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Abstract 

The outbreak of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in Wuhan city, 

China in December 2019 and thereafter its spillover across the world has created a global pandemic 

and public health crisis. Researchers across the world are involved in finding the origin and 

evolution of SARS-CoV-2, its transmission route, molecular mechanism of interaction between 

SARS-CoV-2 and host cells, and the cause of pathogenicity etc.  In this paper, we shed light on the 

origin, evolution and adaptation of SARS-CoV-2 into human systems. Our 

phylogenetic/evolutionary analysis supported that bat-CoV-RaTG13 is the closest relative of 

human SARS-CoV-2, outbreak of SARS-CoV-2 took place via inter-intra species mode of 

transmission, and host-specific adaptation occurred in SARS-CoV-2. Furthermore, genome 

recombination analysis found that Sarbecoviruses, the subgenus containing SARS-CoV and SARS-

CoV-2, undergo frequent recombination.  Multiple sequence alignment (MSA) of spike proteins 

revealed the insertion of four amino acid residues “PRRA” (Proline-Arginine-Arginine-Alanine) 

into the SARS-CoV-2 human strains. Structural modeling of spike protein of bat-CoV-RaTG13 

also shows a high number of mutations at one of the receptor binding domains (RBD). Overall, this 

study finds that the probable origin of SARS-CoV-2 is the results of intra-species recombination 

events between bat coronaviruses belonging to Sarbecovirus subgenus and the insertion of amino 

acid residues “PRRA” and mutations in the RBD in spike protein are probably responsible for the 

adaptation of SARS-CoV-2 into human systems. Thus, our findings add strength to the existing 

knowledge on the origin and adaptation of SARS-CoV-2, and can be useful for understanding the 

molecular mechanisms of interaction between SARS-CoV-2 and host cells which is crucial for 

vaccine design and predicting future pandemics. 

Keywords: Coronavirus; SARS-CoV-2; Molecular Phylogeny; Recombination; Spike protein; 
Structural analysis 
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1. Introduction 

Coronaviruses are single-stranded RNA viruses of 26 to 32 kilobases (kb) nucleotide chain and 

consist of both structural and non-structural proteins. They have been known to cause lower and 

upper respiratory diseases, central nervous system infection and gastroenteritis in a number of 

avian and mammalian hosts including humans (Zhu et al., 2019; Gorbalenya et al 2020). The recent 

outbreak of novel coronavirus (SARS-CoV-2) associated with acute respiratory disease called 

coronavirus disease 19 (commonly known as COVID-19) has caused a global pandemic.   As of 15th 

June 2021, more than 175 million laboratory confirmed COVID-19 cases and approximately 3.78 

million people have died and further COVID-19 appears as a global threat to public health as well 

as to the human civilization as economic and social disruption caused by the pandemic is 

devastating (WHO, COVID-19 situation reports).  

Coronaviruses are placed within the family Coronaviridae, which has two subfamilies namely 

Orthocoronavirinae and Torovirinae. Orthocoronavirinae has four genera: Alphacoronavirus 

(average genome size 28kb), Betacoronavirus (average genome size 30kb), Gammacoronavirus 

(average genome size 28kb), and Deltacoronavirus (average genome size 26kb) (King et al. 2011). 

Coronaviruses are typically harbored in mammals and birds. Particularly Alphacoronavirus and 

Betacoronavirus infect mammals, and Gammacoronavirus and Deltacoronavirus infect avian 

species (Woo et al., 2009; 2010; Fan et al., 2019). SARS-CoV-2 is a member of the genus 

Betacoronavirus and subgenus Sarbecovirus. Figure 1 shows the taxonomical origin of SARS-

CoV-2. 

The previous important outbreaks of coronaviruses are severe acute respiratory syndrome 

coronavirus (SARS-CoV or SARS-CoV-1) outbreak in China in 2002/03, Middle East respiratory 

syndrome coronavirus (MERS-CoV) outbreak in 2012 that resulted severe epidemics in the 

respective geographical regions (Eickmann et al., 2003; Vijaykrishna et al., 2007; Zumla et al, 

2015; Hayes et al., 2019).  The present outbreak of SARS-CoV-2  is the third documented spillover 
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2. Materials and Methods 
 
2.1. Data selection  

162 Orthocoronavirinae genomes were retrieved from NCBI (https://www.ncbi.nlm.nih.gov/) 

and Virus Pathogen Database and Analysis Resource (https://www.viprbrc.org/). We only 

considered complete genome sequences having no unidentified nucleotide characters. Our 

dataset included 23 Alphacoronavirus, 92 Betacoronavirus, 32 Deltacoronavirus and 15 

Gammacoronavirus genomes belonging to different subgenus, diverse host species and from 

wide geographical location. Further for rooting the tree, we used two genome sequences from 

Torovirus and two from Bafinivirus belonging to domestic cow and fish respectively. The genera 

Torovirus and Bafinivirus belong to the sub-family Torovirinave of the family Coronaviridae. 

Overall, the phylogenetic analysis consists of 166 complete viral genomes (162 

Orthocoronavirinae and  four Torovirinave genomes). Details genome sequences used in this 

study can be found in Supplementary File S1. 

2.2. Phylogenetic reconstruction 

The genome sequences were aligned using the MAFFT alignment tool (Katoh et al., 2002). 

Genome tree of the Orthocoronavirinae and Betacoronaviruses were reconstructed using 

maximum likelihood (ML) method and GTR+G+I model of nucleotide substitution as revealed by 

the model test with 1000 bootstrap support.  The model test was performed for accurate 

phylogenetic estimation by using ModelFinder, which is implemented in IQ-TREE version 1.5.4 

(Kalyaanamoorthy et al., 2017). Phylogenetic trees were reconstructed using IQ-TREE software 

(Nguyen et al., 2015). The trees were visualized with iTOL tool (Letunic et al., 2019). Five gene 

trees of the Betacoronaviruses were reconstructed using Orf1ab, Spike (S), Envelope (E) 

Membrane (M), and Nucleocapsid (N) amino acid sequences. The ML method of tree 

reconstruction and protein-specific amino acids substitution model as revealed by ModelFinder 

was used for gene tree reconstruction. Bootstrap test with 1000 bootstrap replicates was carried 
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out to check the reliability of the gene trees. 

2.3. Genome and gene recombination analysis 

Potential recombination events in the history of the Betacoronaviruses were assessed using the 

RDP5 package (Martin et al., 2015). The RDP5 analysis was conducted based on the complete 

genome sequence using RDP, GENECONV, BootScan, MaxChi, Chimera, SiScan, and 3Scan 

methods. Putative recombination events were identified with a Bonferroni corrected P-value cut-

off of 0.05 supported by more than four methods.  

2.4. Sequence and structural analysis 

The homology and genetic variations analysis of sequences in different genomic regions of SARS-

CoV-2 strain Wuhan Hu-01 (MN908947) is compared to bat-CoV-RaTG13 (MN996532) and 

pangolin-CoV-GX-P5E (MT040336) using CLUSTAL W (https://www.genome.jp/tools-

bin/clustalw) and multiple sequence alignment (MSA) analysis of spike proteins were performed 

using CLUSTAL OMEGA (https://www.ebi.ac.uk/Tools/msa/clustalo/). 

The structures of the spike protein of SARS-CoV-2 Wuhan Hu-1 (PDB: 6XLU), bat-CoV-RaTG13 

(PDB: 6ZGF) were retrieved from PDB database (Rose et al. 2016). The spike protein for pangolin 

coronavirus was not available so it was modeled using SWISS-MODEL SERVER 

(https://swissmodel.expasy.org) with 6XR8 as template. These structures were compared using the 

structure superimposition/structure alignment tool of Chimera software (Pettersen et al. 2004).  

3. Results and Discussion 

In this study we aim to understand the origin and evolutionary trajectory of SARS-CoV-2 using 

molercular phylogenetic, genetic recombination and structural analyses. Particularly, we study the 

origin of   SARS-CoV-2 from their deep ancestral roots (i.e., from deeper shared evolutionary 

history). Accordingly, the molecular phylogenetic analysis was based on two-stage genome 

phylogeny followed by gene trees analyses. Firstly, reconstruction of genome phylogeny of the 
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Orthocoronavirinae genomes and study the cladistic/evolutionary relationships of its four genera. 

Secondly, reconstruction of Betacoronavirus genome and gene phylogeny that included its five 

subgenera namely Embecovirus, Hibecovirus, Merbecovirus, Nobecovirus and Sarbecovirus, and 

study the evolutionary relations of these five subgenera. The genome phylogeny of 

Orthocoronavirinae depicts that Alpha, Beta, Delta and Gamma coronaviruses clustered according 

to their cladistic relations where Alphacoronavirus clade appeared as a basal radiation of the 

Orthocoronavirinae phylogeny (Fig. 2). This result is consistent with the other results (Luk et al. 

2019; Wu et al., 2020).  Furthermore,   analysis of the clades found that Gammacoronavirus and 

Deltacoronavirus clades are monophyletic (originated from a single common ancestor). This result 

is supported by their hosts’ nature; as both types mostly infect avian species (Wertheim et al. 

2013).  

Further, a deeper analysis of the Orthocoronavirinae genome tree revealed that irrespective of their 

geographical locations, the host-specific strains  are clustered together.This is probably due to the 

host adaptation, which is an important characteristic of viral genomes for their survival and 

replication (Songa et al., 2005; Fung et al., 2019; Andersen et al., 2020). 

 For example, Alphacoronavirus strains from ferret_Japan and ferret_Netherland are  monophyletic. 

Similarly cat_UK  is  monophyletic with cat_Netherland, and human_China is monophyletic with 

human_Netherland. Further analysis revealed all Alphacoronavirus camel strains of Saudi Arabia 

appeared in a distinct subclade where bat_Ghana strain appeared as outgroup which indicates 

interspecies transmission took place from bat_Ghana to camel. A body of literature also reported 

that SARS-CoV-2 transmission took place to humans through intermediate hosts (Montoya et al., 

2020; Roy et al., 2021; York, 2020; Zhou et al., 2020).  

Deltacoronavirus and Gammacoronavirus clades exhibit a similar evolutionary pattern. In case of 

Deltacoronaviruses, swine_Vietnam and swine_Hong Kong shared a single common ancestor. Similarly, 

swine_China and swine_South Korea are monophyletic clade and swine_Japan is monophyletic with 
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chicken_Uruguay are monophyletic. Similarly, chicken_Iraq is monophyletic with chicken_Egypt 

strain. These results reconfirm that coronaviruses are present in a large number of hosts those are 

widespread in different geographical location and coronaviruses undergo host-specific adaptation 

(Nakagawa and Miyazawa, 2020).  

Phylogenetic analysis of Betacoronavirus genomes revealed that the five subgenera clustered 

separately (Fig. 3). Furthermore, the Betacoronavirus genome tree depicts that the host-specific 

strains from distance geographical locations formed monophyletic clades. For example, in 

Embecovirus clade, strain BJ01_P9_human_China is monophyletic with  Caen1_human_France 

strain. Similarly, Embecovirus B1_24F_buffalo_Bangladesh is monophyletic with 

BCV_AKS_01_cattle_China. This result suggests host adaptation of SARS-CoV-2 had occurred 

(Fung et al., 2019; Montoya et al., 2020; Roy et al., 2021).  

SARS-CoV-2 belongs to Sarbecovirus subgenus. Sarbecoviruses formed three distinct clades (Fig. 

3), where Clade 1 consists of only bat as host species. In Clade 2, host species are bat, civet and 

human. Similarly, in Clade 3 the host species are bat, pangolin and human and it depicts bat-CoV-

RaTG13 (NCBI Acc no. MN996532) is closest to the human SARS-CoV-2  as all human SARS-

CoV-2s clustered in a clade, and formed a monophyletic clade to bat-CoV-RaTG13 strain (i.e. 

descended from a common ancestor).  Clade 3 also shown that pangolin (PCoV-GX-P5E) is the 

second closest relative of human SARS-CoV-2 behind bat-CoV-RaTG13. This result was also 

reported by other studies (Liu et al., 2020; Zhang et al., 2020). Further, deep node analysis, in 

Clade 3, suggested that SARS-CoV-2s, pangolin CoVs (strains PCoV-GX-

P4L/P3B/P1E/P5E/P2V) and bat-CoVs (strains bat-SL-CoVZXC21 and bat-SL-CoVZC45) shared 

a single common ancestor (Fig. 3).  These clades analysis suggest bat and pangolin are the natural 

reservoir of  SARS-CoV-2 and possibly transmission from bat /pangolin to humans took place 

through intermediate organisms. 
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Cossart, 2015; Sheppard  et al., 2018; Montoya et al., 2021). A comprehensive study based on 

codon adaptation index reported that  the natural selection and host adaptation have been occurred 

in SARS-CoV-2 (Roy et al., 2021). Similar finding had  also been reported by Lu et al., 2020. 

Therefore, in summary, this study shows that  coronaviruses belonging to Sarbecovirus in bat could 

be the origin of SARS-CoV-2. 

In addition to genome phylogeny, gene tree analysis was also conducted as it provides a more 

reliable basis for studying species evolution. Five gene trees namely Orf1ab, Spike, Envelope, 

Membrane, and Nucleocapsid of the Betacoronaviruses were reconstructed for gene tree analysis 

(Fig. 4 and Figs. S2-S5). Except Nucleocapsid gene tree (Fig. S5), other four gene trees have shown 

that the five subgenera clustered according to their cladistic relations where Embecovirus clade 

appeared as a basal radiation of the Betacoronavirus gene trees. Further, these gene trees were in 

concordance with the genome tree. The topological difference of Nucleocapsid gene tree with the 

Betacoronavirus genome/species tree might be possible as gene tree differs from species tree for 

various analytical and/or biological reasons (Degnan et al., 2009; Som, 2013; 2015). Further, 

analysis on the gene trees found, except Envelope gene tree, other four gene trees exhibited bat-

CoV-RaTG13 is the closest relative of SARS-CoV-2 followed by pangolin-CoV as found in the 

genome tree analysis (Figs. 4, S2, S3, S5). Different evolutionary pattern of Envelope gene tree is 

probably due to stochastic error as its length is very small (average length 75 amino acids) (Som, 

2015).  Further analysis of the gene trees found though subgenera-wise four gene trees are similar, 

but within subgenera there are widespread phylogenetic inconguences (Jeffroy et al., 2006). This 

result led us to hypothesize that recombination events had occurred among Betacoronaviruses in 

the past that are caused to evolve new strains including the emergence of pathogenic lineage like 

SARS-CoV-2. 
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90 
2.19E

-79 
1.11E

-12 
1.71E-

35 
4.43E-

46 1.11E-03

6 29816 33755 23176 25661 
Bat_SL_CoV_Rs424

7 (KY417148) 
Bat_CoV_HKU3_

1 (DQ022305) 
Bat_SL_CoV_Rf40

92 (KY417145) NS 
6.36E-

22 
5.76E

-29 
1.49E

-20 
6.95E-

27 
1.43E-

12 3.37E-60

7 36762 37168 27497 27847 

Bat_BtRs_Beta-
CoV/GX2013 
(KJ473815) 

Bat-
CoV_HKU3_1 
(DQ022305) 

Civet -CoV_SZ3 
(AY304486) 

4.16E-
51 

2.48E-
54 

1.71E
-53 

1.79E
-15 

4.65E-
08 

6.99E-
39 NS 

8 28696 33708 22540 25620 
Bat_SL_CoV_F46 

(KU973692) 

Human_SARS-
CoV_P2 

(FJ882963) 

Bat_BtRs_Beta-
CoV/HuB2013 
(KJ4738154) 

1.14E-
08 NS 

4.80E
-12 

6.52E
-19 

8.32E-
08 NS 2.63E-29

9 33666 35283 25557 26755 

Bat_BtRl_BetaCoV/
SC2018 

(MK211374) 

Bat_BtRs_Beta-
CoV/HuB2013 
(KJ4738154) 

Human_SARS-
CoV_P2 

(FJ882963) 
3.96E-

23 
1.04E-

19 
7.53E

-26 
2.62E

-11 
8.87E-

10 
1.15E-

17 1.90E-11

10 38018 38494 28847 29235 

SARS-CoV-
2_SNU01 

(MT039890) 
Bat_SL_CoV_ZX
C21 (MG772934)

Mouse-
CoV_MA15- 

d4ym2 (JF292912)
1.03E-

22 
4.47E-

20 
6.09E

-24 
1.45E

-05 
2.33E-

05 
3.06E-

06 NS 

11 31861 38021 27484 30152 

Camel-
CoV_HKU23-

CAC1019 
(MN514962) 

Camel-
CoV_HKU23-

CAC2586 
(MN514963) 

Dog-CoV_BJ232-
(KX432213 ) 

2.36E-
17 

5.20E-
14 

1.00E
-13 

4.95E
-17 

8.93E-
17 

7.99E-
19 6.07E-15

12 7778 8147 5139 5469 

Bat_BtRs_Beta-
CoV/HuB2013 
(KJ4738154) 

Bat_SL_CoV_Rf4
092  (KY417145) 

Bat-CoV-HKU3-1 
(DQ022305) 

9.57E-
15 

1.18E-
08 

2.36E
-10 

6.81E
-03 

1.09E-
03 

4.31E-
03 3.92E-09

13 8662 10188 6304 7516 
Mouse-MHV-1 

(FJ647223) 

Mouse-MHV-
A59-B12 

(FJ884687) 
Mouse-MHV-MI 

(AB551247) 
1.43E-

12 
7.77E-

08 
5.12E

-10 
7.33E

-09 
1.70E-

10 
3.69E-

09 NS 

14 33682 34346 25354 25716 

Bat_BtRf-
BetaCoV/SX2013 

(KJ473813) 

Bat-
CoV_BtRs_HuB2
013 (KJ473814) 

Mouse-
CoV_MA15-

d4ym2 (JF292912)
1.52E-

11 
1.16E-

05 
1.02E

-09 
1.90E

-08 
4.94E-

08 
1.78E-

08 2.49E-04

15 35580 38288 27048 29061 

Bat_BtRl-BetaCoV-
SC2018 

(MK211374) 
Bat-CoV_BtKY72

(KY352407) 
Bat-CoV-RaTG13 

(MN996532) 
1.96E-

26 
1.94E-

18 
3.72E

-14 
3.25E

-10 
7.50E-

07 
8.73E-

30 NS 

16 17604 18263 14579 15238 
Bat-CoV-RaTG13 

(MN996532) 
PCoV_GX_P1E 

(MT040334) 

Bat-SL-
CoV_Rf4092 
(KY417145) 

6.32E-
11 

5.73E-
03 

1.14E
-11 NS 

0.0226
56 

2.99E-
06 3.81E-07

17 30785 31196 23930 24341 
Bat-CoV_Longquan-

140 (KF294457) 

Bat_BtRs-
BetaCoV/HuB201

3 (KJ473814) 
Bat_SL_CoVZXC2

1 (MG772934) 
8.01E-

11 
4.97E-

03 
1.95E

-09 
2.02E

-06 
8.07E-

06 NS 1.25E-07

18 9439 9968 6687 7114 
Civet-CoV_SZ3 

(AY304486) 
Bat_SL_CoV_Rs4
247 (KY417148) 

Bat_SL_CoV_F46 
(KU973692) 

3.45E-
09 NS 

1.65E
-08 

2.00E
-02 

3.74E-
04 

1.55E-
03 1.79E-06

19 19003 23780 15926 20547 
Bat_SL_CoV_Rs424

7 (KY417148) 
Civet-CoV_SZ3 

(AY304486) 

Bat-
CoV_BtRs_GX201

3_Bat NS 
1.37E-

02 
1.43E

-02 
9.00E

-06 
9.51E-

09 NS 1.20E-08

20 30374 30696 23383 23635 

Bat-
CoV_BtRs_GX2013 

(KJ473815) 
Civet-CoV_PC4-
227 (AY613950) 

Bat-CoV_RaTG13 
(MN996532) 

2.76E-
05 NS 

3.77E
-03 

3.06E
-02 

2.78E-
02 NS 2.40E-05

21 
33666 35283 25557 26755 

Bat_BtRl_BetaCoV/
SC2018 

(MK211374) 

Bat_BtRs_Beta-
CoV/HuB2013 
(KJ4738154) 

Human_SARS-
CoV_P2 

(FJ882963) 
3.96E-

23 
1.04E-

19 
7.53E

-26 
2.62E

-11 
8.87E-

10 
1.15E-

17 1.90E-11
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strains. In region3 (Spike gene), bat-CoV-RaTG13 genome shows divergence with SARS-CoV-2 

genome and there is a good number of genetic recombination among the bat and pangolin strains. 

In region4 (E, M, N and ORF3/6-8/10 genes), all strains show high similarity and a few number of 

recombination events with the SARS-CoV-2 strain. Further, gene recombination analysis found 

that there are highest recombination events in spike protein (spotted nine events) followed by 

Orf1ab protein (six events).  Membrane and Nucleocaspid proteins reported few recombination 

events and envelope protein did not show any recombination event. Overall, recombination results 

support our phylogenetic inference and suggest that the origin of SARS-CoV-2 is the results of 

ancestral intra-species recombination events between bat SARS-CoVs (Flores-Alanis et al., 2020; 

Li et al., 2020). Details of recombination analysis are given in Table 1.  

Further we measured the genetic variation of bat-CoV-RaTG13 and pangolin-CoV-GX-P5E 

sequences with respect to SARS-CoV-2 Wuhan-Hu-1 strain, and found that spike protein has 

highest genetic variation 3% and 7 % respectively (Table 2).  

Table 2: Homology and genetic variations in different genomic regions of SARS-CoV-2 Wuhan 
(MN908947) with respect to Bat-CoV-RaTG13 (MN996532) and Pangolin-CoV-GX-P5E 
(MT040336). 
 

Strain  Envelop protein Membrane protein Spike protein Nucleocaspid protein  
Homolog
y  

Genetic 
variation 

Homolog
y 

Genetic 
variation 

Homology Genetic 
variation 

Homology Genetic 
variation 

Bat_Ra
TG13  

100% 0% 98% 02% 97% 03% 99% 01% 

PCoV_
GX-
P5E 

100% 0% 98% 02% 92% 08% 93% 07% 

 

Major genetic variations in spike protein seemed essential for the transition from animal-to-human 

transmission to human-to-human transmission of SARS-CoV-2  (Su et al., 2016; Luk et al. 2019; 

Jaimes et al., 2020; Mondal et al., 2021). We further did MSA of the spike protein sequences and 

observed that the insertion of the novel amino acids “PRRA” in the spike protein of SARS-CoV-2 

(Fig. 6).  A number of studies also reported/observed the insertion of “PRRA” residues in the spike 
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the four amino acids “PRRA” found in the MSA represents an extended loop between the two 

paralllel β-sheets (S1/S2 cleavage site). This cleavage point between the receptor binding domain 

(S1) and fusion peptide (S2) mediate cell-cell fusion and entry into human cell (Andersen et al. 

2020; Mitra et al. 2020). Thus structural analysis supports MSA results and suggests that SARS-

Cov-2 is adapted to infect human systems. . 

4. Concluding remarks 

Outbreak of SARS-CoV-2 is the third documented spillover of an animal coronavirus to humans in 

only two decades that has resulted in a major pandemic.  In quest of the origin, evolution and 

adaptation of SARS-CoV-2, our analysis suggested that the probable origin of SARS-CoV-2 is the 

results of ancestral intra-species recombination events between bat coronaviruses belonging to 

Sarbecovirus subgenus and the insertion of the four amino acids “PRRA” in the spike protein of 

SARS-CoV-2 along with high number of mutations at one of its receptor-binding domain are 

probably responsible for the adaptation of SARS-CoV-2 into humans systems.  Thus, our findings 

add strength to the existing knowledge on the origin and adaptation of SARS-CoV-2. Further a 

detailed mechanistic understanding of molecular mechanisms of interaction between SARS-CoV-2 

and host cells is crucial for more effective vaccine design and predicting future pandemics.  
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Figure S2: Orf1ab gene tree. Alignment consists of 8,152bp aligned amino acid characters 
(6,276bp are completely aligned characters). Tree was reconstructed using ML method and 
LG+I+G4 model of protein evolution along with 1000 bootstrap replicates.  
 
Figure S3: Membrane (M) gene tree. Alignment consists of 233bp aligned amino acid characters 
(213bp are completely aligned characters). Tree was reconstructed using ML method by and 
LG+G4 model of protein evolution along with 1000 bootstrap replicates.  
 
Figure S4: Envelope (E) gene tree. Alignment consists of 90bp aligned amino acid characters 
(74bp are completely aligned characters). Tree was reconstructed using ML method and JTT+I+G4 
model of protein evolution along with 1000 bootstrap replicates .  
 
Figure S5: Nucleocaspid (N) gene tree. Alignment consists of 547bp aligned amino acid 
characters (343 are completely aligned characters). Tree was reconstructed using ML and 
LG+I+G4 model of protein evolution along with 1000 bootstrap replicates.  
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