughput transcriptomics data, in vitro, or in vivo assays are essential 

to establish the proper treatment strategy.  

Methods 

Construction of lung-specific PPI network of SARS-CoV-2 targets 

Human lung tissue-specific interactome data was retrieved from the TissueNet v.2 database. 

To generate the tissue-specific PPIs, TissueNet v.2 synergizes between large-scale data of 

human PPIs and tissue-specific expression profiles.  PPIs from four major PPI databases, 

BioGrid, IntAct, MINT and DIP, were obtained and consolidated. Then it integrated resulting 

PPIs with RNA-sequencing profiles of Genotype-Tissue Expression consortium (GTEx). We 

downloaded 168296 lung-specific interactions from TissueNet v.2 to construct SARS-CoV-2 

targets interactome. Next, we obtained the list of 332 human proteins targeted by SARS-

CoV-2 [8] and built a subnetwork, called the SARS-CoV-2 target network (STN).  The 9 

SARS-CoV-2 targets (AATF, CEP43, CISD3, MTARC1, NUP62, SRP19, THTPA, 

TIMM10B, TRIM59) do not have any interaction in the lung.   

Construction of lung-specific disease-gene and disease-disease network  

The disease-gene association data in the lungs or effecting lungs were retrieved from the 

Gene ORGANizer (geneorganizer.huji.ac.il) [12]. Gene ORGANizer is a phenotype-based 
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curated database that links human genes to the body parts they affect. Phenotypes that are 

classified by Human Phenotype Ontology (HPO) were considered with certain modifications.  

Disease-gene pairs that are not included but matching with the HPO phenotype were 

manually included. Aspirin-induced asthma and asthma were considered as asthma.  

Pulmonary emphysema, sarcoidosis and silicosis, and their associated genes were also added 

to the list. Finally, 6040 disease-gene pairs, which include a total of 184 various lung 

diseases, was mapped to STN.  618 out of 5050 nodes of STN were linked to 145 lung 

diseases, and 36 out of 618 genes were the direct target of SARS-CoV-2. These 36 genes 

were connected to COVID19 as new diseases-genes pair. Finally, a lung disease-gene 

association network, consisting of 1815 disease-gene pairs, including COVID19, was 

constructed.  Disease-disease association network was derived from the lung disease-gene 

association network; two diseases were connected if they share one common gene. disgenet2r 

package [23] was used to study the association of disease classes with the functional protein 

module.  

Community detection  

We applied fast-greedy, walktrap, louvain, leading eigenvector and spinglass on STN as an 

undirected, unweighted network. Theses community detection algorithms segregate the nodes 

into higher-density modules. Each of these algorithms optimizes an objective function i.e, 

modularity. Communities separated by spinglass were selected for subsequent analysis based 

on the modularity score and community size. Spinglass uses a random number generator to 

find communities. Therefore we ran Spinglass 10 times with different seed values. We 

compared the rand statistics between each run, and it showed the community structures are 

highly similar (>0.7) to each other [19,24].  

Process and pathway enrichment analysis and gene ontology (GO) Semantic similarity  

Pathway and process enrichment analysis were performed using the Metascape [25]. GO 

Biological Processes, KEGG Pathway, and Reactome were used as ontology sources.  GO 

semantic similarity between genes was measured by Wang et al.[26] method using 

GOSemSim package in R.  

Correlation analysis  

TCGA gene expression datasets of human lung healthy tissues were downloaded from the 

UCSC Xena project (https://xenabrowser.net/datapages/) [27]. log2(RPKM +1) (RPKM: 
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Reads Per Kilobase Million)  transformed data of adjacent healthy tissue of 59  lung 

adenocarcinoma patients were retrieved, and  Pearson correlation coefficient was computed 

to measure the coexpression levels using Hmisc Package in R.  

Computation of topological parameters  

Average path length, transitivity, dyadicity, and Jaccard similarity coefficient were measured 

using igraph package in R. Average path length refers to the average length of pairwise 

shortest paths from a set of nodes to another set of nodes and transitivity (T) indicates the 

relative number of triangles in the graph, compared to a total number of connected triples of 

nodes. Dyadicity (D) measures the number of same label edges divided by the expected 

number of same label edges, and D> 1 indicates higher connectedness between the nodes 

with the same label. Jaccard similarity coefficient of two nodes is the number of common 

neighbors divided by the number of nodes that are neighbors of at least one of the two nodes 

being considered. Random network models were generated using the 1000 Erdös–Rényi 

random graph model of the same density. The random networks were compared with the 

original network by measuring the Z-score and p-value.   

Tools for data analysis and plotting 

R packages tidyverse and stringr were used for data analysis, and plotting of graphs was done 

by ggplot2. Networks were visualized using Gephi. All statistical tests were performed using 

R.   
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Figure Legends  

Fig.1 a) Neighbourhood interaction network of SARS-CoV-2 targets (STN) in the lung. The 

size of the node is proportional to its degree. b) Scatter plot shows the degree distribution of 

STN. P(k) represents the probability of a node with degree k. c) The average path length 

between the nodes in STN and distribution of average path length of 1000 random networks 

(green), respectively. 

Fig.2 Disease-gene and disease-disease association network. a) Lung disease –gene network 

(LDGN), including COVID19 (yellow node). The network shows the SARS-CoV-2 targets 

(red) and neighborhood genes (green). b) & c)  Dot plot shows the highly connected diseases 

(k>20) and genes in LDGN. d) Disease-disease association network(DDAN), red nodes 

represent the diseases that are directly direct linked to COVID19. e) Scatter plot shows the 

degree distribution of DDAN does not possess the scale-free property. f) The average path 

length between the diseases in DDNA and distribution of average path length of 1000 random 

networks (green). g) Transitivity of  DDNA and distribution of transitivity of 1000 random 

networks (pink).   

Fig.3 Community detection in STN and functional protein module. a,b,c &d show the 

modules 1 to 4, pathway and process enrichment analysis of each module, their disease 

associations, and coexpression of genes in each module in healthy lung tissue.  

Fig.4 Targeting functional protein modules hijacked by SARS-CoV-2: The red nodes in each 

module indicate the FDA-approved targets, and an arrow indicates the highly connected 

node.  
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Supplementary Figures  

Fig.S1: Number of genes linked to a lung disorder in LDGN 

Fig.S2: Lung diseases directly connected to COVID19 

Fig.S3: Various disease classes associated with functional protein modules  
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