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ABSTRACT

Multiple vaccine candidates against SARS-CoV-2 based on viral spike protein are under
development. However, there is limited information on the quality of antibody response generated
following vaccination by these vaccine modalities. To better understand antibody response
induced by spike protein-based vaccines, we immunized rabbits with various SARS-CoV-2 spike
protein antigens: S-ectodomain (S1+S2) (aa 16-1213), which lacks the cytoplasmic and
transmembrane domains (CT-TM), the S1 domain (aa 16-685), the receptor-binding domain
(RBD) (aa 319-541), and the S2 domain (aa 686-1213 as control). Antibody response was analyzed
by ELISA, Surface Plasmon Resonance (SPR) against different Spike proteins in native
conformation, and a pseudovirion neutralization assay to measure the quality and function of the
antibodies elicited by the different Spike antigens. All three antigens (S1+S2 ectodomain, S1
domain, and RBD) generated strong neutralizing antibodies against SARS-CoV-2. Vaccination
induced antibody repertoire was analyzed by SARS-CoV-2 spike Genome Fragment Phage
Display Libraries (SARS-CoV-2 GFPDL), which identified immunodominant epitopes in the S1,
SI1-RBD and S2 domains. Furthermore, these analyses demonstrated that surprisingly the RBD
immunogen elicited a higher antibody titer with 5-fold higher affinity antibodies to native spike
antigens compared with other spike antigens. These findings may help guide rational vaccine
design and facilitate development and evaluation of effective therapeutics and vaccines against

COVID-19 disease.
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INTRODUCTION

The ongoing pandemic of SARS-CoV-2 has resulted in more than 2 million human cases
and 125,000 deaths as of 15" April 2020. Therefore, development of effective vaccines for
prevention and medical countermeasures for treatment of SARS-CoV-2 infection is a high global
priority. The spike glycoprotein has been identified as the key target for protective antibodies
against both SARS-CoV-1 and SARS-CoV-2(1-4). Consequently, multiple versions of the SARS-
CoV-2 spike proteins are currently under evaluation as vaccine candidates utilizing different
modalities and delivery systems(5). However, only limited knowledge exists on antibody
repertoire or quality of the immune response generated following vaccination by different spike
vaccine antigens. Therefore, it is important to perform comprehensive evaluation of post-
vaccination antibody response to elucidate the quality of the immune responses elicited by spike-
based vaccine candidates to determine immune markers that may predict clinical benefit which

can facilitate evaluation of vaccine candidates.

To better understand vaccination-induced antibody response, we immunized rabbits with
several SARS-CoV-2 spike proteins: the S-ectodomain (S1+S2) (aa 16-1213) lacking the
cytoplasmic and transmembrane domains (delta CT-TM), the S1 domain (aa 16-685), the receptor-
binding domain (RBD) (aa 319-541), and the S2 domain (aa 686-1213), as a control. Post-
vaccination sera were analyzed by Genome Fragment Phage Display Libraries covering the entire
spike gene (SARS-CoV-2 GFPDL) to determine the polyclonal antibody epitope repertoire
generated following vaccination as previously applied for other diseases(6-10). In addition, we
employed several antibody binding assays (ELISA, Surface Plasmon Resonance (SPR) based real-
time kinetics assay) (10-12) and an in vitro SARS-CoV-2 pseudovirion neutralization assay to

measure the quality and function of the antibodies elicited by the different SARS-CoV-2 spike
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antigens. This study could inform development and evaluation of SARS-CoV-2 vaccines and

therapeutics based on the spike glycoprotein.

RESULTS:
Rabbit immunization with SARS-CoV-2 Spike antigens

Most spike-based vaccines currently under development are designed to contain the
receptor-binding domain (RBD; aa 319-541) in some form. Therefore, we evaluated four different
commercially available SARS-CoV-2 spike protein and subdomains: the Spike S1+S2 ectodomain
(aa 16-1213), the S1 domain (aa 16-685), RBD domain (aa 319-541), and the S2 domain (aa 686-
1213) as a control, which is devoid of RBD (Fig. 1A, Suppl. Fig. 1). Theese spike proteins were
either produced in HEK 293 mammalian cells (S1 and RBD) or insect cells (S1+S2 ectodomain
and S2 domain). The purified S1+S2 ectodomain, the S1 domain, and the RBD proteins retained
the functional activity as demonstrated in SPR assay using human ACE2 protein, the SARS-CoV-
2 receptor (Fig. 1B). The S1+S2 ectodomain, S1 domain and RBD (black, blue and red binding
curves, respectively) demonstrated high-affinity interaction with human ACE2. The control S2
domain protein (green curve), lacking the RBD, did not bind to human ACE2, demonstrating

specificity of this receptor-binding assay (Fig.1B).

Female New Zealand white rabbits were immunized twice intra-muscularly at a 14-day
interval with 50 pg of the purified proteins mixed with Emulsigen Adjuvant. Sera were collected
before (pre-vaccination) and after the first and second vaccination and analyzed for binding

antibodies in ELISA and SPR, in a pseudovirion neutralization assay, and by GFPDL analysis.
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86  Antibody Response following immunization with different Spike antigens

87 Serial dilutions of post-second vaccination rabbit sera were evaluated for binding of serum
88  IgG to various spike proteins and domains in ELISA (S1+S2; black, S1; blue, RBD; red, and S2;
89  green) (Fig. 1C). Representative titration curves to spike ectodomain (S1+S2) and to the RBD in
90 IgG-ELISA are shown in Suppl. Fig. 2. End-point titers of the serum IgG were determined as the
91 reciprocal of the highest dilution providing an optical density (OD) twice that of the negative
92  control (Fig. 1C). All four immunogens elicited strong IgG binding to the spike ectodomain
93  (S1+82). Binding to the individual domains (S1, S2, and RBD) was specific, in that sera generated

94 by S2 vaccination bound to S2, but not to S1 or RBD, and vice-versa (Fig. 1C).

95 SPR allows following antibody binding to captured antigens in real-time kinetics, including
96 total antibody binding in resonance units (Max RU) and affinity kinetics (Suppl. Fig. 3). In ELISA,
97 the antigens directly coated in the wells can be partially denatured increasing the likelihood of
98  presenting epitopes that are not seen on the native form of the protein by the polyclonal serum IgG.
99  On the other hand, in our SPR, the purified recombinant spike proteins were captured to a Ni-NTA
100  sensor chip to maintain the native conformation (as determined by ACE2 binding) to allow
101  comparisons of binding to and dissociation from the four proteins. Importantly, the protein density
102 captured on the chip surface is low (200 RU) and was optimized to measure primarily monovalent
103  interactions, so as to measure the average affinity of antibody binding in the polyclonal serum (8,
104  13). Additionally, while ELISA measured only IgG binding, in SPR, all antibody isotypes
105  contributed to antibody binding to the captured spike antigen. In the current study, all rabbit sera
106  contained anti spike antibodies that were at least 86% IgG (data not shown). Serial dilutions of
107  post-vaccination serum were analyzed for binding kinetics with different spike proteins (Suppl.

108  Fig. 3). The spike ectodomain (S1+S2) generated antibodies that predominantly bound to S1+S2


https://doi.org/10.1101/2020.05.12.091918

bioRxiv preprint doi: https://doi.org/10.1101/2020.05.12.091918; this version posted May 13, 2020. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder. This article is a US Government work. It is not subject to copyright under 17 USC 105
and is also made available for use under a CCO license.

109  (black bar), followed by the S1 protein (blue bar), and 3-fold lower antibody binding to the RBD
110  and the S2 domain (red and green bars, respectively) (Fig. 1D). The S1 domain antigen induced
111  antibodies that bound with similar titers (Max RU values) to the S1+S2, S1 and RBD proteins
112 (black, blue and red bars, respectively), and did not show reactivity to the S2 domain (green bar).
113 However, the antibody reactivity of rabbit anti-S1 serum to S1+S2 domain was 3-fold lower than
114  the antibodies in the rabbit anti-S1+S2 serum. RBD immunization generated similar high-titer
115  antibody binding to S1+S2, S1 and RBD (black, blue and red bars, respectively), (Fig. 1D). In
116  contrast, the S2 domain induced antibodies that primarily bound to homologous S2 antigen (green
117  bars) and only weakly binding to the S1+S2 ectodomain (black bars), and no binding to either S1

118  or RBD (Fig. 1D).

119 Antibody off-rate constants, which describe the fraction of antigen—antibody complexes
120  that decay per second, were determined directly from the serum sample interaction with SARS-
121 CoV-2 spike ectodomain (S1+S2), S1, S2, and RBD using SPR in the dissociation phase only for
122 sensorgrams with Max RU in the range of 20—100 RU (Suppl. Fig. 3) and calculated using the
123 BioRad ProteOn manager software for the heterogeneous sample model as described before(11).
124  These off rates provide additional important information on the affinity of the antibodies following
125  vaccination with the different spike proteins that are likely to have an impact on the antibody
126  function in vivo, as was observed previously in studies with influenza virus, RSV and Ebola virus
127  (13-15). Surprisingly, we observed significant differences in the affinities of antibodies elicited by
128  the four spike antigens (Fig. 1E). Specifically, the RBD induced 5-fold higher affinity antibodies
129  (slower dissociation rates) against S1+S2 (black), S1 (blue) and RBD (red) proteins, compared

130  with the post-vaccination antibodies generated by other three immunogens (Fig. 1E).
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131 SARS-CoV-2 neutralization was measured using SARS-CoV-2-FBLuc in a single-cycle
132 PsVN assay in Vero E6 cells. The average percent inhibition by post-first and post-second rabbit
133 vaccination are shown in Fig. 1F. Pre-vaccination rabbit sera (Control Rb) did not neutralize
134  SARS-CoV-2 in PsVN assay. Sera generated by S1+S2-ectodomain, S1 and RBD (1:40 dilution)
135  (but not anti-S2) showed 50-60% virus neutralization after a single vaccination, and 93-98% virus

136  inhibition by the post-second vaccination sera (Fig. 1F).
137
138  Epitope repertoires recognized by antibodies generated against SARS-CoV-2 spike antigens

139 The constructed SARS-CoV-2 GFPDL contains sequences ranging from 50-1500 bp long
140  from the spike gene (GenBank #MN908947) with >10"- unique phage clones. The SARS-CoV-2-
141  GFPDL displayed linear and conformational epitopes with random distribution of size and
142 sequence of inserts that spanned the entire spike gene. SARS-CoV-2 GFPDL panning with
143  individual post-second vaccination rabbit sera were conducted as described in Methods. The
144  numbers of IgG-bound SARS-CoV-2 GFPDL phage clones with different serum sample ranged
145  between 2.6 x 10* to 9.8 x 103/mL (Fig. 2A). Graphical distribution of representative clones with
146  a frequency of >2, obtained after affinity selection, and their alignment to the spike protein of
147  SARS-CoV-2 are shown for the four vaccine groups (Fig. 2 B-E). The spike (S1+S2) ectodomain
148  induced diverse antibody response that included strong binding to epitopes in the C-terminal region
149  of the soluble protein spanning the HR2 region (i.e., multiple phage clones with similar inserts).
150  This region may not be highly exposed on the virions or infected cells but is clearly immunogenic
151  in the soluble recombinant spike ectodomain. In addition, the rabbit anti-S1+S2 antibodies bound
152 diverse epitopes spanning the RBD and to a lesser degree to the N-terminal domain (NTD) and the

153  C-terminal region of S1, and the N-terminus of S2, including the fusion peptide (Fig. 2B and Suppl.
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154  Table 1). The S1 domain elicited very strong response against the C-terminal region of S1 protein
155  and a diverse antibody repertoire recognizing the NTD and RBD/RBM regions (Fig. 2C and Suppl.
156  Table 1). The recombinant RBD induced high-titer antibodies that were highly focused to the
157 RBD/RBM (Fig. 2E, and Suppl. Table 1). In contrast, the recombinant S2 immunogen after two
158  immunizations in rabbits elicited antibodies primarily targeting the C-terminus of the S2 protein

159 (CD-HR2).

160 All the immunodominant antigenic sites identified by the SARS-CoV-2 GFPDL panning
161  ofall 4 immune sera on the spike sequence are shown in Suppl. Fig. 4. Alignment of the sequence
162  with other coronaviruses shows that some of the antigenic sites are >70% conserved among several
163  coronavirus strains isolated from humans and bats, especially those located in the S2 domain
164  (Suppl. Table 1). Structural depiction of these antigenic sites on the SARS-CoV-2 spike (Suppl.
165  Fig. 5; in blue on PDB#6VSB), demonstrated that most of these antigenic sites identified in the

166  current study are surface exposed on the native prefusion spike(2).
167
168  DISCUSSION

169 In this study, we performed an in-depth evaluation of antibody response generated by
170  various SARS-CoV-2 spike antigens that are similar to the vaccine antigens being used in clinical
171 development(5, 16, 17). Bioinformatics approach previously identified 279 potential B-cell
172 epitopes and 48 potential T cell epitopes in the Spike glycoproteins of SARS-CoV viruses, based
173 on human antibody responses to the SARS-CoV-1 infection and the corresponding epitopes in
174  SARS-CoV-2 spike (Grifoni et al. Table 4) (18). We compared the predominant antigenic sites
175 identified by antibodies in our study generated by different spike antigens with the B cell epitopes

176  predicted by Grifoni et al.(18). Four of the predicted B epitopes overlapped with the sequences we

8
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177  identified in our GFPDL analysis: aa 287-317 in NTD-RBD overlaps with our antigenic site aa
178  298-363 which is 77% homologous between SARS-CoV-1 and SARS-CoV-2; aa 524-598 and aa
179  601-640, in the C-terminus of S1 overlap with our antigenic site containing aa 548-632 (78.8 %
180  conservation between SARS-CoV-1 and SARS-CoV-2); aa 802-819 in the S2 domain/FP overlaps
181  with our antigenic site aa 768-828 (83% conserved between SARS-CoV-1 and SARS-CoV-2) (Fig.
182  S4 and Suppl. Table 1). The other epitopes identified in our study cover less conserved sequences
183  between the two SARS-CoV viruses that are unique to the SARS-CoV-2 spike and were not

184  identified in the in-silico approach by Grifoni et al.

185 Surprisingly, the S2 domain doesn’t appear to elicit as many neutralizing antibodies as
186 RBD or S1. Although S2 contains the fusion peptide, it does not appear to be as immunogenic,
187 compared with S1 or RBD, in generating binding antibodies to the intact spike (S1+S2)
188  ectodomain, as observed in both IgG ELISA and SPR. Even though we characterized the purified
189  proteins in various assays, there is a possibility that the structure of the antigens used in the study
190 s different from the corresponding authentic spike protein on the surface of SARS-CoV-2 virion

191  particle.

192 One unexpected finding in this study was the higher affinity of antibodies elicited by the
193  RBD compared with the other spike antigens (S1+S2 ectodomain, S1 and S2 domains). In earlier
194  studies, with vaccines against H7N9 avian influenza we found important correlation between
195 antibody affinity against the hemagglutinin HA1 globular domain and control of virus loads after
196  challenge of ferrets with H7N9 (19). In study of patients recovering from Zika virus (ZIKV)
197  infections, their antibody affinity against ZIKV E-DIII correlated with lower clinical scores(20).
198  Inalarge randomised clinical trial of IVIG hyper-enriched for influenza virus antibodies (hIVIG),

199 in adults hospitalised with confirmed influenza A or B infections, a statistically significant


https://doi.org/10.1101/2020.05.12.091918

bioRxiv preprint doi: https://doi.org/10.1101/2020.05.12.091918; this version posted May 13, 2020. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder. This article is a US Government work. It is not subject to copyright under 17 USC 105
and is also made available for use under a CCO license.

200 virological benefit and clinical benefit for patients infected with B strains, directly correlated with
201  stronger antibody affinities of the hIVIG for circulating B strains (14). In a recent longitudinal
202  study of Ebola virus disease survivor, affinity maturation to Ebola virus GP was associated with a
203  rapid decline in viral replication and illness severity in this patient (13). Thus, vaccines that can
204  elicit high affinity antibodies may have a significant advantage for in-vivo clinical outcome of
205 SARS-CoV-2 infection and contribute to amelioration of disease in infected individuals.
206  Therefore, in addition to measurements of antibody-binding titers and virus neutralization, this and
207  the previous studies demonstrate the importance of assessments of antibody affinity maturation

208  during SARS-CoV-2 vaccine trials.

209 In summary, our study highlights the need to perform comprehensive analysis of immune
210 response generated following vaccination or SARS-CoV-2 infection to identify biomarkers of
211 protective immunity. In-depth understanding of quantitative and qualitative aspects of immune
212 responses generated by different spike protein vaccine antigens could aid the development and

213 evaluation of effective SARS-CoV-2 therapeutics and vaccines.
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241 FIGURE LEGENDS

242 Figure 1: SARS-CoV-2 spike binding and SARS-CoV-2 neutralization by serum antibodies
243  generated following rabbit immunization with spike antigens. A) Schematic representation of
244  the SARS-CoV-2 spike protein and subdomains. Spike S1+S2 ectodomain (aa 16-1213) lacks the
245  cytoplasmic and transmembrane domains (CT-TM), S1 domain (aa 16-685), RBD domain (aa 319-
246 541), and S2 domain (aa 686-1213), all containing 6x His tag at C-terminus, were produced in
247  either HEK 293 mammalian cells (S1 and RBD) or insect cells (S1+S2 ectodomain and S2
248  domain). (B) Binding of purified proteins to human ACE2 proteins in SPR. Sensorgrams represent
249  binding of purified spike proteins on His-captured chips to 5 pg/mL human ACE2 protein. (C)
250  Anti-spike reactivity of post-immunization rabbit sera. Serial dilutions of post-second vaccination
251  rabbit sera were evaluated for binding to various spike proteins and domains (S1+S2; black, S1;
252 Dblue, RBD; red, and S2; green) in ELISA. Representative titration curves are shown in Fig. S2.
253  End-point titers of the serum samples were determined as the reciprocal of the highest dilution
254  providing an optical density (OD) twice that of the negative control (no serum was used as negative
255  control). (D) SPR binding of antibodies from rabbits immunized twice with SARS-CoV-2 antigens
256  to spike protein and domains from SARS-CoV-2 (S1+S2; black, S1; blue, RBD; red, and S2;
257  green). Total antibody binding is represented in resonance units in this figure for 10-fold serum
258  dilution. All ELISA and SPR experiments were performed twice and the researchers performing
259  the assay were blinded to sample identity. The variations for duplicate runs of ELISA and SPR
260  were <8% and <5%, respectively. The data shown are average values of two experimental runs.
261  (E) Antibody off-rate constants, which describe the fraction of antigen—antibody complexes that
262  decay per second, were determined directly from the serum/ sample interaction with SARS-CoV-

263 2 spike ectodomain (S1+S2), S1, S2, and RBD using SPR in the dissociation phase only for the

12
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264  sensorgrams with Max RU in the range of 20-100 RU. (F) Virus neutralization titers were
265 measured against SARS-CoV-2-FBLuc in a single-round pseudovirus neutralization assay in
266 triplicates (see Methods). The average percentage inhibition after the first and second vaccination
267  (1:40 serum dilution) for each group are shown. Pre-vaccination rabbit sera also did not neutralize

268  in PsVN assay (Control Rb).

269

270  Figure 2: Antibody repertoires generated by different SARS-CoV-2 spike antigens. (A)
271 Number of IgG-bound SARS-CoV-2 GFPDL phage clones using the post-second vaccination
272 rabbit polyclonal sera from the vaccine groups in Fig 1. (B-E) Graphical distribution of
273 representative clones with a frequency of >2, obtained after affinity selection, and their alignment
274  to the Spike protein of SARS-CoV-2 are shown for the four vaccine groups: S1+S2 ectodomain
275  (B), S1 (C), S2 domain (D) and S1-Receptor binding domain (RBD) (E). The thickness of each
276  Dbar represents the frequency of repetitively isolated phage, with the scale shown enclosed in a red
277  box in the respective alignments in each panel. The GFPDL affinity selection data was performed
278  twice. Similar numbers of phage clones and epitope repertoire were observed in both phage display

279  analyses.

280

281 SUPPLEMENTAL INFORMATION

282
283  Figure S1: Purified SARS-CoV-2 proteins analyzed by SDS-PAGE under reducing and non-
284  reducing conditions.

285

13
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286  Figure S2: Anti-spike reactivity of post-vaccination rabbit sera in ELISA.
287
288  Figure S3: Steady-state equilibrium analysis of different dilutions of serum antibodies binding to

289  Spike protein by SPR.

290

291  Figure S4. Sequence alignment of spike protein from diverse CoV strains.

292

293  Figure SS. Structural representation of antigenic sites identified in SARS-CoV-2 using GFPDL
294  analyses.

295

296  Supplementary Table 1. Sequence similarity (%) of SARS-CoV-2 spike antigenic sites with other

297  CoV strains.

298
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METHODS:

Recombinant CoV Proteins

Recombinant SARS-CoV-2 proteins were purchased from Sino Biologicals (S1+S2
ectodomain; 40589-VO8BI1, S1; 40591-VO8H, RBD; 40592-VO8H or S2; 40590-V08B).
Recombinant purified proteins used in the study were either produced in HEK 293 mammalian

cells (S1 and RBD) or insect cells (S1+S2 ectodomain and S2 domain).

Rabbit immunization Studies

Female New Zealand white rabbits (Charles River labs) were immunized twice intra-
muscularly at 14-days interval with 50 ug of purified proteins mixed with Emulsigen Adjuvant.
Sera were collected before (pre-vaccination) and after 1%t and 2™ vaccination and analyzed for

binding antibodies in ELISA, SPR, neutralization assay and GFPDL analysis.

ELISA

96 well Immulon plates were coated with 100 ng/100 pL of recombinant spike protein and
protein domains in PBS overnight at 4°C. Starting at a 1:100 dilution, serum samples were serially
diluted 1:5 and applied to the protein-coated plate in 10 pL for 1 hr at ambient temperature. Serum
samples were assayed in duplicate. Naive serum samples were assayed along with the experimental
samples. After three washes with PBS/0.05% Tween 20, bound antibodies were detected with a

donkey anti-rabbit IgG Fc-specific HRP-conjugated antibody (Jackson Immuno Research) After
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320  1hr, plates were washed as before and OPD was added for 10min. Absorbance was measured at
321 492 nm. End titer was determined as 2-fold above the average of the absorbance values of the

322 naive serum samples. The end titer is reported as the last serum dilution that was above this cutoft.

323

324  Antibody binding Kkinetics of post-vaccination sera to recombinant SARS-CoV-2 proteins by

325  Surface Plasmon Resonance (SPR)

326 Steady-state equilibrium binding of post-vaccination rabbit polyclonal serum was
327 monitored at 25°C using a ProteOn surface plasmon resonance (BioRad). The purified
328 recombinant Spike proteins were captured to a Ni-NTA sensor chip with 200 resonance units (RU)
329 in the test flow channels. The native functional activity of the Spike proteins was determined by
330  binding to the 5 pg/mL human ACE2 protein.

331 For serum analysis, the protein density on the chip was optimized such as to measure
332  monovalent interactions independent of the antibody isotype. Serially diluted (10-, 20-, 40-, 80-,
333  and 160-fold of freshly prepared sera were injected at a flow rate of 50 pl/min (120 sec contact
334  duration) for association, and disassociation was performed over a 600-second interval. Responses
335 from the protein surface were corrected for the response from a mock surface and for responses
336  from a buffer-only injection. SPR was performed with serially diluted serum of each animal in this
337 study. Antibody isotype analysis for the SARS-CoV-2 spike protein bound antibodies in the
338  polyclonal serum was performed using SPR. Total antibody binding was calculated with BioRad
339  ProteOn manager software (version 3.1). All SPR experiments were performed twice and the
340 researchers performing the assay were blinded to sample identity. In these optimized SPR

341  conditions, the variation for each sample in duplicate SPR runs was <5%. The maximum resonance
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342 units (Max RU) data shown in the figures was the RU signal for the 10-fold diluted serum sample.
343  Antibody off-rate constants, which describe the fraction of antigen—antibody complexes that decay
344  per second, are determined directly from the serum/ sample interaction with SARS CoV-2 spike
345  ectodomain (S1+S2), S1, S2, and RBD using SPR in the dissociation phase only for the
346  sensorgrams with Max RU in the range of 20—-100 RU and calculated using the BioRad ProteOn
347  manager software for the heterogeneous sample model as described before(11). Off-rate constants
348  were determined from two independent SPR runs.

349

350 SARS-CoV-2 pseudovirus production and neutralization assay

351 Human codon-optimized cDNA encoding SARS-CoV-2 S glycoprotein (NC_045512) was
352  synthesized by GenScript and cloned into eukaryotic cell expression vector pcDNA 3.1 between
353  the BamHI and Xhol sites. Pseudovirions were produced by co-transfection Lenti-X 293T cells
354  with pMLV-gag-pol, pFBluc, and pcDNA 3.1 SARS-CoV-2 S using Lipofectamine 3000. The
355  supernatants were harvested at 48h and 72h post transfection and filtered through 0.45-mm

356 membranes.

357 For neutralization assay, 50 uL of SARS-CoV-2 S pseudovirions were pre-incubated with
358 an equal volume of medium containing serum at varying dilutions at room temperature for 1 h,
359 then virus-antibody mixtures were added to Vero E6 cells in a 96-well plate. After a 3 h incubation,
360 the inoculum was replaced with fresh medium. Cells were lysed 48 h later, and luciferase activity

361  was measured using luciferin-containing substrate.

362

363  Gene Fragment Phage Display Library (GFPDL) construction

17
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364 SARS-CoV-2 spike gene was chemically synthesized and used for cloning and
365  construction of phage display libraries. A gllII display-based phage vector, fSK-9-3, was used
366  where the desired polypeptide can be displayed on the surface of the phage as a gllI-fusion protein.
367  Purified DNA containing spike gene was digested with DNase | to obtain gene fragments of 100-
368 1000 bp size range and used for GFPDL construction as described previously (6-8). The phage
369 libraries constructed from the SARS-CoV-2 spike gene display viral protein segments ranging in

370  size from 30 to 350 amino acids, as fusion protein on the surface of bacteriophage.

371

372 Affinity selection of SARS-CoV-2 GFPDL phages with polyclonal rabbit serum

373 Prior to panning of GFPDL with polyclonal serum antibodies, serum components that
374  could non-specifically interact with phage proteins were removed by incubation with UV-killed
375  MI13K07 phage-coated petri dishes (8). Equal volumes of each post-vaccination rabbit serum were
376  used for GFPDL panning. GFPDL affinity selection was carried out in-solution with protein A/G
377  (IgG) specific affinity resin as previously described (6, 7, 9) Briefly, the individual rabbit serum
378  was incubated with the GFPDL and the protein A/G resin, the unbound phages were removed by
379  PBST (PBS containing 0.1 % Tween-20) wash followed by washes with PBS. Bound phages were
380 eluted by addition of 0.1 N Gly-HCI pH 2.2 and neutralized by adding 8 pL of 2 M Tris solution
381  per 100 pL eluate. After panning, antibody-bound phage clones were amplified, the inserts were
382  sequenced, and the sequences were aligned to the SARS-CoV-2 spike gene, to define the fine
383  epitope specificity in the post-vaccination rabbit sera. The GFPDL affinity selection data was
384  performed blindly in a blinded fashion. Similar numbers of bound phage clones and epitope

385  repertoire were observed in the two GFPDL panning.
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386

387  Data Availability

388 The datasets generated during and/or analyzed during the current study are available from the

389  corresponding author on reasonable request.

390
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Supplementary Figure 1. Purified SARS-CoV-2 proteins analyzed by SDS-PAGE and
under reducing and non-reducing conditions. Related to figure 1. 2 pg of purified
proteins was run in SDS-PAGE under non-reducing (A) and reducing (B) conditions. The
gels were stained with Coomassie blue.
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Supplementary Figure 2: Anti-Spike reactivity of post-vaccination rabbit sera in
ELISA. Related to figure 1. Post-vaccination rabbit sera following two immunizations with
different SARS-CoV-2 spike vaccine antigens (S1+S2; black, S1; blue, RBD; red, S2; green
and pre-vaccination control; pink) in ELISA. Average antibody binding to recombinant Spike
(S1+S2) ectodomain (A) and S1-RBD (B) is shown in ELISA using HRP-conjugated goat
anti-rabbit IgG specific antibody.
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Supplementary Figure 3

Steady-state equilibrium analysis of serum antibodies binding by SPR. Related to
figure 1. Serial dilutions of post-2"? vaccination rabbit antiserum against SARS-CoV-2 Spike
(S1+S2 ectodomain) were injected simultaneously onto SARS-CoV-1 S1+S2 captured on a
Ni-NTA sensor chip and on a surface free of protein (used as a blank). Binding responses
from the protein surface were corrected for the response from the mock surface and for
responses from a separate, buffer only injection. Unvaccinated Rabbit control sample at 10-
fold dilution did not show any binding in SPR.
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Supplementary Figure 4. Sequence alignment of Spike protein from diverse CoV
strains. Related to figures 1 & 2. An alignment of the spike proteins of SARS-CoV-2
(Genbank#MN908947), SARS-CoV-1 BJO1 strain (Genbank#AAP30030.1), MERS CoV
KOR/KNIH/2015(Genbank#AKN11075.1), Bat SARS-like CoV ZC45
(Genbank#AVP78031.1), Bat SARS-like CoV ZXC21 (Genban#AVP78042.1), Bat CoV
BM48-31/BGR/2008 (Genbank#ADK66841.1), Human CoV 2c EMC/2012 (Genbank#
AFS88936.1), Human CoV NL63 (NCBI#YP_003767.1), and Human CoV HKU1
(NCBI#YP_173238.1) was performed using Clustal W multiple alignment application.
Various domains of the spike protein are the S1 subunit (AA 1-685), RBD (AA 319-541), FP
(816-834) and S2 (686-1273) subunits. The SARS-CoV-2 antigenic regions/sites discovered
in this study using the post-vaccination antibodies with different SARS-CoV-2 vaccine
antigens are depicted above the SARS-CoV-2 spike protein sequence in alternating black
and grey lines with the corresponding AA residues for visualization.
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SARS CoV-2 K-FDEDDSEFP VLRGVEKLHYT

SARS CoV-1 BJO1 K-FDEDDSEP VLEGVELHYT
MERS CoV KOR/2015 DRYEEYDLEF HEVHV

Bat SL CoV ZC45 K-FDEDDSEP VLEGVELHYT
Bat SL CoV ZXC21 R-FDEDDSEF VLERGVELEYT
Bat CoV BM48-31/2008 R-FDEDHSEFP VLTGVELEYT

Human CoV 2c EMC/2015 DRYEEYDLEP HEVHV
Human CoV NL63 DCGSTELP EFEKVHV!
Human CoV HEUL DEYGGHHDEV IKTSHDD


https://doi.org/10.1101/2020.05.12.091918

bioRxiv preprint doi: https://doi.org/10.1101/2020.05.12.091918; this version posted May 13, 2020. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder. This article is a US Government work. It is not subject to copyright under 17 USC 105
and is also made available for use under a CCO license.

SARS CoV-2 SARS CoV-2 SARS CoV-2 SARS CoV-2 SARS CoV-2 SARS CoV-2
Spike 160-228 Spike 204-239 Spike 234-307 Spike 298-363 Spike 339-392 Spike 359-452

SARS CoV-2 SARS CoV-2 SARS CoV-2 SARS CoV-2 SARS CoV-2
Spike 391-438 Spike 401-454 Spike 441-479 Spike 478-516 Spike 548-590

SARS CoV-2 SARS CoV-2 SARS CoV-2 SARS CoV-2 SARS CoV-2
Spike 548-632 Spike 571-628 Spike 574-636 Spike 768-828 Spike 790-834

SARS CoV-2 SARS CoV-2
Spike 1131-1192 Spike 1140-1180

Supplementary Figure 5. Structural representation of antigenic sites identified in
SARS-CoV-2 using GFDPL. Related to figure 2. Antigenic sites identified using GFPDL
have been depicted in blue on surface structures of a monomer of PDB#6VSB (Wrapp et al.,
2020) with a single receptor-binding domain (RBD) in the up conformation, wherever
available using UCSF Chimera software. The RBD region is shaded in red (residues 319-
541) on every structure. Those structures (SARS CoV-2 Spike 478-516 and 790-834),
whose sites were not visible on the side depicted by flipping the structure by 180°.
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Table S1: Sequence conservation of Antigenic regions/sites among different CoV strains

Similarity of SARS CoV 2 antigenic sites to other CoV strains (%)
AA Bat SL Bat SL

SARS SARS Bat CoV Human Human Human

Cov-2 Cov-1 MERS chgg zioc\zll BM48 CoV2c NL63  HKUI1
160-228 100  53.6 9.7 62.3 60.8 39.1 9.7 126 5.7
204-239 100 555 105  63.8 63.8 444 105 21 8.1
234-307 100 52.7 324 743 71.6 486  32.4 6.4 27
208-363 100 77.2 303  80.3 80.3 787  30.3 75 30.3
339-392 100 87 24 75.9 75.9 83.6 24 3.6 27
350-452 100 80.8 202  74.4 72.3 768  20.2 5.2 20.2
391-438 100 833 208 833 83.3 81.2 208 8.3 22.9
401-454 100 74 166 = 722 68.5 703  16.6 5.5 12.9
441-479 100 461  10.2 41 35.8 307 102 10.2 2.7
478-516 100 615 142 435 435 56.4  14.2 12.5 8.7
548-500 100 744 162  74.4 74.4 79 16.2 4.6 227
548-632 100 78.8 17.6 80 80 752  17.6 4.7 22
574-636 100 809 142  87.3 87.3 761 142 3.1 222
768-828 100  83.6 415  96.7 96.7 80.3 415 24.6 24.2
790-834 100  86.6  46.9 100 100 844 469 32 31.4
1140-1180 100 100 261 975 97.5 756  26.1 14.5 33.3
1173-1207 100 100 457 971 97.1 82.8 457 20 37.1

* Percent sequence conservation of GFPDL identified antigenic sites in the SARS CoV-2 spike protein
(Genbank#MN908947), with CoV Spike proteins of SARS CoV-1 BJO1 strain (Genbank#AAP30030.1),
MERS CoV KOR/KNIH/2015(Genbank#AKN11075.1), Bat SARS-like CoV ZC45
(Genbank#AVP78031.1), Bat SARS-like CoV ZXC21 (Genban#AVP78042.1), Bat CoV BM48-
31/BGR/2008 (Genbank#ADK66841.1), Human CoV 2c EMC/2012 (Genbank# AFS88936.1), Human
CoV NL63 (NCBI#YP_003767.1), and Human CoV HKU1 (NCBI#YP_173238.1) was calculated using
Sequence Identity Matrix function in BioEdit.
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