1 The SARS-CoV-2 conserved macrodomain is a mono-ADP-ribosylhydrolase

- 2
- 3 Yousef M.O. Alhammad^a, Maithri M. Kashipathy^b, Anuradha Roy^c, Jean-Philippe Gagné^{d,e},
- 4 Peter McDonald^c, Philip Gao^f, Louis Nonfoux^{d,e}, Kevin P. Battaile^g, David K. Johnson^h, Erik D.
- 5 Holmstrom^a, Guy G. Poirier^{d,e}, Scott Lovell^b and Anthony R. Fehr^{a,#}
- 6 ^aDepartment of Molecular Biosciences, University of Kansas, Lawrence, Kansas 66045, USA
- 7 ^bProtein Structure Laboratory, University of Kansas, Lawrence, Kansas 66047, USA
- 8 °High Throughput Screening Laboratory, University of Kansas, Lawrence, Kansas 66047, USA
- ⁹ ^dDepartment of Molecular Biology, Medical Biochemistry and Pathology, Laval University
- 10 Cancer Research Center, Québec City, QC, G1V 0A6, Canada
- 11 °CHU de Québec Research Center, CHUL Pavilion, Oncology Division, Québec City, QC, G1V
- 12 4G2, Canada
- 13 ^fProtein Production Group, University of Kansas, Lawrence, Kansas 66047, USA
- 14 ^gNYX, New York Structural Biology Center, Upton, NY 11973, USA
- 15 ^hMolecular Graphics and Modeling Laboratory and the Computational Chemical Biology Core,
- 16 University of Kansas, Lawrence, Kansas 66047, USA
- 17
- 18 #Correspondence: arfehr@ku.edu; Tel.: +1- (785) 864-6626 (K.S.)
- 19
- 20 Running title: SARS-CoV-2 Mac1 removes ADP-ribose from protein
- 21
- 22 Keywords: Coronavirus, SARS-CoV-2, macrodomain, ADP-ribose, poly-ADP-ribose,

23 ABSTRACT

24 Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and other SARS-like-CoVs 25 encode 3 tandem macrodomains within non-structural protein 3 (nsp3). The first macrodomain, 26 Mac1, is conserved throughout CoVs, and binds to and hydrolyzes mono-ADP-ribose (MAR) 27 from target proteins. Mac1 likely counters host-mediated anti-viral ADP-ribosylation, a 28 posttranslational modification that is part of the host response to viral infections. Mac1 is 29 essential for pathogenesis in multiple animal models of CoV infection, implicating it as a 30 virulence factor and potential therapeutic target. Here we report the crystal structure of SARS-31 CoV-2 Mac1 in complex with ADP-ribose. SARS-CoV-2, SARS-CoV and MERS-CoV Mac1 32 exhibit similar structural folds and all 3 proteins bound to ADP-ribose with low μ M affinities. 33 Importantly, using ADP-ribose detecting binding reagents in both a gel-based assay and novel 34 ELISA assays, we demonstrated de-MARylating activity for all 3 CoV Mac1 proteins, with the 35 SARS-CoV-2 Mac1 protein leading to a more rapid loss of substrate compared to the others. In 36 addition, none of these enzymes could hydrolyze poly-ADP-ribose. We conclude that the SARS-37 CoV-2 and other CoV Mac1 proteins are MAR-hydrolases with similar functions, indicating that 38 compounds targeting CoV Mac1 proteins may have broad anti-CoV activity.

40 **IMPORTANCE**

41	SARS-CoV-2 has recently emerged into the human population and has led to a worldwide
42	pandemic of COVID-19 that has caused greater than 900 thousand deaths worldwide. With, no
43	currently approved treatments, novel therapeutic strategies are desperately needed. All
44	coronaviruses encode for a highly conserved macrodomain (Mac1) that binds to and removes
45	ADP-ribose adducts from proteins in a dynamic post-translational process increasingly
46	recognized as an important factor that regulates viral infection. The macrodomain is essential for
47	CoV pathogenesis and may be a novel therapeutic target. Thus, understanding its biochemistry
48	and enzyme activity are critical first steps for these efforts. Here we report the crystal structure of
49	SARS-CoV-2 Mac1 in complex with ADP-ribose, and describe its ADP-ribose binding and
50	hydrolysis activities in direct comparison to SARS-CoV and MERS-CoV Mac1 proteins. These
51	results are an important first step for the design and testing of potential therapies targeting this
52	unique protein domain.

54 INTRODUCTION

55	The recently emerged pandemic outbreak of COVID-19 is caused by a novel coronavirus
56	named severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) (1, 2). As of September
57	16, 2020, this virus has been responsible for \sim 30 million cases of COVID-19 and >900,000
58	deaths worldwide. SARS-CoV-2 is a member of the lineage B β -CoVs with overall high
59	sequence similarity with other SARS-like CoVs, including SARS-CoV. While most of the
60	genome is >80% similar with SARS-CoV, there are regions where amino acid conservation is
61	significantly lower. As expected, the most divergent proteins in the SARS-CoV-2 genome from
62	SARS-CoV include the Spike glycoprotein and several accessory proteins including 8a (absent),
63	8b (extended), and 3b (truncated). However, somewhat unexpectedly, several non-structural
64	proteins also show significant divergence from SARS-CoV, including non-structural proteins 3,
65	4, and 7, which could affect the biology of SARS-CoV-2 (3, 4).
66	Coronaviruses encode 16 non-structural proteins that are translated from two open
66 67	Coronaviruses encode 16 non-structural proteins that are translated from two open reading frames (ORFs), replicase 1a and 1ab (rep1a and rep1ab) (5). The largest non-structural
67	reading frames (ORFs), replicase 1a and 1ab (rep1a and rep1ab) (5). The largest non-structural
67 68	reading frames (ORFs), replicase 1a and 1ab (rep1a and rep1ab) (5). The largest non-structural protein is the non-structural protein 3 (nsp3) that encodes for multiple modular protein domains.
67 68 69	reading frames (ORFs), replicase 1a and 1ab (rep1a and rep1ab) (5). The largest non-structural protein is the non-structural protein 3 (nsp3) that encodes for multiple modular protein domains. These domains in SARS-CoV-2 diverge in amino acid sequence from SARS-CoV as much as
67 68 69 70	reading frames (ORFs), replicase 1a and 1ab (rep1a and rep1ab) (5). The largest non-structural protein is the non-structural protein 3 (nsp3) that encodes for multiple modular protein domains. These domains in SARS-CoV-2 diverge in amino acid sequence from SARS-CoV as much as 30%, and SARS-CoV-2 nsp3 includes a large insertion of 25-41 residues just upstream of the
67 68 69 70 71	reading frames (ORFs), replicase 1a and 1ab (rep1a and rep1ab) (5). The largest non-structural protein is the non-structural protein 3 (nsp3) that encodes for multiple modular protein domains. These domains in SARS-CoV-2 diverge in amino acid sequence from SARS-CoV as much as 30%, and SARS-CoV-2 nsp3 includes a large insertion of 25-41 residues just upstream of the first of three tandem macrodomains (Mac1, Mac2, and Mac3) (Fig. 1A) (3). In addition to this
 67 68 69 70 71 72 	reading frames (ORFs), replicase 1a and 1ab (rep1a and rep1ab) (5). The largest non-structural protein is the non-structural protein 3 (nsp3) that encodes for multiple modular protein domains. These domains in SARS-CoV-2 diverge in amino acid sequence from SARS-CoV as much as 30%, and SARS-CoV-2 nsp3 includes a large insertion of 25-41 residues just upstream of the first of three tandem macrodomains (Mac1, Mac2, and Mac3) (Fig. 1A) (3). In addition to this insertion, the individual macrodomains show large amounts of amino acid divergence. Mac1
 67 68 69 70 71 72 73 	reading frames (ORFs), replicase 1a and 1ab (rep1a and rep1ab) (5). The largest non-structural protein is the non-structural protein 3 (nsp3) that encodes for multiple modular protein domains. These domains in SARS-CoV-2 diverge in amino acid sequence from SARS-CoV as much as 30%, and SARS-CoV-2 nsp3 includes a large insertion of 25-41 residues just upstream of the first of three tandem macrodomains (Mac1, Mac2, and Mac3) (Fig. 1A) (3). In addition to this insertion, the individual macrodomains show large amounts of amino acid divergence. Mac1 diverges 28% from SARS-CoV and 59% from MERS-CoV, while Mac2 and Mac3 diverge 24%

77	all CoVs, unlike Mac2 and Mac3, and early structural and biochemical data demonstrated that it
78	contains a conserved three-layered $\alpha/\beta/\alpha$ fold and binds to mono-ADP-ribose (MAR) and other
79	related molecules (6-10). This is unlike Mac2 and Mac3, which fail to bind ADP-ribose and
80	instead appear to bind to nucleic acids (11, 12). ADP-ribose is buried in a hydrophobic cleft of
81	Mac1 where the ADP-ribose binds to several highly-conserved residues such as aspartic acid at
82	position 23 (D23) and asparagine at position 41 (N41) of SARS-CoV (Fig. 1B) (6). Mac1
83	homologs are also found in alphaviruses, Hepatitis E virus, and Rubella virus, and structural
84	analysis of these macrodomains have demonstrated that they are very similar to CoV Mac1 (13,
85	14). All are members of the larger MacroD-type macrodomain family, which includes human
86	macrodomains Mdo1 and Mdo2 (15).
87	The CoV Mac1 was originally named ADP-ribose-1"-phosphatase (ADRP) based on data
88	demonstrating that it could remove the phosphate group from ADP-ribose-1"-phosphate (6-8).
89	However, the activity was rather modest, and it was unclear why this would impact a virus
90	infection. More recently it has been demonstrated that CoV Mac1 can hydrolyze the bond
91	between amino acid chains and ADP-ribose molecules (16-18), indicating that it can reverse
92	protein ADP-ribosylation (6, 8). ADP-ribosylation is a post-translational modification catalyzed
93	by ADP-ribosyltransferases (ARTs, also known as PARPs) through transferring an ADP-ribose
94	moiety from NAD ⁺ onto target proteins (19). The ADP-ribose is transferred as a single unit of
95	MAR, or single units of MAR are transferred consecutively to form a PAR chain. Several Mac1
96	proteins have been shown to hydrolyze MAR, but have minimal activity towards PAR (16, 17).
97	Several MARylating PARPs are induced by interferon (IFN) and are known to inhibit virus
98	replication, implicating MARylation in the host-response to infection (20).

99	Several reports have addressed the role of Mac1 on the replication and pathogenesis of
100	CoVs, mostly using the mutation of a highly conserved asparagine to alanine (N41A-SARS-
101	CoV). This mutation abolished the MAR-hydrolase activity of SARS-CoV Mac1 (18). This
102	mutation has minimal effects on CoV replication in transformed cells, but reduces viral load,
103	leads to enhanced IFN production, and strongly attenuates both murine hepatitis virus (MHV)
104	and SARS-CoV in mouse models of infection (7, 18, 21, 22). MHV Mac1 was also required for
105	efficient replication in primary macrophages, which could be partially rescued by the PARP
106	inhibitors XAV-939 and 3-AB or siRNA knockdown of PARP12 or PARP14 (23). These data
107	suggest that Mac1's likely function is to counter PARP-mediated anti-viral ADP-ribosylation
108	(24). Mutations in the alphavirus and HEV macrodomain also have substantial phenotypic
109	effects on virus replication and pathogenesis (16, 25-28). As viral macrodomains are clearly
110	important virulence factors, they are considered to be potential targets for anti-viral therapeutics
111	(24).
112	Based on the close structural similarities between viral macrodomains, we hypothesized

113 that SARS-CoV-2 Mac1 has similar binding and hydrolysis activity as other CoV Mac1

114 enzymes. In this study, we determined the crystal structure of the SARS-CoV-2 Mac1 protein

115 bound to ADP-ribose. Binding to and hydrolysis of MAR was tested and directly compared to a

116 human macrodomain (Mdo2) and the SARS-CoV and MERS-CoV Mac1 proteins by several in

117 vitro assays. All CoV Mac1 proteins bound to MAR and could remove MAR from a protein

118 substrate. However, the initial rate associated with the loss of substrate was largest for the

119 SARS-CoV-2 Mac1 protein, especially under multi-turnover conditions. In addition, none of

120 these enzymes could remove PAR from a protein substrate. These results indicate that Mac1

- 121 protein domains likely have similar functions, and will be instrumental in the design and testing
- 122 of novel therapeutic agents targeting the CoV Mac1 protein domain.

124 **RESULTS**

125	Structure of the SARS-CoV-2 Mac1 complexed with ADP-ribose. To create recombinant
126	SARS-CoV-2 Mac1 for structure determination and enzyme assays, nucleotides 3348-3872 of
127	SARS-CoV-2 isolate Wuhan-hu-1 (accession number NC_045512), representing amino acids
128	I1023-K1197 of rep1a, were cloned into a bacterial expression vector containing an N-terminal
129	6X-His tag and TEV cleavage site. We obtained large amounts (>100 mg) of purified
130	recombinant protein (Fig. S1A). A small amount of this protein was digested by the TEV
131	protease to obtain protein devoid of any extra tags for crystallization and used to obtain crystals
132	from which the structure was determined (Fig. S1B). Our crystallization experiments resulted in
133	the same crystal form (needle clusters) from several conditions, but only when ADP-ribose was
134	added to the protein. This represents an additional crystal form $(P2_1)$ amongst the recently
135	determined SARS-CoV-2 macrodomain structures (29-31).
136	The structure of SARS-CoV-2 Mac1 complexed with ADP-ribose was obtained using X-
137	ray diffraction data to 2.2 Å resolution and contained four molecules in the asymmetric unit that
138	were nearly identical. The polypeptide chains could be traced from V3-M171 for subunits A/C
139	and V3-K172 for subunits B/D. Superposition of subunits B-D onto subunit A (169 residues
140	aligned) yielded RMSD deviations of 0.17 Å, 0.17 Å and 0.18 Å respectively between C α atoms.
141	As such, subunit A was used for the majority of the structure analysis described herein. The
142	SARS-CoV-2 Mac1 protein adopted a fold consistent with the MacroD sub-family of
143	macrodomains that contains a core composed of a mixed arrangement of 7 β -sheets (parallel and
144	antiparallel) that are flanked by 6 α -helices (Fig. 2A-B).
145	As mentioned above, apo crystals were never observed for our construct, though the apo
146	structure has been solved by researchers at The Center for Structural Genomics of Infectious

147	Diseases (PDB 6WEN) (30) and the University of Wisconsin-Milwaukee (PDB 6WEY) (32).
148	Further analysis of the amino acid sequences used for expression and purification revealed that
149	our construct had 5 additional residues at the C-terminus (MKSEK) and differs slightly at the N-
150	terminus as well (GIE vs GE) relative to 6WEN. In addition, the sequence used to obtain the
151	structure of 6WEY is slightly shorter than SARS-CoV-2 Mac1 at both the N and C-terminal
152	regions (Fig. S2A). To assess the effect of these additional residues on crystallization, chain B
153	of the SARS-CoV-2 Mac1, which was traced to residue K172, was superimposed onto subunit A
154	of PDB 6W02 (31), a previously determined structure of ADP-ribose bound SARS-CoV-2 Mac1.
155	Analysis of the crystal packing of 6W02 indicates that the additional residues at the C-terminus
156	would clash with symmetry related molecules (Fig. S2B). This suggests that the presence of
157	these extra residues at the C-terminus likely prevented the generation of the more tightly packed
158	crystal forms obtained for 6W02 and 6WEY, which diffracted to high resolution.
159	The ADP-ribose binding pocket contained large regions of positive electron density
160	consistent with the docking of ADP-ribose (Fig. 3A). The adenine forms two hydrogen bonds
161	with D22-I23, which makes up a small loop between $\beta 2$ and the N-terminal half of $\alpha 1$. The side
162	chain of D22 interacts with N6, while the backbone nitrogen atom of I23 interacts with N1, in a
163	very similar fashion to the SARS-CoV macrodomain (6). This aspartic acid is known to be
164	critical for ADP-ribose binding for alphavirus macrodomains (26, 27). A large number of
165	contacts are made in the highly conserved loop between $\beta 3$ and $\alpha 2$ which includes many highly-
166	conserved residues, including a GGG (motif) and N40, which is completely conserved in all
167	enzymatically active macrodomains (33). N40 is positioned to make hydrogen bonds with the 3'
168	OH groups of the distal ribose, as well as a conserved water molecule (Fig. 3B-C). K44 and G46
169	also make hydrogen bonds with the 2' OH of the distal ribose, G48 makes contact with the 1'

170 OH and a water that resides near the catalytic site, while the backbone nitrogen atom of V49 171 hydrogen bonds with the α -phosphate. The other major interactions with ADP-ribose occur in 172 another highly conserved region consisting of residues G130, I131, and F132 that are in the loop 173 between $\beta6$ and $\alpha5$ (Fig. 3B). The α -phosphate accepts a hydrogen bond from the nitrogen atom 174 of I131, while the β -phosphate accepts hydrogen bonds from the backbone nitrogen atom of 175 G130 and F132. The phenyl ring of F132 may make van der Waals interactions with the distal 176 ribose to stabilize it, which may contribute to binding and hydrolysis (34). Loops β 3- α 2 and β 6-177 α 5 are connected by an isoleucine bridge that forms a narrow channel around the diphosphate 178 which helps position the terminal ribose for water-mediated catalysis (6). Of all these residues, is 179 not exactly clear which ones are important for ADP-ribose binding, hydrolysis, or both. 180 Additionally, a network of direct contacts of ADP-ribose to solvent along with water mediated 181 contacts to the protein are shown (Fig. 3C). 182 Comparison of SARS-CoV-2 Mac1 with other CoV macrodomain structures. We 183 next sought to compare the SARS-CoV-2 Mac1 to other deposited structures of this protein.

184 Superposition with Apo (6WEN) and ADP-ribose complexed protein (6W02) yielded RMSD of

185 0.48 Å (168 residues) and 0.37 Å (165 residues), respectively, indicating a high degree of

186 similarity (Fig. S3A-B). Comparison of the ADP-ribose binding site of SARS-CoV-2 Mac1 with

187 that of the apo structure (6WEN) revealed minor conformational differences in order to

accommodate ADP-ribose binding. The loop between β 3 and α 2 (H45-V49) undergoes a change

in conformation and the sidechain of F132 is moved out of the ADP-ribose binding site (Fig.

190 S3C). Our ADP-ribose bound structure is nearly identical to 6W02, except for slight deviations

191 in the β 3- α 2 loop and an altered conformation of F156, where the aryl ring of F156 is moved

192 closer to the adenine ring (Fig. S3 C-D). However, this is likely a result of crystal packing as

F156 adopts this conformation in each subunit and would likely clash with subunit residuesrelated by either crystallographic or non-crystallographic symmetry.

195	We next compared the ADP-ribose bound SARS-CoV-2 Mac1 structure with that of
196	SARS-CoV (PDB 2FAV) (6) and MERS-CoV (PDB 5HOL) (35) Mac1 proteins. Superposition
197	yielded RMSD deviations of 0.71 Å (166 residues) and 1.06 Å (161 residues) for 2FAV and
198	5HOL, respectively. Additionally, the ADP-ribose binding mode in the SARS-CoV and SARS-
199	CoV-2 structures almost perfectly superimposed (Fig. 4A-D). The conserved aspartic acid
200	residue (D22, SARS-CoV-2) that binds to adenine, is localized in a similar region in all 3
201	proteins although there are slight differences in the rotamers about the C β -C γ bond. The angles
202	between the mean planes defined by the OD1, CG and OD2 atoms relative to SARS-CoV-2
203	Mac1 is 23.1° and 46.5° for the SARS-CoV and MERS-CoV Mac1 structures, respectively.
204	Another notable difference is that SARS-CoV and SARS-CoV-2 macrodomains have an
205	isoleucine (I23) following this aspartic acid while MERS-CoV has an alanine (A22). Conversely,
206	SARS-CoV-2 and SARS-CoV Mac1 have a valine instead of an isoleucine immediately
207	following the GGG motif (V49/I48). From these structures it appears that having two isoleucines
208	in this location would clash, and that lineage B and lineage C β -CoVs has evolved in unique
209	ways to create space in this pocket (Fig. 4D and data not shown). Despite these small differences
210	in local structure, the overall structure of CoV Mac1 domains remain remarkably conserved, and
211	indicates they likely have similar biochemical activities and biological functions.
212	SARS-CoV, SARS-CoV-2, and MERS-CoV bind to ADP-ribose with similar
010	

affinities. To determine if the CoV macrodomains had any noticeable differences in their ability
to bind ADP-ribose, we performed isothermal titration calorimetry (ITC), which measures the

215 energy released or absorbed during a binding reaction. Macrodomain proteins from human

216	(Mdo2), SARS-CoV, MERS-CoV, and SARS-CoV-2 were purified (Fig. S1A) and tested for
217	their affinity to ADP-ribose. All CoV Mac1 proteins bound to ADP-ribose with low micromolar
218	affinity (7-16 μ M), while human Mdo2 bound with an affinity about 10-times stronger (~220
219	nM) (Fig. 5A-B). As a control we tested the ability of the MERS-CoV macrodomain to bind to
220	ATP, and only observed minimal binding with mM affinity (data not shown). At higher
221	concentrations, the SARS-CoV-2 macrodomain caused a slightly endothermic reaction,
222	potentially the result of protein aggregation or a change in conformation (Fig. 5A). The MERS-
223	CoV Mac1 had a greater affinity for ADP-ribose than SARS-CoV or SARS-CoV-2 Mac1 in the
224	ITC assay (Fig. 5A-B), however, our results found the differences between these macrodomain
225	proteins to be much closer than previously reported (9). As an alternate method to confirm ADP-
226	ribose binding, we conducted a thermal shift assay. All 4 macrodomains tested denatured at
227	higher temperatures with the addition of ADP-ribose (Fig. S4). We conclude that lineage B and
228	lineage C β -CoV Mac1 proteins bind to ADP-ribose with similar affinities.
229	CoV macrodomains are MAR-hydrolases. To examine the MAR-hydrolase activity of
230	CoV Mac1, we first tested the viability of using ADP-ribose binding reagents to detect
231	$\mathbf{M} \mathbf{A} \mathbf{D} \mathbf{a} \mathbf{b} \mathbf{a} \mathbf{b} \mathbf{a} \mathbf{b} \mathbf{a} \mathbf{b} \mathbf{a} \mathbf{b} \mathbf{a} \mathbf{b} \mathbf{b} \mathbf{a} \mathbf{b} \mathbf{b} \mathbf{b} \mathbf{b} \mathbf{b} \mathbf{b} \mathbf{b} b$
222	MARylated protein. Previously, radiolabeled NAD ⁺ has been the primary method used to label
232	MARylated protein. Previously, radiolabeled NAD ⁻ has been the primary method used to label MARylated protein (16, 17). To create a MARylated substrate, the catalytic domain of the
232 233	
	MARylated protein (16, 17). To create a MARylated substrate, the catalytic domain of the
233	MARylated protein (16, 17). To create a MARylated substrate, the catalytic domain of the PARP10 (GST-PARP10 CD) protein was incubated with NAD ⁺ , leading to its automodification.
233 234	MARylated protein (16, 17). To create a MARylated substrate, the catalytic domain of the PARP10 (GST-PARP10 CD) protein was incubated with NAD ⁺ , leading to its automodification. PARP10 CD is a standard substrate that has been used extensively in the field to analyze the
233 234 235	MARylated protein (16, 17). To create a MARylated substrate, the catalytic domain of the PARP10 (GST-PARP10 CD) protein was incubated with NAD ⁺ , leading to its automodification. PARP10 CD is a standard substrate that has been used extensively in the field to analyze the activity of macrodomains (16, 18, 26, 27). PARP10 is highly upregulated upon CoV infection
233234235236	MARylated protein (16, 17). To create a MARylated substrate, the catalytic domain of the PARP10 (GST-PARP10 CD) protein was incubated with NAD ⁺ , leading to its automodification. PARP10 CD is a standard substrate that has been used extensively in the field to analyze the activity of macrodomains (16, 18, 26, 27). PARP10 is highly upregulated upon CoV infection (23, 36) and is known to primarily auto-MARylate itself on acidic residues, which are the targets

239 PARP10 by immunoblot. The anti-MAR and anti-MAR/PAR binding reagents, but not anti-PAR

- antibody, bound to MARylated PARP10 (Fig. S5). Therefore, in this work we utilized the anti-
- 241 MAR binding reagent to detect MARylated PARP10.
- 242 We next tested the ability of SARS-CoV-2 Mac1 to remove ADP-ribose from
- 243 MARylated PARP10. SARS-CoV-2 Mac1 and MARylated PARP10 were incubated at
- equimolar amounts of protein at 37°C and the reaction was stopped at 5, 10, 20, 30, 45 or 60
- 245 minutes (Fig. 6A). As a control, MARylated PARP10 was incubated alone at 37°C and collected
- at similar time points (Fig. 6A and Fig. S6). Each reaction had equivalent amounts of
- 247 MARylated PARP10 and Mac1 which was confirmed by Coomassie Blue staining (Fig. 6A). An

immediate reduction of more than 50% band intensity was observed within five minutes, and the

ADP-ribose modification was nearly completely removed by SARS-CoV-2 Mac1 within 30

250 minutes (Fig. 6A). The MARylated PAPR10 bands intensities were calculated, plotted, and were

251 fit using non-linear regression (Fig. 6B). This result indicates that the SARS-CoV-2 Mac1

252 protein is a mono-ADP-ribosylhydrolase enzyme.

253 Next, we compared the MAR-hydrolase activity of Mac1 proteins from SARS-CoV-2,

254 SARS-CoV, and MERS-CoV and human (i.e., Mdo2). Specifically, we monitored the time-

255 dependent loss of substrate using immunoblotting (Fig. 6C) under equimolar (i.e., 1 µM

256 [Mac1]:1 μM [substrate]) and multiple-turnover conditions (i.e., 0.5 μM [substrate]:0.1 μM

257 [Mac1] and 1.0 μM [substrate]:0.1 μM [Mac1]), with total protein amounts confirmed by

258 Coomassie blue staining (Fig. S7). The resulting substrate decay plots (Fig. 6D) were fit using

259 non-linear regression to determine the initial rate (k) of substrate decay. Our results indicate that

260 the three CoV Mac1 proteins give rise to similar, but not identical, values of k (Fig. 6D). The

261 SARS-CoV-2 Mac1 protein has a greater k than the SARS-CoV or MERS-CoV Mac1 proteins,

262 especially under multiple-turnover conditions, and all 3 viral macrodomains gave rise to a more 263 rapid loss of substrate than the human Mdo2 enzyme (Fig. 6F). However, further enzymatic 264 analyses of these proteins are warranted to more thoroughly understand their kinetics and 265 binding affinities associated with various MARylated substrates. 266 **CoV Mac1 proteins do not hydrolyze PAR.** To determine if the CoV Mac1 proteins 267 could remove PAR from proteins, we incubated these proteins with an auto-PARylated PARP1 268 protein. PARP1 was incubated with increasing concentrations of NAD⁺ to create a range of 269 modification levels (Fig. S8). We incubated both partially and heavily modified PARP1 with all 270 four macrodomains and PARG as a positive control for 1 hour. While PARG completely

271 removed PAR, none of the macrodomain proteins removed PAR chains from PARP1 (Fig. 7).

272 We conclude that macrodomain proteins are unable to remove PAR from an automodified

273 PARP1 protein under these conditions.

274 ELISA assays can be used to measure ADP-ribosylhydrolase activity of

275 macrodomains. Gel based assays as described above suffer from significant limitations in the 276 number of samples that can be done at once. A higher throughput assay will be needed to more 277 thoroughly investigate the activity of these enzymes and to screen for inhibitor compounds. 278 Based on the success of our antibody-based detection of MAR, we developed an ELISA assay 279 that has a similar ability to detect de-MARylation as our gel-based assay, but with the ability to 280 do so in a higher throughput manner (Fig. 8A). First, MARylated PARP10 was added to ELISA 281 plates. Next, the wells were washed and then incubated with different concentrations of the 282 SARS-CoV-2 Mac1 protein for 60 min. After incubation, the wells were washed and treated with 283 anti-MAR binding reagent, followed by HRP-conjugated secondary antibody and the detection 284 reagent. As controls, we detected MARylated and non-MARylated PARP10 proteins bound to

- 285 glutathione plates with anti-GST antibody and anti-MAR binding reagents and their
- 286 corresponding secondary antibodies (Fig. 8B). SARS-CoV-2 Mac1 was able to remove MAR
- signal in a dose-dependent manner and plotted to a linear non-regression fitted line (Fig. 8C).
- 288 Based on these results, we believe that this ELISA assay will be a useful tool for screening
- 289 potential inhibitors of macrodomain proteins.

290 **DISCUSSION**

291 Here we report the crystal structure of SARS-CoV-2 Mac1 and its enzyme activity in 292 *vitro*. Structurally, it has a conserved three-layered $\alpha/\beta/\alpha$ fold typical of the MacroD family of 293 macrodomains, and is extremely similar to other CoV Mac1 proteins (Fig. 2-4). The conserved 294 CoV macrodomain (Mac1) was initially described as an ADP-ribose-1"-phosphatase (ADRP), as 295 it was shown to be structurally similar to yeast enzymes that have this enzymatic activity (37). 296 Early biochemical studies confirmed this activity for CoV Mac1, though its phosphatase activity 297 for ADP-ribose-1"-phosphate was rather modest (6-8). Later, it was shown that mammalian 298 macrodomain proteins could remove ADP-ribose from protein substrates, indicating protein de-299 ADP-ribosylation as a more likely function for the viral macrodomains (33, 38, 39). Shortly 300 thereafter, the SARS-CoV, hCoV-229E, FIPV, several alphavirus, and the hepatitis E virus 301 macrodomains were demonstrated to have de-ADP-ribosylating activity (16-18). However, this 302 activity has not yet been reported for the MERS-CoV or SARS-CoV-2 Mac1 protein. 303 In this study, we show that the Mac1 proteins from SARS-CoV, MERS-CoV and SARS-304 CoV-2 hydrolyze MAR from a protein substrate (Fig. 6). Their enzymatic activities were similar 305 despite sequence divergence of almost 60% between SARS-CoV-2 and MERS-CoV. However, 306 the initial rate associated with the loss of substrate was largest for the SARS-CoV-2 Mac1 307 protein, particularly under multiple-turnover conditions. It is unclear what structural or sequence 308 differences may account for the increased activity of the SARS-CoV-2 Mac1 protein under these 309 conditions, especially considering the pronounced structurally similarities between these 310 proteins, specifically the SARS-CoV Mac1 (0.71 Å RMSD). It is also unclear if these differences 311 would matter in the context of the virus infection, as the relative concentrations of Mac1 and its 312 substrate during infection is not known. We also compared these activities to the human Mdo2

313 macrodomain. Mdo2 had a greater affinity for ADP-ribose than the viral enzymes, but had 314 significantly reduced enzyme activity in our experiments. Due to its high affinity for ADP-315 ribose, it is possible that the Mdo2 protein was partially inhibited by rebinding to the MAR 316 product in these assays. Regardless, these results suggest that the human and viral proteins likely 317 have structural differences that alter their biochemical activities *in vitro*, indicating that it may be 318 possible to create viral macrodomain inhibitors that don't impact the human macrodomains. We 319 also compared the ability of these macrodomain proteins to hydrolyze PAR. None of the 320 macrodomains were able to hydrolyze either partially or heavily modified PARP1, further 321 demonstrating that the primary enzymatic activity of these proteins is to hydrolyze MAR (Fig. 322 7). 323 When analyzing viral macrodomain sequences, it is clear that they have at least 3 highly 324 conserved regions (Fig. 1B)(24). The first region includes the NAAN (37-40) and GGG (residues 325 46-48) motifs in the loop between β 3 and α 2. The second domain includes a GIF (residues 130-326 132) motif in the loop between $\beta 6$ and $\alpha 5$. The final conserved region is a VGP (residues 96-98) 327 motif at the end of $\beta 5$ and extends into the loop between $\beta 5$ and $\alpha 4$. Both of the first two 328 domains have well defined interactions with ADP-ribose (Fig. 3). However, no one has 329 addressed the role of the VGP residues, though our structure indicates that the glycine may 330 interact with a water molecule that makes contact with the β -phosphate. Identifying residues that 331 directly contribute to ADP-ribose binding, hydrolysis, or both by CoV Mac1 proteins will be 332 critical to determining the specific roles of ADP-ribose binding and hydrolysis in CoV 333 replication and pathogenesis.

While all previous studies of macrodomain de-ADP-ribosylation have primarily used
radiolabeled substrate, we obtained highly repeatable and robust data utilizing ADP-ribose

336 binding reagents designed to specifically recognize MAR (40, 41). The use of these binding 337 reagents should enhance the feasibility of this assay for many labs that are not equipped for 338 radioactive work. Utilizing these binding reagents, we further developed an ELISA assay for de-339 MARylation that has the ability to dramatically increase the number of samples that can be 340 analyzed compared to the gel-based assay. To our knowledge, previously developed ELISA 341 assays were used to measure ADP-ribosyltransferase activities (42) but no ELISA has been 342 established to test the ADP-ribosylhydrolase activity of macrodomain proteins. This ELISA 343 assay should be useful to those in the field to screen compounds for macrodomain inhibitors that 344 could be either valuable research tools or potential therapeutics. The functional importance of the CoV Mac1 domain has been demonstrated in several 345 346 reports, mostly utilizing the mutation of a highly conserved asparagine that mediates contact with 347 the distal ribose (Fig. 3B) (18, 21, 22). However, the physiological relevance of Mac1 during 348 SARS-CoV-2 infection has yet to be determined. In addition, the proteins that are targeted by the 349 CoV Mac1 for de-ADP-ribosylation remains unknown. Unfortunately, there are no known 350 compounds that inhibit this domain that could help identify the functions of this protein during 351 infection. The outbreak of COVID-19 has illustrated an urgent need for developing multiple 352 therapeutic drugs targeting conserved coronavirus proteins. Mac1 appears to be an ideal 353 candidate for further drug development based on: i) its highly conserved structure and 354 biochemical activities within CoVs; and *ii*) its importance for multiple CoVs to cause disease. 355 Targeting Mac1 may also have the benefit of enhancing the innate immune response, as we have 356 shown that Mac1 is required for some CoVs to block IFN production (18, 23). Considering that 357 Mac1 proteins from divergent aCoVs such as 229E and FIPV also have de-ADP-ribosylating 358 activity (16, 17), it is possible that compounds targeting Mac1 could prevent disease caused by

- 359 of wide variety of CoV, including those of veterinary importance like porcine epidemic diarrhea
- 360 virus (PEDV). Additionally, compounds that inhibit Mac1 in combination with the structure
- 361 could help identify the mechanisms it uses to bind to its biologically relevant protein substrates,
- 362 remove ADP-ribose from these proteins, and potentially define the precise function for Mac1 in
- 363 SARS-CoV-2 replication and pathogenesis. In conclusion, the results described here will be
- 364 critical for the design and development of highly-specific Mac1 inhibitors that could be used
- 365 therapeutically to mitigate COVID-19 or future CoV outbreaks.

367 METHODS

368 Plasmids

369 The SARS-CoV macrodomain (Mac1) (residues 1000-1172 of pp1a) was cloned into the 370 pET21a+ expression vector with an N-terminal His tag. The MERS-CoV Mac1 (residues 1110-371 1273 of pp1a) was also cloned into pET21a+ with a C-terminal His tag. SARS-CoV-2 Mac1 372 (residues 1023-1197 of pp1a) was cloned into the pET30a+ expression vector with an N-terminal 373 His tag and a TEV cleavage site (Synbio). The pETM-CN Mdo2 Mac1 (residues 7-243) 374 expression vector with an N-terminal His-TEV-V5 tag and the pGEX4T-PARP10-CD (residues 375 818-1025) expression vector with an N-terminal GST tag were previously described (33). All 376 plasmids were confirmed by restriction digest, PCR, and direct sequencing. 377 **Protein Expression and Purification** 378 A single colony of *E. coli* cells (C41(DE3)) containing plasmids harboring the constructs 379 of the macrodomain proteins was inoculated into 10 mL LB media and grown overnight at 37°C 380 with shaking at 250 rpm. The overnight culture was transferred to a shaker flask containing 2X 381 1L TB media at 37°C until the OD600 reached 0.7. The proteins were either induced with 0.4 382 mM IPTG at 37°C for 3 hours, or 17°C for 20 hours. Cells were pelleted at 3500 × g for 10 min 383 and frozen at -80°C. Frozen cells were thawed at room temperature, resuspended in 50 mM Tris 384 (pH 7.6), 150 mM NaCl, and sonicated using the following cycle parameters: Amplitude: 50%, 385 Pulse length: 30 seconds, Number of pulses: 12, while incubating on ice for >1min between 386 pulses. The soluble fraction was obtained by centrifuging the cell lysate at $45,450 \times \text{g}$ for 30 387 minutes at 4°C. The expressed soluble proteins were purified by affinity chromatography using 388 a 5 ml prepacked HisTrap HP column on an AKTA Pure protein purification system (GE 389 Healthcare). The fractions were further purified by size-exclusion chromatography (SEC) with a

390	Superdex 75 10/300 GL column equilibrated with 20mM Tris (pH 8.0), 150 mM NaCl and the
391	protein sized as a monomer relative to the column calibration standards. To cleave off the His tag
392	from the SARS-CoV-2 Mac1, purified TEV protease was added to purified SARS-CoV-2 Mac1
393	protein at a ratio of 1:10 (w/w), and then passed back through the Ni-NTA HP column. Protein
394	was collected in the flow through and equilibrated with 20 mM Tris (pH 8.0), 150 mM NaCl.
395	The SARS-CoV-2 Mac1, free from the N-terminal 6X-His tag, was used for subsequent
396	crystallization experiments.
397	For the PARP10-CD protein, the cell pellet was resuspended in 50 mM Tris-HCl (pH
398	8.0), 500 mM NaCl, 0.1mM EDTA, 25% glycerol, 1 mM DTT and sonicated as described above.
399	The cell lysate was incubated with 10 ml of Glutathione Sepharose 4B resin from GE Healthcare,
400	equilibrated with the same buffer for 2 hours, then applied to a gravity flow column to allow
401	unbound proteins to flow through. The column was washed with the resuspension buffer till the
402	absorbance at 280 nm reached baseline. The bound protein was eluted out of the column with
403	resuspension buffer containing 20 mM reduced glutathione and then dialyzed back into the
404	resuspension buffer overnight at 4°C.
405	Isothermal Titration Calorimetry

406 All ITC titrations were performed on a MicroCal PEAQ-ITC instrument (Malvern 407 Pananalytical Inc., MA). All reactions were performed in 20 mM Tris pH 7.5, 150 mM NaCl 408 using 100 μ M of all macrodomain proteins at 25°C. Titration of 2 mM ADP-ribose or ATP 409 (MilliporeSigma) contained in the stirring syringe included a single 0.4 μ L injection, followed by 410 18 consecutive injections of 2 μ L. Data analysis of thermograms was analyzed using one set of 411 binding sites model of the MicroCal ITC software to obtain all fitting model parameters for the 412 experiments.

413 Differential Scanning Fluorimetry (DSF)

414	Thermal shift assay with DSF involved use of LightCycler® 480 Instrument (Roche
415	Diagnostics). In total, a 15 μL mixture containing 8X SYPRO Orange (Invitrogen), and 10 μM
416	macrodomain protein in buffer containing 20 mM Hepes, NaOH, pH 7.5 and various
417	concentrations of ADP-ribose were mixed on ice in 384-well PCR plate (Roche). Fluorescent
418	signals were measured from 25 to 95 °C in 0.2 °C/30-s steps (excitation, 470-505 nm; detection,
419	540-700 nm). The main measurements were carried out in triplicate. Data evaluation and Tm
420	determination involved use of the Roche LightCycler® 480 Protein Melting Analysis software,
421	and data fitting calculations involved the use of single site binding curve analysis on Graphpad
422	Prism.
423	MAR Hydrolase Assays
424	Automodification of PARP10-CD protein: A 10 µM solution of purified PAPR10-CD
425	protein was incubated for 20 minutes at 37°C with 1 mM final concentration of β -Nicotinamide
426	Adenine Dinucleotide (β NAD ⁺) (Millipore-Sigma) in a reaction buffer (50 mM HEPES, 150
427	mM NaCl, 0.2 mM DTT, and 0.02% NP-40). MARylated PARP10 was aliquoted and stored at -
428	80°C.
429	PAPR10-CD ADP-ribose hydrolysis: All reactions were performed at 37°C for the
430	designated time. A 1 μ M solution of MARylated PARP10-CD and purified Mac1 protein was
431	added in the reaction buffer (50 mM HEPES, 150 mM NaCl, 0.2 mM DTT, and 0.02% NP-40).
432	The reaction was stopped with addition of 2X Laemmli sample buffer containing 10% β -
433	mercaptoethanol.
434	Protein samples were heated at 95°C for 5 minutes before loading and separated onto
435	SDS-PAGE cassette (Thermo Fisher Scientific Bolt [™] 4-12% Bis-Tris Plus Gels) in MES

436	running buffer. For direct protein detection, the SDS-PAGE gel was stained using InstantBlue®
437	Protein Stain (Expedeon). For immunoblotting, the separated proteins were transferred onto
438	polyvinylidene difluoride (PVDF) membrane using iBlot TM 2 Dry Blotting System
439	(ThermoFisher Scientific). The blot was blocked with 5% skim milk in PBS containing 0.05%
440	Tween-20 and probed with anti-mono or poly ADP-ribose binding reagents/antibodies
441	MABE1076 (α-MAR), MABC547 (α-PAR), MABE1075 (α-MAR/PAR) (Millipore-Sigma) and
442	anti-GST tag monoclonal antibody MA4-004 (ThermoFisher Scientific). The primary antibodies
443	were detected with secondary infrared anti-rabbit and anti-mouse antibodies (LI-COR
444	Biosciences). All immunoblots were visualized using Odyssey® CLx Imaging System (LI-COR
445	Biosciences). The images were quantitated using Image J (National Institutes for Health (NIH))
446	or Image Studio software.
447	Kinetic analysis of ADP-ribose hydrolysis: To quantify the initial rate (k) of substrate
448	decay associated with the four macrodomains, each data set represented in the substrate decay
449	immunoblots in Fig. 6C, were fitted to a decaying exponential with the following functional
450	form: $([S]_{initial}-[S]_{final})e^{(-[k/[S]_{initial})t]}+[S]_{final}$ (Mathematica 12, Wolfram Alpha). The decay plots
451	and resulting values for the fitted parameter k along with statistic uncertainty (SD) are shown in
452	Fig. 6D.
453	ELISA-based MAR hydrolysis: ELISA Well-Coated TM Glutathione plates (G-Biosciences,
454	USA) were washed with phosphate-buffered saline (PBS) containing 0.05% Tween-20 (PBS-T)

455 and incubated with 50 μL of 100 nM automodified MARylated PARP10-CD in PBS for one

456 hour under room temperature. Following four washes with PBS-T, variable concentrations of

457 SARS-CoV-2 Mac1 were incubated with MARylated PARP10-CD for 60 minutes at 37°C.

458 Purified macrodomains were 2-fold serially diluted starting at 100 nM in reaction buffer prior to

459 addition to MARylated PARP10-CD. Subsequently, ELISA wells were washed four times with 460 PBS-T and incubated with 50 µL/well of anti-GST (Invitrogen MA4-004) or anti-MAR 461 (Millipore-Sigma MAB1076) diluted 1:5,000 in 5 mg/ml BSA in PBS-T (BSA5-PBS-T) for 1 462 hour at room temperature. After four additional washes with PBS-T, each well was incubated 463 with 50 µL diluted 1:5,000 in BSA5-PBS-T of anti-rabbit-HRP (SouthernBiotech, USA) or anti-464 mouse-HRP (Rockland Immunochemicals, USA) conjugate for 1 hour at room temperature. The 465 plate was washed four times with PBS-T and 100 μ L of TMB peroxidase substrate solution 466 (SouthernBiotech, USA) was added to each well and incubated for 10 minutes. The peroxidase 467 reaction was stopped with 50 µL per well of 1 M HCl before proceeding to reading. Absorbance 468 was measured at 450 nm and subtracted from 620 nm using Biotek Powerwave XS plate reader 469 (BioTek). As controls, MARylated PARP10-CD and non-MARylated PARP10 were detected 470 with both anti-MAR and anti-GST antibodies. The absorbance of non-MARylated PARP10-CD 471 detected with anti-MAR antibody was used to establish the background signal. The % signal 472 remaining was calculated by dividing the experimental signal (+ enzyme) minus background by 473 the control (no enzyme) minus the background.

474 PAR Hydrolase Assay

475 *Automodification of PARP1 protein*: PARP1 was incubated with increasing

476 concentrations of NAD⁺ to generate a range of PARP1 automodification levels. Highly purified

- 477 human 6X-His-PARP1 (43) (5 μg) was incubated for 30 min at 30°C in a reaction buffer
- 478 containing 100 mM Tris-HCl pH 8.0, 10 mM MgCl₂, 10% (v/v) glycerol, 10 mM DTT, 0 to 500
- 479 μ M NAD+, 10% (v/v) ethanol and 25 μ g/mL calf thymus activated DNA (Sigma-Aldrich).

480 PARP1 ADP-ribose hydrolysis: To evaluate the PAR hydrolase activity of CoV

481 macrodomains, 200 ng of slightly automodified PARP1 with 5 μ M NAD⁺ or highly

482	automodified with 500 μ M NAD ⁺ were used as substrates for the de-PARylation assays.
483	Recombinant macrodomain protein (1 μ g) was supplemented to the reaction buffer (100 mM
484	Tris-HCl pH 8.0, 10% (v/v) glycerol and 10 mM DTT) containing automodified PARP1 and
485	incubated for 1 hour at 37°C. Recombinant PARG (1 μ g) was used as a positive control for PAR
486	erasing (44). Reaction mixtures were resolved on 4–12% Criterion [™] XT Bis-Tris protein gels,
487	transferred onto nitrocellulose membrane and probed with the anti-PAR polyclonal antibody 96-
488	10.
489	Structure Determination
490	Crystallization and Data Collection: Purified SARS-CoV-2 Mac1 in 150 mM NaCl, 20
491	mM Tris pH 8.0 was concentrated to 13.8 mg/mL for crystallization screening. All crystallization

492 experiments were setup using an NT8 drop-setting robot (Formulatrix Inc.) and UVXPO MRC

493 (Molecular Dimensions) sitting drop vapor diffusion plates at 18°C. 100 nL of protein and 100

494 nL crystallization solution were dispensed and equilibrated against 50 μL of the latter. The

495 SARS-CoV-2 Mac1 complex with ADP-ribose was prepared by adding the ligand, from a 100

496 mM stock in water, to the protein at a final concentration of 2 mM. Crystals that were obtained in

497 1-2 days from the Salt Rx HT screen (Hampton Research) condition E10 (1.8 M

498 NaH₂PO₄/K₂HPO₄, pH 8.2). Refinement screening was conducted using the additive screen HT

499 (Hampton Research) by supplementing 10% of each additive to the Salt Rx HT E10 condition in

500 a new 96-well UVXPO crystallization plate. The crystals used for data collection were obtained

from Salt Rx HT E10 supplemented with 0.1 M NDSB-256 from the additive screen (Fig. S1).

502 Samples were transferred to a fresh drop composed of 80% crystallization solution and 20%

503 (v/v) PEG 200 and stored in liquid nitrogen. X-ray diffraction data were collected at the

Advanced Photon Source, IMCA-CAT beamline 17-ID using a Dectris Eiger 2X 9M pixel arraydetector.

506	Structure Solution and Refinement: Intensities were integrated using XDS (45, 46) via
507	Autoproc (47) and the Laue class analysis and data scaling were performed with Aimless (48).
508	Notably, a pseudo-translational symmetry peak was observed at $(0, 0.31 \ 0.5)$ that was 44.6% of
509	the origin. Structure solution was conducted by molecular replacement with Phaser (49) using a
510	previously determined structure of ADP-ribose bound SARS-CoV-2 Mac1 (PDB 6W02) as the
511	search model. The top solution was obtained in the space group $P2_1$ with four molecules in the
512	asymmetric unit. Structure refinement and manual model building were conducted with Phenix
513	(50) and Coot (51) respectively. Disordered side chains were truncated to the point for which
514	electron density could be observed. Structure validation was conducted with Molprobity (52) and
515	figures were prepared using the CCP4MG package (53). Superposition of the macrodomain
516	structures was conducted with GESAMT (54).
517	Statistical Analysis
518	All statistical analyses were done using an unpaired two-tailed student's t-test to assess
519	differences in mean values between groups, and graphs are expressed as mean \pm SD. Significant p
520	values are denoted with $p \le 0.05$.
521	ACCESSION CODES
522	The coordinates and structure factors for SARS-CoV-2 Mac1 were deposited to the
523	Worldwide Protein Databank (wwPDB) with the accession code 6WOJ.
524	ACKNOWLEDGEMENTS
525	We'd like to thank Ivan Ahel and Gytis Jankevicius (Oxford University) for providing
526	protein expression plasmids; John Pascal (University of Montreal) and Marie-France Langelier

- 527 (Universite de Montreal) for providing PARP1; and Wenqing Xu (University of Washington) for
- 528 providing PARG. This research was funded by the National Institutes of Health (NIH) grant
- numbers P20 GM113117, P30GM110761, and AI134993-01, and University of Kansas start-up
- 530 funds to A.R.F, and the Canadian Institutes of Health Research grant number MOP-418863 to
- 531 G.G.P. Use of the IMCA-CAT beamline 17-ID at the Advanced Photon Source was supported by
- the companies of the Industrial Macromolecular Crystallography Association through a contract
- 533 with Hauptman-Woodward Medical Research Institute. Use of the Advanced Photon Source was
- supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy
- 535 Sciences, under Contract No. DE-AC02-06CH11357.

537 AUTHOR CONTRIBUTIONS

- 538 Conceptualization: ARF, YMOA, GGP
- 539 Data curation: YMOA, SL, JPG, ARF, EDH
- 540 Formal analysis: YMOA, DKJ, AR, SL, ARF, EDH
- 541 Funding acquisition: GGP, SL, ARF
- 542 Investigation: YMOA, MMK, AR, JPG, LN, PM, KPB
- 543 Methodology: YMOA, GGP, AR, JPG, EDH, SL, ARF
- 544 Project administration: GGP, SL, ARF
- 545 Resources: AR, SL, PG, ARF
- 546 Supervision: AR, GGP, SL ARF
- 547 Validation: YMOA, SL, AR, JPG, GGP, ARF
- 548 Visualization: YMOA, ARF, AR, SL, JPG
- 549 Writing original draft: YMOA, SL, ARF
- 550 Writing review & editing: all authors

552 **REFERENCES**

- 553
- Zhou P, Yang XL, Wang XG, Hu B, Zhang L, Zhang W, Si HR, Zhu Y, Li B, Huang CL,
 Chen HD, Chen J, Luo Y, Guo H, Jiang RD, Liu MQ, Chen Y, Shen XR, Wang X, Zheng
 XS, Zhao K, Chen QJ, Deng F, Liu LL, Yan B, Zhan FX, Wang YY, Xiao GF, Shi ZL.
 2020. A pneumonia outbreak associated with a new coronavirus of probable bat origin.
 Nature 579:270-273.
- 559 2. Coronaviridae Study Group of the International Committee on Taxonomy of V. 2020.
 560 The species Severe acute respiratory syndrome-related coronavirus: classifying 2019561 nCoV and naming it SARS-CoV-2. Nat Microbiol 5:536-544.
- Srinivasan S, Cui H, Gao Z, Liu M, Lu S, Mkandawire W, Narykov O, Sun M, Korkin D.
 2020. Structural Genomics of SARS-CoV-2 Indicates Evolutionary Conserved
 Functional Regions of Viral Proteins. Viruses 12:360.
- Wu C, Liu Y, Yang Y, Zhang P, Zhong W, Wang Y, Wang Q, Xu Y, Li M, Li X, Zheng
 M, Chen L, Li H. 2020. Analysis of therapeutic targets for SARS-CoV-2 and discovery
 of potential drugs by computational methods. Acta Pharm Sin B
 doi:10.1016/j.apsb.2020.02.008.
- 569 5. Fehr AR, Perlman S. 2015. Coronaviruses: An Overview of Their Replication and
 570 Pathogenesis, p 1-23. *In* Maier HJ, Bickerton E, Britton P (ed), Coronaviruses, vol 1282.
 571 Springer New York.
- 572 6. Egloff MP, Malet H, Putics A, Heinonen M, Dutartre H, Frangeul A, Gruez A,
 573 Campanacci V, Cambillau C, Ziebuhr J, Ahola T, Canard B. 2006. Structural and
 574 functional basis for ADP-ribose and poly(ADP-ribose) binding by viral macro domains. J
 575 Virol 80:8493-502.
- 576 7. Putics A, Filipowicz W, Hall J, Gorbalenya AE, Ziebuhr J. 2005. ADP-ribose-1"577 monophosphatase: a conserved coronavirus enzyme that is dispensable for viral
 578 replication in tissue culture. J Virol 79:12721-31.
- Saikatendu KS, Joseph JS, Subramanian V, Clayton T, Griffith M, Moy K, Velasquez J,
 Neuman BW, Buchmeier MJ, Stevens RC, Kuhn P. 2005. Structural basis of severe acute
 respiratory syndrome coronavirus ADP-ribose-1"-phosphate dephosphorylation by a
 conserved domain of nsP3. Structure 13:1665-75.
- 583
 9. Cho CC, Lin MH, Chuang CY, Hsu CH. 2016. Macro Domain from Middle East
 584 Respiratory Syndrome Coronavirus (MERS-CoV) Is an Efficient ADP-ribose Binding
 585 Module: CRYSTAL STRUCTURE AND BIOCHEMICAL STUDIES. J Biol Chem
 586 291:4894-902.
- 587 10. Xu Y, Cong L, Chen C, Wei L, Zhao Q, Xu X, Ma Y, Bartlam M, Rao Z. 2009. Crystal
 588 structures of two coronavirus ADP-ribose-1"-monophosphatases and their complexes
 589 with ADP-Ribose: a systematic structural analysis of the viral ADRP domain. J Virol
 590 83:1083-92.
- 591 11. Tan J, Vonrhein C, Smart OS, Bricogne G, Bollati M, Kusov Y, Hansen G, Mesters JR,
 592 Schmidt CL, Hilgenfeld R. 2009. The SARS-unique domain (SUD) of SARS coronavirus
 593 contains two macrodomains that bind G-quadruplexes. PLoS Pathog 5:e1000428.
- 594 12. Chatterjee A, Johnson MA, Serrano P, Pedrini B, Joseph JS, Neuman BW, Saikatendu K,
- 595Buchmeier MJ, Kuhn P, Wuthrich K. 2009. Nuclear magnetic resonance structure shows596that the severe acute respiratory syndrome coronavirus-unique domain contains a597macrodomain fold. J Virol 83:1823-36.

Makrynitsa GI, Ntonti D, Marousis KD, Birkou M, Matsoukas MT, Asami S, Bentrop D,
Papageorgiou N, Canard B, Coutard B, Spyroulias GA. 2019. Conformational plasticity
of the VEEV macro domain is important for binding of ADP-ribose. J Struct Biol
206:119-127.

- Malet H, Coutard B, Jamal S, Dutartre H, Papageorgiou N, Neuvonen M, Ahola T,
 Forrester N, Gould EA, Lafitte D, Ferron F, Lescar J, Gorbalenya AE, de Lamballerie X,
 Canard B. 2009. The crystal structures of Chikungunya and Venezuelan equine
 encephalitis virus nsP3 macro domains define a conserved adenosine binding pocket. J
 Virol 83:6534-45.
- 60715.Rack JG, Perina D, Ahel I. 2016. Macrodomains: Structure, Function, Evolution, and608Catalytic Activities. Annu Rev Biochem 85:431-54.
- Li C, Debing Y, Jankevicius G, Neyts J, Ahel I, Coutard B, Canard B. 2016. Viral Macro
 Domains Reverse Protein ADP-Ribosylation. J Virol 90:8478-86.
- 611 17. Eckei L, Krieg S, Butepage M, Lehmann A, Gross A, Lippok B, Grimm AR, Kummerer
 612 BM, Rossetti G, Luscher B, Verheugd P. 2017. The conserved macrodomains of the non613 structural proteins of Chikungunya virus and other pathogenic positive strand RNA
 614 viruses function as mono-ADP-ribosylhydrolases. Sci Rep 7:41746.
- Fehr AR, Channappanavar R, Jankevicius G, Fett C, Zhao J, Athmer J, Meyerholz DK,
 Ahel I, Perlman S. 2016. The Conserved Coronavirus Macrodomain Promotes Virulence
 and Suppresses the Innate Immune Response during Severe Acute Respiratory Syndrome
 Coronavirus Infection. mBio 7:e01721-16.
- 619 19. Kim DS, Challa S, Jones A, Kraus WL. 2020. PARPs and ADP-ribosylation in RNA
 620 biology: from RNA expression and processing to protein translation and proteostasis.
 621 Genes Dev 34:302-320.
- 622 20. Fehr AR, Singh SA, Kerr CM, Mukai S, Higashi H, Aikawa M. 2020. The impact of
 623 PARPs and ADP-ribosylation on inflammation and host-pathogen interactions. Genes
 624 Dev 34:341-359.
- Eriksson KK, Cervantes-Barragan L, Ludewig B, Thiel V. 2008. Mouse hepatitis virus
 liver pathology is dependent on ADP-ribose-1"-phosphatase, a viral function conserved in
 the alpha-like supergroup. J Virol 82:12325-34.
- Fehr AR, Athmer J, Channappanavar R, Phillips JM, Meyerholz DK, Perlman S. 2015.
 The nsp3 macrodomain promotes virulence in mice with coronavirus-induced
 encephalitis. J Virol 89:1523-36.
- Grunewald ME, Chen Y, Kuny C, Maejima T, Lease R, Ferraris D, Aikawa M, Sullivan
 GS, Perlman S, Fehr AR. 2019. The coronavirus macrodomain is required to prevent
 PARP-mediated inhibition of virus replication and enhancement of IFN expression. PLoS
 Pathog 15:e1007756.
- 635 24. Alhammad YMO, Fehr AR. 2020. The Viral Macrodomain Counters Host Antiviral
 636 ADP-Ribosylation. Viruses 12:384.
- 637 25. Abraham R, Hauer D, McPherson RL, Utt A, Kirby IT, Cohen MS, Merits A, Leung
 638 AKL, Griffin DE. 2018. ADP-ribosyl-binding and hydrolase activities of the alphavirus
 639 nsP3 macrodomain are critical for initiation of virus replication. Proc Natl Acad Sci U S
 640 A 115:E10457-E10466.
- 641 26. Abraham R, McPherson RL, Dasovich M, Badiee M, Leung AKL, Griffin DE. 2020.
- Both ADP-Ribosyl-Binding and Hydrolase Activities of the Alphavirus nsP3
- 643 Macrodomain Affect Neurovirulence in Mice. mBio 11.

644 27. McPherson RL, Abraham R, Sreekumar E, Ong SE, Cheng SJ, Baxter VK, Kistemaker 645 HA, Filippov DV, Griffin DE, Leung AK. 2017. ADP-ribosylhydrolase activity of 646 Chikungunya virus macrodomain is critical for virus replication and virulence. Proc Natl 647 Acad Sci U S A 114:1666-1671. 648 28. Parvez MK. 2015. The hepatitis E virus ORF1 'X-domain' residues form a putative 649 macrodomain protein/Appr-1"-pase catalytic-site, critical for viral RNA replication. Gene 650 566:47-53. 651 29. Vuksanovic N, Silvaggi, N.R. National Science Foundation (NSF, United States). 2020. 652 High-resolution structure of the SARS-CoV-2 NSP3 Macro X domain doi: 653 10.2210/pdb6WEY/pdb. doi:10.2210/pdb6WEY/pdb. 654 Michalska K, Stols, L., Jedrzejczak, R., Endres, M., Babnigg, G., Kim, Y., Joachimiak, 30. 655 A., Center for Structural Genomics of Infectious Diseases (CSGID). 2020. Crystal 656 Structure of ADP ribose phosphatase of NSP3 from SARS-CoV-2 in the apo doi: 657 10.2210/pdb6WEN/pdb. doi:10.2210/pdb6wen/pdb. 658 Michalska K, Kim, Y., Jedrzejczak, R., Maltseva, N., Endres, M., Mececar, A., 31. 659 Joachimiak, A., Center for Structural Genomics of Infectious Diseases (CSGID). 2020. 660 Crystal Structure of ADP ribose phosphatase of NSP3 from SARS CoV-2 in the complex with ADP ribose doi: 10.2210/pdb6W02/pdb. doi:10.2210/pdb6W02/pdb. 661 662 Frick DN, Virdi RS, Vuksanovic N, Dahal N, Silvaggi NR. 2020. Molecular Basis for 32. 663 ADP-Ribose Binding to the Mac1 Domain of SARS-CoV-2 nsp3. Biochemistry (Mosc) 664 59:2608-2615. 665 33. Jankevicius G, Hassler M, Golia B, Rybin V, Zacharias M, Timinszky G, Ladurner AG. 666 2013. A family of macrodomain proteins reverses cellular mono-ADP-ribosylation. Nat Struct Mol Biol 20:508-14. 667 668 Leung AKL, McPherson RL, Griffin DE. 2018. Macrodomain ADP-ribosylhydrolase and 34. 669 the pathogenesis of infectious diseases. PLoS Pathog 14:e1006864. 670 Lei J, Kusov Y, Hilgenfeld R. 2018. Nsp3 of coronaviruses: Structures and functions of a 35. 671 large multi-domain protein. Antiviral Res 149:58-74. 672 Heer CD, Sanderson DJ, Alhammad YMO, Schmidt MS, Trammell SAJ, Perlman S, 36. 673 Cohen MS, Fehr AR, Brenner C. 2020. Coronavirus and PARP expression dysregulate 674 the NAD Metabolome: a potentially actionable component of innate immunity. bioRxiv 675 doi:10.1101/2020.04.17.047480. 676 37. Shull NP, Spinelli SL, Phizicky EM. 2005. A highly specific phosphatase that acts on 677 ADP-ribose 1"-phosphate, a metabolite of tRNA splicing in Saccharomyces cerevisiae. 678 Nucleic Acids Res 33:650-60. 679 38. Rosenthal F, Feijs KL, Frugier E, Bonalli M, Forst AH, Imhof R, Winkler HC, Fischer D, 680 Caflisch A, Hassa PO, Luscher B, Hottiger MO. 2013. Macrodomain-containing proteins 681 are new mono-ADP-ribosylhydrolases. Nat Struct Mol Biol 20:502-7. 682 39. Sharifi R, Morra R, Appel CD, Tallis M, Chioza B, Jankevicius G, Simpson MA, Matic I, 683 Ozkan E, Golia B, Schellenberg MJ, Weston R, Williams JG, Rossi MN, Galehdari H, 684 Krahn J, Wan A, Trembath RC, Crosby AH, Ahel D, Hay R, Ladurner AG, Timinszky G, 685 Williams RS, Ahel I. 2013. Deficiency of terminal ADP-ribose protein glycohydrolase 686 TARG1/C6orf130 in neurodegenerative disease. EMBO J 32:1225-37. 687 40. Gibson BA, Conrad LB, Huang D, Kraus WL. 2017. Generation and Characterization of 688 Recombinant Antibody-like ADP-Ribose Binding Proteins. Biochemistry (Mosc) 689 56:6305-6316.

690	41.	Affar EB, Duriez PJ, Shah RG, Winstall E, Germain M, Boucher C, Bourassa S, Kirkland
691		JB, Poirier GG. 1999. Immunological determination and size characterization of
692		poly(ADP-ribose) synthesized in vitro and in vivo. Biochim Biophys Acta 1428:137-46.
693	42.	Asokanathan C, Tierney S, Ball CR, Buckle G, Day A, Tanley S, Bristow A, Markey K,
694		Xing D, Yuen CT. 2018. An ELISA method to estimate the mono ADP-
695		ribosyltransferase activities: e.g in pertussis toxin and vaccines. Anal Biochem 540-
696		541:15-19.
697	43.	Langelier MF, Planck JL, Servent KM, Pascal JM. 2011. Purification of human PARP-1
698		and PARP-1 domains from Escherichia coli for structural and biochemical analysis.
699		Methods Mol Biol 780:209-26.
700	44.	Wang Z, Gagne JP, Poirier GG, Xu W. 2014. Crystallographic and biochemical analysis
701		of the mouse poly(ADP-ribose) glycohydrolase. PLoS One 9:e86010.
702	45.	Kabsch W. 1988. Evaluation of Single-Crystal X-Ray-Diffraction Data from a Position-
703	12.	Sensitive Detector. J Appl Crystallogr 21:916-924.
704	46.	Kabsch W. 2010. Xds. Acta Crystallogr D Biol Crystallogr 66:125-32.
705	47.	Vonrhein C, Flensburg C, Keller P, Sharff A, Smart O, Paciorek W, Womack T,
706	т/.	Bricogne G. 2011. Data processing and analysis with the autoPROC toolbox. Acta
707		Crystallogr D Biol Crystallogr 67:293-302.
708	48.	Evans PR. 2011. An introduction to data reduction: space-group determination, scaling
708	H 0.	and intensity statistics. Acta Crystallogr D Biol Crystallogr 67:282-92.
710	49.	McCoy AJ, Grosse-Kunstleve RW, Adams PD, Winn MD, Storoni LC, Read RJ. 2007.
711	49.	Phaser crystallographic software. J Appl Crystallogr 40:658-674.
712	50.	Adams PD, Afonine PV, Bunkoczi G, Chen VB, Davis IW, Echols N, Headd JJ, Hung
712	50.	LW, Kapral GJ, Grosse-Kunstleve RW, McCoy AJ, Moriarty NW, Oeffner R, Read RJ,
713		
714		Richardson DC, Richardson JS, Terwilliger TC, Zwart PH. 2010. PHENIX: a
		comprehensive Python-based system for macromolecular structure solution. Acta
716	51	Crystallogr D Biol Crystallogr 66:213-21.
717	51.	Emsley P, Lohkamp B, Scott WG, Cowtan K. 2010. Features and development of Coot.
718	50	Acta Crystallogr D Biol Crystallogr 66:486-501.
719 720	52.	Chen VB, Arendall WB, 3rd, Headd JJ, Keedy DA, Immormino RM, Kapral GJ, Murray
720 721		LW, Richardson JS, Richardson DC. 2010. MolProbity: all-atom structure validation for
	50	macromolecular crystallography. Acta Crystallogr D Biol Crystallogr 66:12-21.
722	53.	Potterton L, McNicholas S, Krissinel E, Gruber J, Cowtan K, Emsley P, Murshudov GN,
723		Cohen S, Perrakis A, Noble M. 2004. Developments in the CCP4 molecular-graphics
724	<i>с</i> 4	project. Acta Crystallogr D Biol Crystallogr 60:2288-94.
725	54.	Krissinel E. 2012. Enhanced fold recognition using efficient short fragment clustering. J
726		Mol Biochem 1:76-85.
727	55.	Evans P. 2006. Scaling and assessment of data quality. Acta Crystallogr D Biol
728		Crystallogr 62:72-82.
729	56.	Diederichs K, Karplus PA. 1997. Improved R-factors for diffraction data analysis in
730		macromolecular crystallography. Nat Struct Biol 4:269-75.
731	57.	Weiss MS. 2001. Global indicators of X-ray data quality. J Appl Crystallogr 34:130-135.
732	58.	Evans P. 2012. Resolving some old problems in protein crystallography. Science
733	<i></i>	336:986-7.
734	59.	Karplus PA, Diederichs K. 2012. Linking crystallographic model and data quality.
735		Science 336:1030-3.

736

737 FIGURE LEGENDS

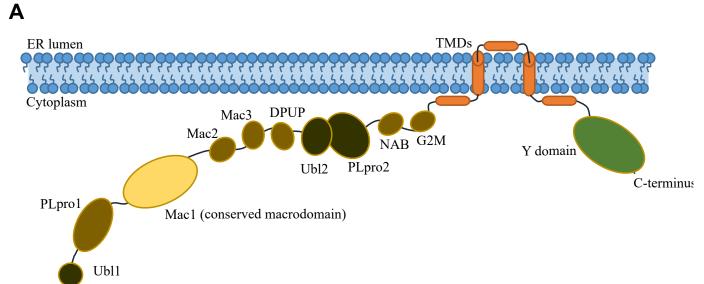
738	Figure 1. The SARS-CoV-2 Mac1 is a small domain within nsp3 and is highly conserved
739	between other human CoV Mac1 protein domains. (A) Cartoon Schematic of the SARS-CoV-2
740	non-structural protein 3. The conserved macrodomain, or Mac1, is highlighted in yellow. (B)
741	Sequence alignment of Mac1 from CoVs; SARS-CoV-2, SARS-CoV, MERS-CoV, and mouse
742	hepatitis virus (MHV), and from alphaviruses Venezuelan equine encephalitis virus (VEEV) and
743	sindbis virus (SINV), and hepatitis E virus (HEV). Sequences were aligned using the ClustalW
744	method from Clustal Omega online tool with manual adjustment. Identical residues are bolded,
745	shaded in grey, and marked with asterisks; semiconserved residues were shaded in grey and
746	marked with two dots (one change amongst all viruses) or one dot (2 changes or conserved
747	within CoV family).
748	Figure 2. Structure of SARS-CoV-2 Mac1 complexed with ADP-ribose. A) The structure was
749	rendered as a blend through model from the N-terminus (blue) to the C-terminus (red). B) The
750	structure was colored by secondary structure showing sheets (magenta) and helices (green). The
751	ADP-ribose is rendered as gray cylinders with oxygens and nitrogens colored red and blue,
752	respectively.
753	Figure 3. Binding mode of ADP-ribose in SARS-CoV-2 Mac1. A) Fo-Fc Polder omit map
754	(green mesh) contoured at 3σ . B) Hydrogen bond interactions (dashed lines) between ADP-
755	ribose and amino acids. C) Interactions with water molecules. Direct hydrogen bond interactions
756	are represented by dashed lines and water mediated contacts to amino acids are drawn as solid
757	lines.
758	Figure 4. Structural comparison of the SARS-CoV-2 Mac1 protein with the SARS-CoV and

759 MERS-CoV Mac1 proteins. A-B) Superposition of SARS-CoV-2 macrodomain (magenta) with

760	coronavirus macrodomain structures.	A) SARS-CoV Mac1 with ADP-ribose (gold)	(2FAV) and
100			/ / 21 / 1 / / 4114

- 761 B) MERS-CoV Mac1 with ADP-ribose (teal) (5HOL). C-D) Superposition of SARS-CoV-2
- 762 Mac1 (magenta) with other coronavirus Mac1 structures highlighting the ADP-ribose binding
- site. C) SARS-CoV (gold), D) MERS-CoV (teal). The ADP-ribose molecules are colored gray
- for SARS-CoV-2 Mac1 (A-D) and are rendered as green cylinders for SARS-CoV Mac1 (panel
- 765 **A,C**) and MERS-CoV Mac1 (panel **B,D**).
- Figure 5. Human CoVs bind to ADP-ribose with similar affinity. A-B) ADP-ribose binding of
- human Mdo2 and SARS-CoV, MERS-CoV, and SARS-CoV-2 Mac1 proteins by ITC. Images in
- 768 (A) are of one experiment representative of at least 2 independent experiments. Data in (B)
- represent the combined averages of multiple independent experiments for each protein. Mdo2
- 770 n=2; SARS-CoV n=5; MERS-CoV n=6; SARS-CoV-2 n=2.
- 771 Figure 6. Coronavirus Mac1 proteins are ADP-ribosylhydrolases. A) The SARS-CoV-2
- macrodomain was incubated with MARylated PARP10 CD *in vitro* at equimolar ratios $(1 \mu M)$
- for the indicated times at 37°C. ADP-ribosylated PARP10 CD was detected by immunoblot (IB)
- with anti-ADP-ribose binding reagent (Millipore-Sigma MAB1076). Total PARP10 CD and
- 775 macrodomain protein levels were determined by Coomassie Blue (CB) staining. PARP10 CD
- incubated alone at 37°C was stopped at 0 or 60 minutes. **B)** The level of de-MARylation was
- 777 measured by quantifying band intensity using Image J software. Intensity values were plotted
- and fit to a non-linear regression curve with error bars representing standard deviation. Results in
- A are representative experiments of two independent experiments and data in **B** represent the
- 780 combined results of the two independent experiments. C) The Mdo2, MERS-CoV, SARS-CoV,
- and SARS-CoV-2 macrodomains were incubated with MARylated PARP10 CD in vitro at the
- 782 following ratios of [substrate]: [Mac1]: 1:1 (1 μM), 5:1 (500 nM, 100 nM), or 10:1 (1 μM, 100

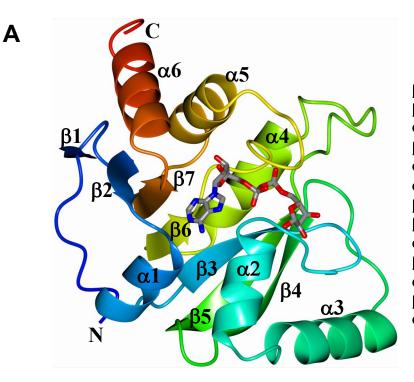
783	nM) for the indicated times at 37°C. ADP-ribosylated PARP10 CD was detected as described
784	above, and total PARP10 CD and macrodomain protein levels were determine by Coomassie
785	Blue (Fig. S6). D) Time-dependent substrate concentrations were determined by quantifying
786	band intensity using Image Studio software. The data were then analyzed using Mathematica 12,
787	as described in Methods, to determine the initial rate (k) of substrate decay. Results in C are
788	representative experiments of three independent experiments and data in D represent the
789	combined results of the three independent experiments.
790	Fig. 7. Coronavirus Mac1 proteins do not hydrolyze PAR. PAR hydrolase assays were performed
791	with PARP1 either extensively poly-ADP-ribosylated (500 μ M NAD ⁺) or partially poly-ADP-
792	ribosylated (5 μ M NAD ⁺) to produce oligo-ADP-ribose. Macrodomains were incubated with
793	both automodified PARP1 substrates for 1 hour. PAR was detected by immunoblot with the anti-
794	PAR antibody 96-10. PARG (catalytically active 60 kD fragment) was used as a positive control.
795	The results are representative of 2 independent experiments.
796	Figure 8. Development of an ELISA assay to detect de-MARylation. A) Cartoon schematic of
797	the ELISA assay. ELISA plates pre-coated with glutathione and pre-blocked were used capture
798	GST-tagged PARP10 proteins, which was used as a substrate for de-MARylation. The removal
799	of MAR was detected by anti-MAR antibodies. B) MARylated PARP10 (MAR+) and non-
800	MARylated PARP10 (MAR-) with no SARS-CoV-2 Mac1 as controls were detected with anti-
801	mono-ADP-ribose binding reagent (α -MAR) (Millipore-Sigma MAB1076) or with anti-GST (α -
802	GST) (Invitrogen, MA4-004). C) Starting at 12.5 nM, 2-fold serial dilutions of the SARS-CoV-2
803	Mac1 protein was incubated in individual wells with MARylated PARP10-CD for 60 min at
804	37°C. The graph represents the combined results of 2 independent experiments.
805	


806 SUPPLEMENTAL FIGURE LEGENDS

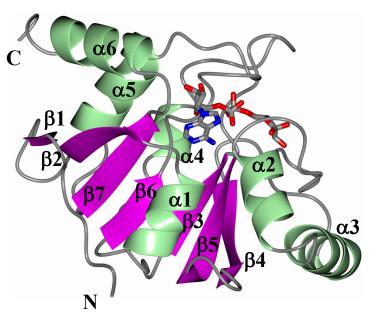
- 807 Figure S1. Purification and crystallization of macrodomain proteins. A) Macrodomain proteins
- 808 were purified as described in Methods. Equimolar amounts of the recombinant proteins were run
- 809 on a polyacrylamide gel and visualized by Coomassie staining. B) Crystals of SARS-CoV-2
- 810 Mac1 obtained with Salt Rx HT E10 supplemented with 0.1 M NDSB-256.
- 811 Figure S2. Extended residues at the C-terminus of the SARS-CoV-2 Mac1 clashed with
- symmetry related molecules. A) Comparison of the amino acid sequence of SARS-CoV-2 Mac1,
- 813 6W02 and 6WEY. B) Superposition of SARS-CoV-2 Mac1 (magenta) subunit B onto subunit A
- 814 of 6W02 reveals that the C-terminus would clash with symmetry related molecules (coral).
- 815 Figure S3. Comparison of the SARS-CoV-2 Mac1 protein with homologous structures. A-B)

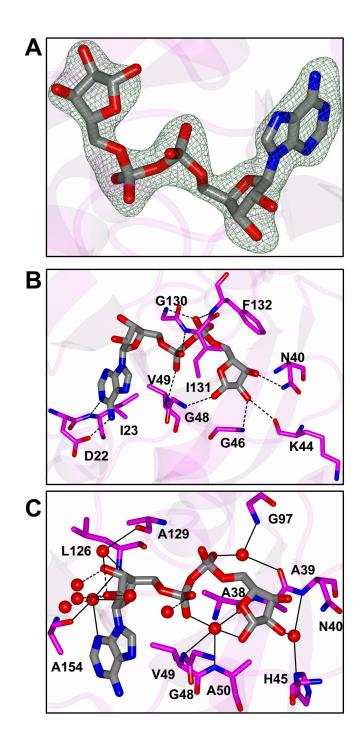
816 Superposition of SARS-CoV-2 Mac1 (magenta) with other recently determined homologous

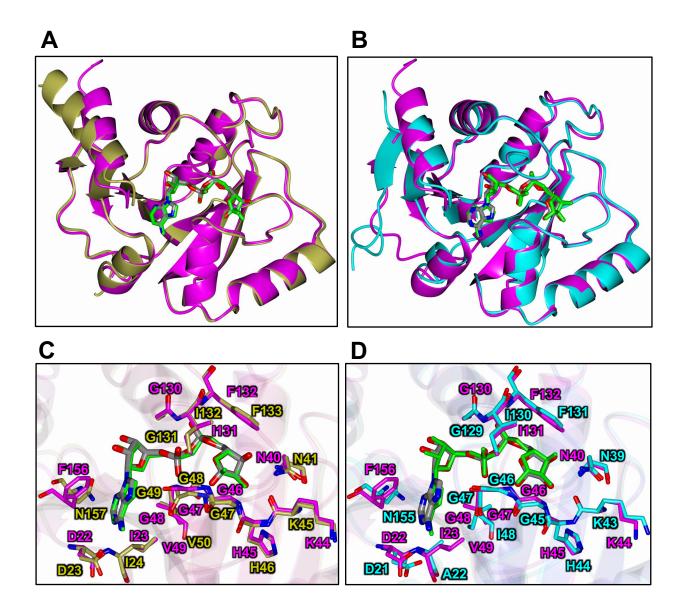
- 817 structures. A) SARS-CoV-2 Mac1 apo structure (6WEN), B) SARS-CoV-2 Mac1 complexed
- 818 with ADP-ribose (6W02). The ADP-ribose molecule is colored gray for SARS-CoV-2 and is
- 819 represented as green cylinders for 6W02 in panel **B**. **C-D**) Comparison of the residues in the
- 820 ADP-ribose binding site. C) SARS-CoV-2 Mac1 apo structure (blue, 6WEN), D) SARS-CoV-2
- 821 Mac1 complexed with ADP-ribose (green, 6W02). The ADP-ribose of SARS-CoV-2 is rendered
- 822 as gray cylinders, and is represented as green cylinders for 6W02 in panel **B**.
- 823 Figure S4. ADP-ribose binding of macrodomain proteins by DSF assay. The macrodomain
- 824 proteins (10 μM) were incubated with increasing concentrations of ADP-ribose and measured by
- DSF as described in Methods. Mdo2 n=4; SARS-CoV n=6; MERS-CoV n=5; SARS-CoV-2 n=3.
- Figure S5. Affinity of ADP-ribose binding antibodies for ADP-ribosylated PARP10 CD.
- 827 MARylated PARP10 and non-MARylated PARP10 CD were detected by immunoblot (IB) with
- 828 anti-GST (Invitrogen, MA4-004), anti-ADP-ribose binding reagents: anti-MAR (Millipore-

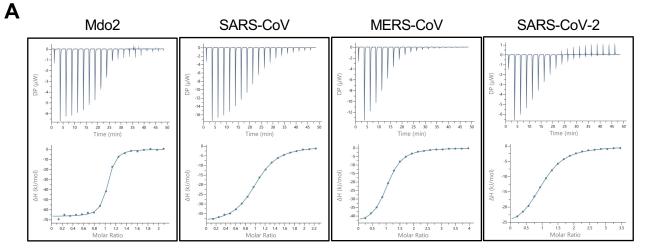

- 829 Sigma MAB1076), anti-PAR (Millipore-Sigma MABC547), and anti-MAR/PAR (Millipore-
- 830 Sigma MABE1075) antibodies.
- 831 Figure S6. MARylated PARP10 stability over time. The presence of mono-ADP-ribose of
- 832 automodified PARP10 without any macrodomain was detected at 6 time points by immunoblot
- 833 analysis with the anti-GST (Invitrogen, MA4-004) and anti-ADP-ribose binding reagent anti-
- 834 MAR (Millipore-Sigma MAB1076).
- 835 Figure S7. The CoVs and human Mdo2 macrodomain proteins were incubated with MARylated
- 836 PARP10 CD in vitro for the indicated times at 37°C. Total PARP10 CD and macrodomain
- 837 protein levels were determined by Coomassie Blue (CB) staining. Results showone experiment
- 838 of three independent experiments.
- 839 Figure S8. Differential PARylation of PARP1 by varying concentrations of NAD⁺. Recombinant
- human PARP1 was automodified in a reaction buffer supplemented with increasing
- 841 concentrations of NAD⁺ to generate substrates for the PAR hydrolase assays. PAR was detected
- by immunoblot analysis of reaction products with the anti-PAR antibody 96-10.

V-terminus -

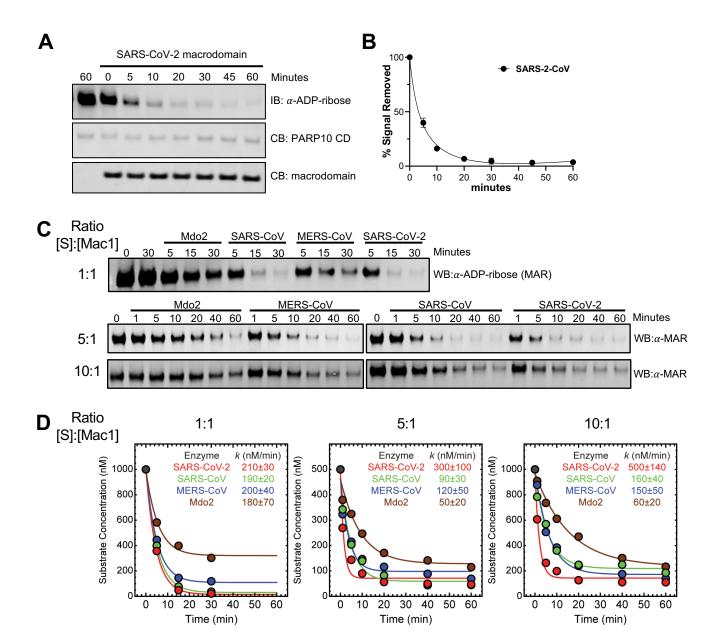

В

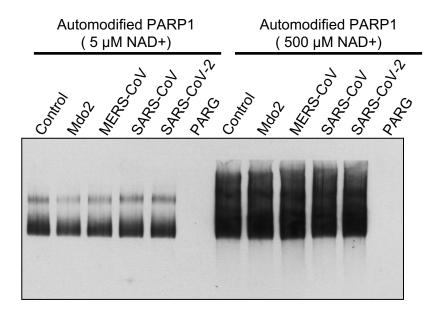

SARS-CoV-2 aa	1 1 ()	20	30	40	50	60	70	
			I			I			
SARS-CoV-2	IEVNSFSGYL	KLTDN	VYIKNADIVE	EAKKVKPTVV	V N AANVYLK	(H G G G VAG A LNK	ATNNAMQVES	DDYIATNGP	74
SARS-CoV	EPVNQFTGYL	KLTDN	VAIKCVDIVK	TEAQSANPMVI	V N AAN <mark>IHLK</mark>	(H G G G VAG A LNK	ATNGAMQKES	DDYIKLNGP	74
MERS-CoV	-PLSNFEH-KV	/ITEC	VTIVLG <mark>D</mark> AIÇ	VAKCYGESVL	V N AANTHLK	(H G G G IAG A INA	ASKGAVQKES	DEYILAKGP	72
MHV	LYG-SC	CITPN	VCFVKGDVIK		V N PA N GRMA	H G A G VAG A IAK	AAGKAFINET	ADMVKAQGV	68
VEEV	YTG-SH	RLHEAGCAPS	YHVVRGDI	ATATEGVI	I N AANSKGQ)P g g g vcg a lyk	KFPESFDLQF	IE	62
SINV		APS	YRTKRENI	ADCQEEAV	V N AA N PLGF	RP GEG VCR A IYK	RWPNSFTDSA	TE	51
HEV		YPDG	SKVFAGSL	FESTCTWL	v n as <mark>n</mark> vdhf	RP G G G LCH A FYÇ	RYPASFDAAS	FVMR	54
Conservation		•			:*::*	* *			
SARS-CoV-2 a.	a. 80	90	100	110		120	130	140	
	1	I	I	I		I			
SARS-CoV-2	LKV G GSCVLS	GHNLAKHCLH	V V G P NVNK	G-EDIQL L KS	A Y EVF	NQHEVLLAF	LLSA GI FGAD	PIH S LR	141
SARS-CoV	LTV G GSCLLS	GHNLAKKCLH	V V G P NLNA	G-EDIQL L KA	A Y ENF	NSQDILLAF	l lsa gi fgak	PLQ S LQ	141
MERS-CoV	LQV G DSVLLQ0	GHSLAKNILH	v v g p dara	K-QDVSL L SK	C Y KAM	NAYPLVVTF	l vsa gi fgvk	PAV S FD	139
MHV	CQV G GCYEST	GGKLCKKVLN	I V G P DARGHG	K-QCYSL l er	A Y QHI	NKCDNVVTI	L ISA GI FSVF	TDV S LT	137
VEEV	V G KARLVK-	GVTKHIIH.	A V G P NFNKVS	EVEGDKQ l AE	A Y ESIAKIV	'NDNNYKSVAIF	PLLST GI FSGN	KDRLTQ S LN	137
SINV	T G TAKLTV-	CQGKKVIH	A V G P DFRKHF	PEAEALKL L QN	A Y HAVADLV	'NEHNIKSVAIF	' l lst gi yaag	KDRLEV S LN	126
HEV	D G AAAY	-TLTPRPIIH	A V A P DYRL	E-HNPKR L EA	A Y RETC	SRLGTAAYF	' l lgt gi yqvf	'IGP S FD	117
Conservation	. *	:	*:*	. *	:*	. :	* :.**.	*.	
SARS-CoV-2 a.	a. 1	L50	160						
		1							
SARS-CoV-2	VCVDTVR	[NVYLAVFDK]	NLYDKLV		165				
SARS-CoV	VCVQTVR	rqvyiavndk.	ALYEQVVMDY	LDNL	172				
MERS-CoV	YLIREAK	[RVLVVVNSQ]	DVYKSLTIVE	IPQLE	171				
MHV	YLLGVVTH	KNVILVSNNQ	DDFDVIEKCÇ	VTSVAGTK	172				
VEEV	HLLTALDTTDA	ADVAIYCRDK	KWEMT		162				
SINV	CLTTALDRTDA	ADVTIYCLDK	KWKERIDA	VLQLKE	160				
HEV	AWER-NHRPGI	DELYLPELAA	RWFEANRPTR	RPTLIITEDVA	RTA 159				
Conservation		:							

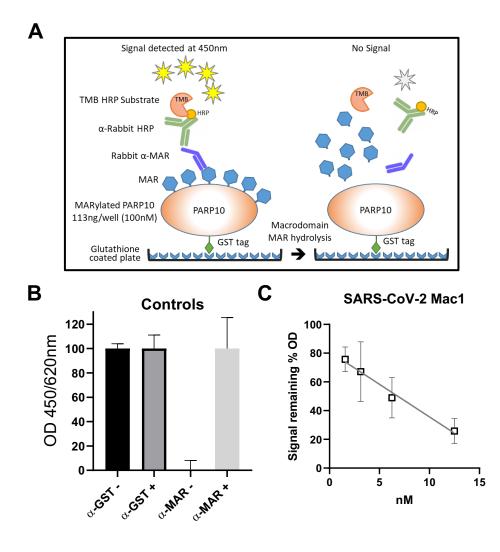



β1: L10-K11
β2: V16-A21
α1: I23-V30
β3: V34-A39
α2: V49-T57
α3: A60-N72
β4: S79-G85
β5: A89-V96
α4: L108-Q118
β6: V121-A124
α5: P136-T146
β7: N150-V155
α6: K158-F168

В







В

Macrodomain	Stoichiometry (N)	Kd (µM)	ΔH (kcal/mol)	ΔG (kcal/mol)
Mdo2	0.92 ± 0.01	0.24 ± 0.02	-66 ± 1	-38 ± 2
SARS-CoV	0.89 ± 0.04	10.8 ± 1.7	-40 ± 1.2	-28 ± 0.4
MERS-CoV	0.97 ± 0.04	7.9 ± 0.15	-47 ± 3	-29 ± 0.4
SARS-CoV-2	1.14 ± 0.06	16.8 ± 0.04	-28 ± 0.1	-27 ± 0.1

