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Abstract 

Fetal brain MRI has become an important tool for in utero assessment of brain 

development and disorders. However, quantitative analysis of fetal brain MRI remains 

difficult, partially due to the limited tools for automated preprocessing and the lack of 

normative brain templates. In this paper, we proposed an automated pipeline for fetal 

brain extraction, super-resolution reconstruction, and fetal brain atlasing to 

quantitatively map in utero fetal brain development during mid-to-late gestation in a 

Chinese population. First, we designed a U-net convolutional neural network for 

automated fetal brain extraction, which achieved an average accuracy of 97%. We 

then generated a developing fetal brain atlas, using an iterative linear and nonlinear 

registration approach. Based on the 4D spatiotemporal atlas, we quantified the 

morphological development of the fetal brain between 23-36 weeks of gestation. The 

proposed pipeline enabled the fully-automated volumetric reconstruction for clinically 

available fetal brain MRI data, and the 4D fetal brain atlas provided normative 

templates for quantitative analysis of potential fetal brain abnormalities, especially in 

the Chinese population. 

 
Keywords: U-net convolutional network, fetal brain extraction, Chinese fetal brain 
atlas, morphological development, super-resolution reconstruction 
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Introduction 

Magnetic resonance imaging (MRI) provides superior and versatile contrasts of 

the gray and white matter structures in the fetal brains without known safety concerns, 

and its role in fetal brain examination has been recognized over the years (Griffiths et 

al., 2017; Jarvis & Griffiths, 2019; Weisstanner, Kasprian, Gruber, Brugger, & Prayer, 

2015). In utero MRI offers exquisite anatomical details of the fetal brain within 

millimeter resolution and has become an important tool for prenatal diagnosis, 

complementary to ultrasound examination (Nielsen & Scott, 2017). For instance, 

gyral and sulcal abnormalities (Rolo et al., 2011), corpus callosum dysgenesis (Glenn, 

2006), and abnormal cortical maturation (Fogliarini et al., 2005) in the fetal brain 

could be revealed by in utero MRI. Moreover, quantitative analysis of in utero images 

further improved our understanding of fetal brain development (Makropoulos, 

Counsell, & Rueckert, 2018; Scott et al., 2011). 

Three-dimensional (3D) high-resolution images are often required for 

quantitative analysis of the brain, which, however, remains challenging for in utero 

MRI, due to the excessive and unpredictable fetal and maternal abdominal motion. 

Slice-to-volume registration (SVR) (Jiang et al., 2007; Kainz et al., 2015; Francois 

Rousseau et al., 2006) of 2D multi-slice images with the super-resolution (SR) 

technique (Gholipour, Estroff, & Warfield, 2010; Kuklisova-Murgasova, Quaghebeur, 

Rutherford, Hajnal, & Schnabel, 2012; François Rousseau, Kim, Studholme, Koob, & 

Dietemann, 2010) is commonly used to obtain volumetric reconstruction of the fetal 

brains. To achieve accurate SR reconstruction, extraction of the fetal brain from in 

utero images is required, which relies on the manual delineation of the brain contours 

on 2D slices in all three orientations. This labor-intensive process inhibits large data 

analysis. 

Several brain extraction methods have been proposed and are widely available in 

published toolboxes, including the Brain Extraction Tool (BET) in FSL (Jenkinson, 

Pechaud, & Smith, 2005; Smith, 2002), 3dSkullStrip in the AFNI toolkit (Cox, 1996), 

the Hybrid Watershed Algorithm (HWA) in FreeSurfer (Lin et al., 2003), and Robust 

Learning-Based Brain Extraction (ROBEX) (Iglesias, Liu, Thompson, & Tu, 2011). 
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However, these brain extraction methods developed for the adult brain usually fail for 

the fetal brain, due to the complex in utero and abdominal tissues surrounding the 

fetal brain. Deep learning based segmentation methods have been proposed in recent 

years. Kleesiek et al. used a convolutional neural network (CNN) for adult brain 

extraction, with used cubic windows of a fixed size around each voxel (Kleesiek et al., 

2016). Salehi et al. proposed an auto-context CNN (auto-net) with two 2.5D network 

architectures and developed a geometry-independent and registration-free adult brain 

extraction tool (Salehi, Erdogmus, & Gholipour, 2017). These methods have also 

been extended to segment the fetal brain, which achieved higher segmentation 

accuracy compared to the traditional approaches. Therefore, we proposed a model 

based U-net (Ronneberger, Fischer, & Brox, 2015) to directly segment the fetal brain 

from routine clinical in utero MRI data acquired in three orientations, as a 

preprocessing step before SR reconstruction.  

Another challenge for in utero fetal brain MRI is that the rapid developmental 

changes of the fetal brain impose difficulties for radiological examinations that 

mainly rely on visual inspection and empirical assessment. It is essential to have 

normative fetal brain templates at matching gestational ages (GA) to compare with. 

Brain templates or atlases play an important role in quantitative image analysis. 

Currently, the development of fetal brain atlases is limited compared with that of 

neonatal, pediatric and adult brain atlases, due to the difficulties in the acquisition and 

preprocessing. Initial attempts have been made. Habas et al. developed a probabilistic 

fetal brain MRI atlas using clinical MR scans of 20 young fetuses with GA ranging 

from 20.6 to 24.7 weeks (Habas et al., 2010). Serag et al. constructed a 4D atlas of 

the developing fetal brains between 23 and 37 weeks of gestational, using T2 

weighted MR images from 80 fetuses (Ahmed Serag et al., 2012; A Serag et al., 

2012) 

(https://brain-development.org/brain-atlases/fetal-brain-atlases/fetal-brain-atlas-serag/

). Gholipour et al. established an unbiased four-dimensional atlas of the fetal brain 

using high-resolution MRI of 81 normal fetuses between 19 and 39 weeks of gestation 

(Gholipour et al., 2017) and made it a public resource 
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(http://crl.med.harvard.edu/research/fetal_brain_atlas/). However, all the 

aforementioned fetal brain atlases were established in Caucasian populations. It is 

known that there are considerable anatomical and functional differences between 

Caucasian and Asian cohorts in the pediatric, adolescent, and adult brains (Lee et al., 

2005; Tang et al., 2010; Uchiyama, Seki, Tanaka, & Koeda, 2013). It is likely that 

these differences start in the fetal period due to genetic factors (Rao et al., 2017). 

Therefore, the existing atlases may not be ideal for the analysis of fetal brains in a 

non-Caucasian population. Given the rapid development of the fetal brain, a small 

difference between the subject and atlas may have a noticeable impact. Here, we 

generated the first version of Chinese fetal brain atlas between 23-36 weeks of 

gestation, which allowed us to quantitatively characterize the three-dimensional 

morphological evolution of the fetal brain. 

 

Methods 

1. Dataset 

In our study, all the data were collected retrospectively from routine clinical 

scans at Women’s Hospital of Zhejiang University School of Medicine between the 

years of 2013-2019. The research protocols were approved by the local Institutional 

Review Board with a waiver of consent. In utero MRI images from pregnant women 

between 21 to 40 weeks of pregnancy were included in this study. Exclusion criteria 

for the normal pregnancy included suspected fetal growth restriction based on 

ultrasound screening, fetal intracranial abnormalities such as ventriculomegaly and 

cerebral hemorrhage, chromosome abnormalities, gestational diabetes mellitus, and 

maternal intrauterine infections including cytomegalovirus and toxoplasmosis.  

The scans were performed at a 1.5 T GE scanner (Signa Hdxt) with an 8-channel 

cardiac coil. No sedation or contrast agents were administered in this study. Images 

were acquired using the single shot Fast Spin Echo (ssFSE) or the T2-prepared 

balanced Steady State Free Precession (SSFP) sequence. The ssFSE data was acquired 

with repetition time (TR) = 2400 ms, echo time (TE) = 130 ms, field-of-view (FOV) = 

360×360 mm, imaging matrix = 512×512 (in-place resolution = 0.7×0.7 mm), and 
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approximately 20 slices with slice thickness of 4±0.1 mm and no slice gap. The 

bSSFP data was acquired at TR = 4.7 ms, TE = 2.1 ms, flip angle = 55º, FOV = 

380×380 mm, imaging matrix = 512×512 (in-place resolution = 0.74×0.74 mm), and 

approximately 16 slices with slice thickness of 5±0.1 mm and no slice gap. 

In total, we obtained 636 scans from 212 fetal brains in axial, coronal, and 

sagittal orientations after visual inspection for image quality. The distribution of data 

at each GA is shown in Figure 1, separately for the two types of sequences in three 

orientations. Note that the three orientations of the same fetus may be scanned with 

different sequences. The SSFSE and bSSFP images in this study had comparable 

contrasts, and therefore, they were jointly used for the U-net based brain 

segmentation.  

47 fetal brains were diagnosed as radiologically and clinically normal by 

experienced radiologists and clinicians (ZY, YG, and LK). After removing 12 normal 

fetal brains that had noticeable motion artifacts or low SNR, 35 normally developing 

fetal brains between 23-36 weeks of gestation were selected (five brains every two 

gestational weeks) for atlas generation. The 35 brains were acquired with the bSSFP 

sequence in three orientations.  
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Figure 1: Distribution of the fetal brain MRI data used for the U-net based fetal brain extraction. 

The images were acquired in the axial (A), coronal (B), and sagittal (C) orientations between 

21-40 gestational weeks, by SSFSE and bSSFP sequences. Two fetal brain images at 26 weeks 

of gestation in three orientations using the SSFSE and the bSSFP sequences respectively are 

indicated in the lower right corner. (D) Fetal brain images acquired using the SSFSE 

sequence and bSSFP sequence. 

 

2. Fetal brain extraction 

2.1 2D U-Net architecture 

The fetal brain masks were manually delineated by a trained research assistant on 

all 636 scans and used as the ground truth for training in the following network. 

Manual brain extraction took about thirty to forty minutes per fetal brain (including 

three orientations), depending on the GA of the fetal brain and the quality of the 

images.  

Figure 2 shows the proposed U-Net CNN structure for fetal brain segmentation. 

The U-net has an approximately symmetric structure, which consists of a contracting 

path and an expanding path. Each convolutional layer is followed by a ReLU 

non-linear layer. In the contracting path, a 2×2 max-pooling layer is applied after two 

3×3 convolutional layers and the number of feature channels gets doubled. 

Correspondingly, the expanding path utilizes a 2×2 up-sampling layer after a 

convolutional operation to halve the feature channels. A dropout rate of 0.5 is used 

before the last pooling layer and the first up-sampling layer. The sizes of the 

symmetric structures between the contracting and the expanding paths are kept the 

same. Therefore, the outputs of the contracting path are directly concatenated with the 

corresponding layers of the expanding path. In the final layer, a 3×3 convolutional 

layer converts the feature maps to label probability, and a 1×1 convolution layer with 

linear output predicts the fetal brain contour. 
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Figure 2: The U-net convolutional network for fetal brain segmentation. The network 

consisted of a contraction path and an expansion path. The convolution layer was set to have a 

kernel size of 3×3 and stride of 2 with zero-padding. The number of features is labeled above 

the network layers, and the types of connection between layers are indicated in the lower right 

corner. 

 

Images acquired in three orientations were separately trained using independent 

U-net, which shared the same network structure. There were 212 scans from 212 fetal 

brains for each network, and we used individual slices as input data to the U-nets. The 

data were randomly divided into 6:2:2 for training, validation, and testing within each 

gestational week. Cross-validation was used to make the best use of the data and 

check potential overfitting. Image data in the training and validation sets were 

enhanced by ten times with image translation ranged 0-20 pixels, rotation ranged 0-20 

degrees, random cropping, and vertical mirror symmetry (Perez & Wang, 2017). 

We applied the Softmax method to measure the loss function for every pixel, and 

cross-entropy loss function between predicted results and ground truth was minimized 

on 30 epochs. The U-net network was trained using an ADAM optimizer with an 

initial learning rate of 1x10-6 that was multiplied by 0.1 for every 10 epochs. The 

training time was approximately six hours with four-parallel Nvidia Geforce 

GTX2080Ti GPUs. For testing, we obtained a probability image as the output of the 

network, and the final mask was determined using a threshold of 0.9. The choice of 

threshold (between 0.1-0.9) did not affect the segmentation accuracy. 
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2.2 Evaluation of the segmentation accuracy 

The test set of fetal brain images was also segmented using the brain extraction 

tool (BET) (Jenkinson et al., 2005), which uses a deformable spherical surface mesh 

model initialized at the center-of-gravity of the image. The input images for BET 

were cropped from 512×512 to 256×256 to reduce the influence of surrounding 

tissues as the fetal brains laid in the center of the images. The neighborhood filling was 

performed for both the U-net and the BET outputs to remove the holes and islands. 

The performance of the U-Net and BET methods was assessed by comparison with 

the manual brain segmentation based on the Dice score, intersection over union (IOU), 

sensitivity, and specificity in three orientations. Based on the predicted brain mask A 

and the ground truth mask B, the true positive (TP), false positive (FP), true negative 

(TN) and false negative (FN) rates were calculated, and Dice is defined as 

2 2

2

A B TP

A B TP FP FN

∩
=

+ + +
, IOU as 

A B

A B

∩
∪

, specificity as TN

TN FP+
, and 

sensitivity as TP

TP FN+
. 

 

3. Super-resolution (SR) reconstruction 

3D fetal brain images were reconstructed using a SR pipeline (Francois 

Rousseau et al., 2006) based on the 2D fetal brain images extracted in three 

orientations. We used an open-source toolkit “BTK” (François Rousseau et al., 2013) 

(https://github.com/rousseau/fbrain) to perform global histogram matching among the 

axial, sagittal, and coronal images, non-local denoising, SVR registration, and SR 

reconstruction. We used the default parameters except for the regularization factor of 

the SR algorithm which was increased for higher contrast. 

 

4. Generation of the fetal brain atlas  

We designed an iterative linear and nonlinear registration framework to construct 

the fetal brain atlas based on SR reconstructed 3D fetal brains. We selected five 
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normal brains from every two gestational week bins to generate population templates. 

The atlas generation pipeline is shown in Figure 3. Among the five brains in each bin, 

we carried out pairwise registrations (Ahmed Serag et al., 2012) by selecting one of 

the brains as a target image and the rest of the brains were registered to the target 

brain, by affine and Symmetric image Normalization (SyN) registration (Avants, 

Epstein, Grossman, & Gee, 2008), using the ANTs toolbox 

(https://github.com/ANTsX/ANTs). This procedure was applied to each of the five 

brains and produced a group average for every brain. Averaging the five groups 

averaged images generated the initial template (IA
1). The use of pairwise registrations 

eliminated bias in the atlas toward any of the original images. In the first iteration, the 

five brains were registered to the IA
1 from their native space using affine and 

deformable SyN registration, and averaged to obtain an averaged template (IA
2). In the 

second iteration, all brains were transformed to IA
2 from their native space with affine 

and deformable SyN registration, and averaged to get an averaged template (IA
3). The 

procedure was repeated 15 times until the template became stable (Supplementary 

Figure 1).  

 

 

Figure 3: Pipeline for fetal brain atlas generation. Five normal developing fetal brain images 

were chosen at a given gestational stage (every two weeks). Pairwise registrations using 

affine and SyN registration were performed to generate the initial template IA
1. In the first 

iteration, the five fetal brains were registered to the IA
1 from their native space by affine and 

SyN transformation to generate IA
2. The procedure was iterated 15 times to produce the final 

template. 
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5. Mapping the morphological fetal brain development 

To quantify the morphological changes of the fetal brain parenchyma, we 

removed the cerebrospinal fluid (CSF) on the fetal brain atlas. The atlas images were 

first segmented by the Developing Brain Region Annotation with 

Expectation-Maximization (Draw-EM) tool (Makropoulos et al., 2014). The 

segmentation results were then manually corrected by a trained research assistant in 

ROIEditor (https://www.mristudio.org/).  

Based on the CSF-free fetal brain atlas, morphological changes between 

gestational stages were quantified by the transformation between adjacent gestational 

stages. For instance, transforming the template at 23-24 weeks to the template at 

25-26 weeks to obtain the morphological change from 23.5 weeks to 25.5 weeks. The 

transformation was achieved by rigid registration followed by SyN registration. For 

each pair of transformation, the deformation field was computed using the 

log-Jacobian matrix of the SyN transformation. The determinant of the log-Jacobian 

matrix was used to quantify the amount of morphological differences between 

adjacent gestational stages. In addition, the dynamic changes from 23 to 36 weeks of 

gestation can be captured continuously by interpolating the log-Jacobian matrices, and 

predicted brain atlas can be obtained at any given GA. 

 
Results 

Figure 4 shows representative segmentation results of fetal brains at different 

GAs in the sagittal, coronal, and axial orientations. The automated segmentation by 

the U-net (magenta contours), mostly overlapped with the manually delineated ground 

truth (green contours). Table 1 demonstrates the segmentation performance of the 

U-net method compared with the BET method in the test set, in three orientations. 

The U-net method yielded an average Dice score of 0.97 across the three brain 

orientations (0.9774, 0.9759, and 0.9564 in the coronal, sagittal, and axial orientations, 

respectively). In comparison, the BET method resulted in an average Dice score of 

0.74 and significantly lower IOU, sensitivity, and specificity in all three orientations. 
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Figure 4: The contours of the U-net predicted brain mask (in magenta) and the ground truth 

(in green) are shown for fetal brains at different gestational weeks, in sagittal, coronal, and 

axial orientations. 

 

Table 1: The performance of the U-net model and conventional BET method. The Dice score, 

IOU, specificity, and sensitivity of the segmentation results in three orientations were 

compared between the two methods.  

  Dice IOU 

Methods Coronal Sagittal Axial Coronal Sagittal Axial 

U-net 0.9774 ± 

0.0074 

0.9759 ± 

0.0121 

0.9564 ± 

0.0176 

0.9558 ± 

0.0139 

0.9531% ± 

0.0226 

0.9170 ± 

0.0320 

BET 0.7406 ± 

0.3226 

0.7284 ± 

0.3686 

0.7458 ± 

0.2737 

0.6668 ± 

0.3192 

0.6731 ± 

0.3565 

0.6550 ± 

0.2875 

  Specificity Sensitivity 

Methods Coronal Sagittal Axial Coronal Sagittal Axial 

U-net 0.9994 ± 

0.0003 

0.9992 ± 

0.0004 

0.9982 ± 

0.0009 

0.9762 ± 

0.0109 

0.9744 ± 

0.0216 

0.9723 ± 

0.0128 
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BET 0.9848 ± 

0.0204 

0.9892 ± 

0.0164 

0.9828 ± 

0.0191 

0.8444 ± 

0.3380 

0.7404 ± 

0.3723 

0.8823 ± 

0.2659 

 

We observed a GA dependent variation of the segmentation accuracy in our 

results (Figure 5), especially in the axial images. The relatively low accuracy at early 

GA was likely to be related to the relatively small number of training data and 

relatively small brain size compared with the majority of the data. Besides, Dice 

scores in the coronal and sagittal orientations were higher than those in the axial 

orientation, which was possibly due to the difficulty in segmenting bottom part of the 

fetal brain in the axial orientation, e.g., the medulla oblongata and the cerebellum. 

Nevertheless, the overall high segmentation accuracy was sufficient for SR 

reconstruction. 

 

Figure 5: Relation between the Dice scores from the U-net segmentation and GA in three 

orientations. The solid line indicates the mean and the shaded region indicates the standard 

deviation of the Dice scores at varying gestational weeks.  

 

Based on the U-net masked images, we constructed the 3D fetal brain images 

using SR reconstruction (Supplementary Figure 2). We then constructed the fetal 

brain atlas by computing the average brain templates every two weeks from 23 to 36 

gestational weeks. The 4D spatiotemporal fetal brain atlas is shown in Figure 6, in 

sagittal, coronal, and axial views, which characterized the drastic changes in the shape 

and size of the fetal brains. It was observed that between 23 to 26 weeks of gestation, 

the development of calcarine fissure (Bendersky, Musolino, Rugilo, Schuster, & Sica, 
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2006) and cingulate gyrus (Monteagudo & Timor‐Tritsch, 1997) were prominent; part 

of the primary sulci, precentral gyrus, and postcentral gyrus were formed between 27 

to 30 weeks of gestation; the rest of the primary sulci and part of the secondary sulci 

appeared between 31 to 34 weeks of gestation; and between 34 to 36 weeks of 

gestation, the ventricles gradually shrink due to the expansion of brain parenchyma 

(Huisman, Martin, Kubik-Huch, & Marincek, 2002). In addition, to fill the gestational 

gap (2 weeks) in the current atlas, we interpolated the transformation matrices 

between adjacent GA to generate pseudo-templates at a 0.5-week interval 

(Supplementary Figure 3), or even finer intervals (Supplementary video) for better 

visualization of the dynamic process. 

 
Figure 6: Fetal brain atlas was generated for GAs of 23-24, 25-26, 27-28, 29-30, 31-32, 

33-34, and 35-36 weeks, in sagittal, coronal, and axial views. 

 

The morphological changes between adjacent gestational stages are illustrated in 

Figure 7 in 2D and 3D views. The color bar represents the amount of morphological 

deformation when transforming one template to the next, indicating the rate of brain 

growth from one gestational stage to the next. Dramatic fetal brain growth was 

observed during early gestation, e.g., from 23.5 to 25.5 weeks, and the growth rate 

slowed down towards late gestation. Moreover, a posterior-to-anterior developing 

pattern was observed. The log-Jacobian map of brain transformation from 27.5 to 29.5 
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weeks indicated the fastest changes in the central and posterior brain including the 

central sulcus, pre- and post-central gyri, and occipital lobe regions (white arrows), 

while the transformation from 31.5 to 33.5 weeks suggested prominent changes in the 

frontal-orbital regions (blue arrows).  

 

Figure 7: The morphological changes of fetal brains between adjacent gestational stages. The 

determinant of the log-Jacobian matrix, which represented the amount of morphological 

change between adjacent fetal brain templates, was rendered in 2D and 3D views. The colors 

indicate the amount of morphological expansion (red) or retraction (blue, e.g., when cortical 

folding takes place). 

 

Discussion 

In this work, we proposed a fully automatic segmentation method based on U-net, 

and together with the SR reconstruction, 3D images of the fetal brains were obtained 

in an automated manner. Moreover, we generated a 4D spatiotemporal atlas in a 

Chinese population, based on which, we quantitatively mapped the fetal brain 

development from 23-36 weeks of gestation. To the best of our knowledge, the 

existing fetal brain atlases were collected from the Caucasian or mixed populations, 

which might not be entirely appropriate for analysis of fetal brain development in a 

different race, as indicated by many studies (Liang et al., 2015; Rao et al., 2017; Tang 
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et al., 2010; T. Zhao et al., 2019). The establishment of a dedicated Chinese fetal 

brain atlas provided a normative brain template for anatomical reference in clinical 

diagnosis and quantitative characterization of fetal brain development in related 

studies. 

For quantitative assessment and the volumetric reconstruction of the fetal brain, 

accurate and automatic fetal brain segmentation is the prerequisite. Extracting the 

fetal brain from the in utero MRI image is an entirely different task than skull 

stripping in the adult brain. Due to the complex in utero compositions (amniotic fluid, 

placental, fetal body), the maternal body tissues surrounding the fetal brain, and the 

random fetal brain orientation, the fetal brain is often not the gravitational center of 

the image. Therefore, traditional brain extraction methods that rely on image 

registration (Taimouri, Gholipour, Velasco-Annis, Estroff, & Warfield, 2015; 

Tourbier et al., 2017; Wright et al., 2014) mostly fail. Deep-learning methods open a 

new avenue for this challenging task (Ebner et al., 2019; Khalili et al., 2019; Salehi et 

al., 2017; L. Zhao et al., 2019). Salehi et al. segmented the fetal brain with two 

different Auto-Net architectures, including a voxelwise CNN architecture and a fully 

convolutional network based on the U-net architecture, which achieved Dice scores of 

0.9597 and 0.9380, respectively, using a dataset of 75 images (Salehi et al., 2017). 

Ebner et al. proposed two separate CNNs for localization and segmentation of the 

fetal brain using 114 scans from normal and spina bifida fetuses for training, and 

achieved a Dice coefficient around 0.935 (Ebner et al., 2019). Both studies have an 

optimized CNN structure, but the segmentation accuracies were moderate, possibly 

due to the limited training data. There were also other studies using deep learning 

methods for fetal brain tissue segmentation (Khalili et al., 2019; L. Zhao et al., 2019). 

Here, we proposed a U-net model to segment the fetal brain from 212 scans, which 

achieved an average Dice of 0.97(±0.01) and robust performance for images in all 

three orientations across a full gestational age from 23-38 weeks. Considering that the 

segmentation was performed on routine clinical scans with relatively thick slices and 

variable image qualities, the segmentation accuracy was comparable or even superior 

to the existing studies and was sufficient for the subsequent SR reconstruction. 
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Besides, the 2D U-net was computationally efficient, which only took 2-3 seconds to 

extract one fetal brain. This accurate, robust, and convenient tool is readily 

translatable to clinical studies. 

The generation of fetal brain atlases becomes feasible with the automated fetal 

brain extraction and SR reconstruction. We took a deformable registration approach to 

generate a 4D spatiotemporal fetal brain atlas from 23-36 weeks of gestation. A 

number of population brain atlas generation methods have been proposed (Gousias et 

al., 2012; Makropoulos et al., 2016; Schuh et al., 2018; Ahmed Serag et al., 2012). 

Especially, for the generation of the fetal brain atlases, Habas et al. developed 

age-specific MR templates and tissue probability maps of the fetal brain, based on 

group-wise registration of manual segmentations and voxel-wise nonlinear modeling 

(Habas et al., 2010). Gholipour et al. developed an algorithm to construct an unbiased 

four-dimensional atlas of the developing fetal brain by integrating symmetric 

diffeomorphic deformable registration in space with kernel regression in age 

(Gholipour et al., 2017). Here we used iterative SyN registration to ensure gradual 

convergence of the individual brains to the template. The fact that the iteration 

converged in 15 iterations indicated the average template became representative of the 

individual brains at a given GA. This approach has been used in generating neonatal 

brain atlases (Alexander et al., 2017) and SyN has been demonstrated to be among the 

best performing deformable registration methods (Klein et al., 2009; Ou, Akbari, 

Bilello, Da, & Davatzikos, 2014). For a 4D atlas with a temporal dimension, some 

strategies have been proposed to improve the temporal consistency of atlases between 

timepoints, such as the adaptive kernel regression method (Ahmed Serag et al., 2012) 

and the groupwise approach (Schuh et al., 2018). However, since we had a limited 

number of brains (n=35) and their GA information was limited to integers of weeks, 

these strategies did not apply to our dataset. 

High-quality fetal brain atlases in the Caucasian population have been reported 

such as (Ahmed Serag et al., 2012; A Serag et al., 2012) and (Gholipour et al., 2014; 

Gholipour et al., 2017; Khan et al., 2019). Several comparative studies showed 

considerable anatomical differences between races in children and adults, in terms of 
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the bran size, shape, and topology (Liang et al., 2015; Rao et al., 2017; Tang et al., 

2010; T. Zhao et al., 2019). For instance, Zhao et al. showed that in pediatric brains 

between 6-12 years old, the major anatomical differences between Chinese and 

Caucasian brain templates were located in the bilateral frontal and parietal areas (T. 

Zhao et al., 2019). Tang et al. found significant differences in brain shape and size 

between Chinese and Caucasian young males, such as the brain length, width, height, 

AC-PC line distance, and their perspective ratios (Tang et al., 2010). It is possible that 

the developmental differences begin in the fetal period, and therefore, it is essential to 

build a racial specific fetal brain atlas for related studies. Furthermore, a comparison 

of the racial specific atlases in the fetal and later stages may help us to understand the 

genetic versus environmental contributions during brain development. 

In addition to visual examination of the fetal brain development from the 4D 

atlas, we quantitatively characterized the morphological changes between gestational 

stages based on the deformation maps. For instance, the deformation maps revealed 

that the primary gyrus, pre- and post-central gyri, and secondary gyrus developed in 

sequential order. The fast changes in the central sulcus and the precentral/postcentral 

gyri indicated early development of the preliminary sensory areas, while the 

subsequent changes in the superior and frontal gyri may relate to the development of 

higher-order functions. The timeline captured by the deformation maps agreed well 

with the critical milestones of fetal brain development (Garel et al., 2001; Garel, 

Chantrel, Elmaleh, Brisse, & Sebag, 2003).  

There are several limitations in the current study. First, all of our imaging data 

were retrospectively collected from pure clinical scans, which typically had low 

resolution (thick slices), and therefore, the reconstructed 3D images may not match 

the existing high-resolution Caucasian fetal brain atlas (Gholipour et al., 2017). The 

low slice resolution limited more detailed analysis, such as GM and WM 

segmentation. However, they were sufficient for morphological analysis as we have 

shown, and they were suitable references for analysis of clinical fetal MRI data 

acquired at similar resolution. Second, we did not perform a quantitative comparison 

between the Chinese fetal brain atlas with the existing Caucasian atlases in this study 
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due to the unmatched image resolution as explained above. Further work will revisit 

this scientific question once higher resolution data become available. Moreover, the 

number of normal developing fetal brain samples was relatively small. Therefore, we 

were not able to generate a population template for each gestational week but 

combined data for every two gestational weeks, assuming relatively small anatomical 

change within the two-week periods. Finer GA intervals should be used when more 

data become available. Lastly, the U-net method was not directly compared with other 

neural networks proposed by other groups, as the current segmentation accuracy was 

sufficient for SR reconstruction.  

 

Conclusion 

In this work, we proposed an automated fetal brain analysis pipeline, including 

brain extraction, SR reconstruction, atlas generation, and quantification of brain 

morphological development. The U-net model yielded superior segmentation 

accuracy compared with the conventional brain extraction method. Using this 

automated approach, we were able to reconstruct fetal brains across gestation and 

generate a 4D fetal brain atlas between 23-36 gestational weeks in a Chinese 

population. The spatiotemporal atlas allowed us to depict normal in utero fetal brain 

development, which provides normative references for fetal brain examinations in 

clinical practice. 
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